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ABSTRACT. The concept of a second degree polynomial with nonzero subdegree is in-

vestigated for Abelian groups, and it is shown how such polynomials can be exploited

to produce elementary proofs for the Uniqueness Theorem and the Fourier Inversion

Theorem in abstract harmonic analysis.
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i INTRODUCTION.

Second degree polynomials. Let G and M be fixed, but arbitrary, Abelian topo-

logical groups. Let HOM(G,M) be the group of continuous homomorphisms of G into M,

equipped with the compact-open topology. Let AFF(G,M) be the set of all functions

G x b+f(x) such that b M and f E HOM(G,M). Write SBH(G,M) for the set of con-

tinuous symmetric maps IGxG M such that, for each a E G, the function G x+ (x,a)

is in HOM(G,M). Firs__.t degree polynomials with nonzero subdegree are, by definition,

elements of HOM(G,M): i.e. continuous functions fig M such that

f(x+y) f(x) f(y) 0 for all x, y G. (I)

Second d_er_ p_91_i_al_s wit___h nonzero, s..u.b.degr.ee, are defined to be continuous

f(x+y+z) f(x+y) f(x+z) f(y+z) + f(x) + f(y) + f(z) 0

for all x, y, z G we write P2(G,M) for the set of all such.

The following observations are elementary:

(2)

P2(G,M) is closed under (pointwise) addition; (3)
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f(0) 0 for all f EP2(G,M);
HOM(G,M) c P2(G,M).

For fiG + M, define f*IG / M by f*(x) f(-x)

Clearly

f* EP2(G’M) for all f P2(G,M)
A function fiG M is called even if f= f*. Write

(4)

(5)

for all xG.

(6)

EP2(G) for the set of all even

M has no element of order 2. (141i)

In particular (14) holds when G is compact and connected ([2] 24.25) or when M is

torslon-free.

(14)

(14i)

or

=EOP2(G,M) 2 f HOM(G,M).

In view of (I0), (12), and (5), (13) can be improved in special cases:

f (0P2(G,M) f EHOM(G,M) if either

(Vx (G) (3y(G) 2y=x

Thus we have

(13)

functions in P2(G). Inserting x y -z in (2), we obtain with use of (4)

3f(x)-f(2x) + f(-x) O. (7)

For f P2(G’M)’ (7) implies

f (EP2(G) f(2x) 4f(x) for all xEG. (8)

If f (P2(G,M) is even and x=-z is put into (2), then

2f(x) + 2f(y) f(x+y) + f(x-y). (9)

Conversely, if (9) holds for f P2(G,M) inserting xffiy in (9) yields f(2x) 4f(x).

Thus (9) is equivalent to the evenness.

If fiG M satisfies f*=-f, it is said to be odd. Write OP2(G,M) for the set

of all odd functions in P2(G,M). For f (P2(G,M) (7) implies

f 60P2(G,M) f(2x) 2f(x) for all x EG. (I0)

Putting x =2t+y and z =-2t-y in (2), one obtains

2f(y) + f(2t+y) + f(-2t-y) -f(2t+2y) -f(-2t) 0. (ii)

If f is odd, (II) reduces to

2[f(y) + f(t) f(y+t)] =0 fOr eli t, yG. (12)
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It is not true that (14) holds in general. Let Z be the additive group of

integers and C
2 the cyclic group of order two with generator I. Define

plZ Z C
2

by
f if both m and n are odd

(15)p(m.n)
0 otherwise

That p is odd is clear. That p is in P2(Z Z, C2) is evident from the following.

If x=mn, if y= 9 and z =MN, then

m,n even
others arbitrary p(y+z) 0 p(y) ..p(z) p(y) p(z)

m even 0 0 1 0 0
others odd

m, 9 even 0 0 0 1 0
others odd

m,N even 0 0 1 0 0 1
others odd

m,,N even 0 0 0 0 1
others odd

p (y+z)

0

0

0

m, even 1 0 0 1 0 0 0
others odd

m,M even
others odd

1 0 1 0 0 0

0 0 0 0 0 1 1

0 0 0 0 0 I

1 0 0 0 0 1 0

0 0 00 0 1

m, ].t, ) even
others odd

m,,N even
others odd

m,,N, even
others odd

m,M, even
others odd

m,M,N even
others odd

m,M,v,N even 1 0 0 0 0 1 0
others odd

m,,M even 0 0 0 0 0 0 0
others arbitrary

The cases in which n is even can be found from the above table invoking the symmetry

of P.

