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ABSTRACT. The number of colors needed to colour the blocks of a cyclic Steiner 2-

design S(2, k, v) is at most v.
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i. INTRODUCTION.

A Stelner 2-deslgn S(2, k, v) is a pair (V, B); V is a v-set of elements and B

is a collection of k-subsets of V called blocks. Each 2-subset of V appears in pre-

cisely one block. A colour class in a Steiner system is a set of palrwlse disjoint

blocks. A k-block colourlng of (V, B) is a partitioning of B into k colour classes.

The chromatic index of a Stelner system is the least k for which a k-block colourlng

exists.

Stelner systems with small chromatic index have been studied under the guise of

resolvable or nearly resolvable designs (see [1,2] and references therein). Often

Steiner and related systems are employed in the scheduling of tournaments or experl-

ments; in these contexts, small chromatic index corresponds to few "rounds". A

question of much concern here is: what is the largest possible number of rounds re-

quired for a specified Steiner 2-design S(2, k, v)? In other words, what is the

upper bound on the chromatic index of a Steiner 2-deslgn? One weak upper bound is

immediate.

LEMMA I: The chromatic index of a Steiner 2-deslgn S(2, k, v) is less thn

kv/(k- i).
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PROOF. Given a Steiner system S(2, k, v), construct its block intersection

graph as follows. Each block is represented by a vertex; two vertices are adjacent

exactly when the corresponding blocks intersect. The chromatic index of a Stelner

2-deslgn is the chromatic number of its block intersection graph. The block inter-

section graph has maximum degree less than kv/(k-1). Hence, Brooks’ theorem [3]

guarantees that the chromatic number is at most kv/(k-l).

We suspect that lemma is quite a weak bound; one reason is that a conjecture

of Erds, Faber, and Lovasz [4] would ensure an upper bound of v on the chromatic

index. The purpose of this note is to show that the chromatic index of a cyclic

Stelner system S(2,k,v) is at most v.

A Steiner system S(2,k,v) is cyclic if its element set is {0,I v-l} and

the mapping i i+l (mod v) is an automorphism. This automorphlsm partitions the

blocks of the Stelner system into orbits. Each orbit contains v blocks when v

(mod k(k-l)). When v -= k (mod k(k-l)), each orbit except one contains v blocks.

The exception, the short orbit, contains v/k blocks. The reader is referred to [5]

for a detailed survey of cyclic Stelner 2-designs; the simple introduction here

suffices to prove

THEOREM 2. A cyclic Stelner system S(2,k,v) has chromatic index at most v.

PROOF. If there is a short orbit of blocks, we use a single colour for all

blocks in this orbit, since they are disjoint [5]. For each "full" orbit of blocks,

we consider the subgraph of the block intersection graph induced on this orbit.

This subgraph has degree k(k-l). Hence, Brooks’ theorem guarantees that it can be

coloured in k(k-l) colours, unless it is composed of (k(k-l)+l)-cllques. Observe

that at most one orbit can induce such a graph, and this can only happen when

k(k-l)+l divides v. Thus, for v 1 (rood k(k-l)), we need at most v colours, since

we have (v-1)/(k(k-l)) full orbits. Similarly, for v k (rood k(k-l)), we have one

short orbit, and (v-k)/(k(k-1)) full orbits; hence, at most v-k+2 colours are needed,

completing the proof.

Although cyclic systems comprise a very small fraction of all Stelner systems,

we believe that the techniques used in theorem 2 are interesting and have general
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applicability. Future research might employ different decompositions of the block

intersection graph into manageable pieces, such as the orbits used here, and the

colouring of the system "piece by piece".
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