Thus

pEOP2(zz, C2) and p HOM(ZmZ, C2). (16)

If is in SBH(G,M) and f(x) (x,x) for all x E G, then f is said to be

quadratic-----the set of all such will be written QD(G,M). That
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QD(G,M) c EP2 (G,M)

is elementary. On the other hand, consider the function p defined in (15) and

assume that p(x) (x,x) for all x E Z Z. Then

(17)

1= (p(ll) =(1@0,1’0) + (1@0,0@1) + (0@1,1.0) + (01,0@1)

=p(leO)+ 2(1,0,01) + p(Ol) 0+0+0 O,

an absurdity. Thus

p E EP2(ZgZ, G2) but p QD(G,M). (18)

For 6 SBH(G,M) and f(x) (x,x), the equation f(x+y) f(x) + f(y) + 2(x,y)

shows that

f (HOM(G,M) (Vx, y (G) 2(x,y) 0. (19)

There is a partial converse to (17). If h is any element of

h#1GxG (x,y) + h(x+y) h(x)-h(y) is in SBH(G,M)

P2 (G,M), then

(20)

as follows readily from (2). If h is even and f 2h, a direct computation with

(8) yields f(x) h#(x,x) for all x G. Thus

{2h h E EP2 (G,M)} c QD(G,M)

Any function f (P2(G’M)
f (h + h*) + (h h*) and so

of the form 2h

2h EP2(q) +0P2(G)

for h P2(G’M) can be written

(21)

2. TRANSLATION-PSEUDO-INVARIANCE.

For fiG- M and a(G the translation f IG- M is defined by f (x) f(x-a)

for all x G. Thus the only translatlon-invariant functions are constants. A

function fig M will be said to be translatlon-pseudo-invarlant (TPI) if, for each

a E G, there exists f,a AFF(G,M) such that

f ef’a + f. (22)a

THEOREM I. The TPl-functlons f such that f(0)=0 are the elements of P2(G,M).
PROOF. Let f P2(G,M) be arbitrary. Define IG x G + M by

(x,y) f(x+y)-f(x)-f(y) for all x,yG. Direct computation with (2) shows

that is in SBH(G,M). Thus, for all a,x (G,

f (x) f(x-a) (x,-a) + f(x) + f(-a)
a
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so

f uf,a+ f where uf’alG 9 x f(-a) + (x,-a).a

Now let f be an arbitrary TPl-function. Then, for each a G, there exists

g(a) M and a HOM(G,M) such that

f (x) g(a) + Ha(x) + f(x)
a

For a,b,x G we have

for all x G.

(23)

a+b
g(a+b) + (x) + f(x) fa+b(X) fa(-b+x)

g(a) + a(-b+x)+ f(-b+x) g(a) + a(-b) + Ha(x) + g(b) +b(x) + f(x),

whence follows that

a+bg(a+b) + N g(a) + g(b) + Ha(b) + na + nb (24)

Since the left side of (24) is symmetric in a and b, the right side is as well

Thus a b(b) (a) for all a,b G.

Consequently the function IGxG (x,y) X(y) is symmetric and is, in fact, in

SBH(G,M) Hence a+b a b+ so (24) becomes

g(a+b) g(a) + g(b) + (a,b) for all a,b G.

For x,y,z G, the above yields

g(x+y+z)- g(x+y)-g(x+z) g(y+z) + g(x) + g(y) + g(z)

[g(x+y+z)-g(x+y)-g(z)] [g(x+z)-g(x)-g(z)] [g(y+z)-g(y)-g(z)]

(x+y,z) (x,z) (y,z) 0

so g 6 P2(G’M)" Furthermore, for each x G,

f(x) =f_x(0) =g(-x) + -x(0) + f(0) gx). Q.E.D.

3. THE FUNDAMENTAL THEOREMS OF ABELIAN ABSTRACT HARMONIC ANALYSIS.

In the sequel G will be a fixed, but arbitrary, locally compact, Abelian,

Hausdorff, topological group (LCA gp.) For any such group G we write %G for a

Haar measure on G, LP(G) for the LP-space relative to %G (p [I’] )’ and (G)

for the Banach space of bounded, complex, regular Borel measures on G and (G)

for the set of continuous, positive-definite functions on G. Let T be the group of

complex numbers of unit modulus and any LCA group topologically isomorphic to

HOM(G, T).
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The fundamental theorems of Abelian abstract harmonic analysis are as follows:

(DUALITy THEOREM) There exists a continuous bihomomorphism e from

to T such that, if for a G and b the a and b are defined by

I Y a y and

(25)

then the maps
G )a HOM(, T) and b b HOM(G,T)

are both topological isomorphisms;

(UNIQUENESS THEOREM) if, for each (G), is defined by

Y f-x’y d(y)
G

then is nonzero whenever is nonzero;

(INVERSION THEOREM) if, for each f LI(G) and h LI(), and are

(26)

(27)

defined by

I Y f f(t)- tey d%G(y and G x f h(s) x e s d% (s),
G

then % can be normalized such that, whenever is in LI() for f LI(G), then

(PLANCHEREL’S THEOREM) % can be normalized such that, for each

f L2(G) LI(G)

lfl 2
d%

G ll 2
d%G

(BOCHNER’S THEOREM) G) { ()+)

(28)

(29)

There are two basic approaches to the proof of the fundamental theorems. The

more modern approach is based on the Gelfand-Naimark theory of commutative Banach

Algebras. It is based on the observation that, under the convolution

operation , defined by

f , h(x) I f(x- t) h (t)dt for all f, h 6LI(G) and x 6 G, (30)
G

LI(G) is a commutative Banach algebra whose spectrum is topologically isomorphic to

}{OM(G,T). This approach was taken by D.A. Raikov in [5]. Here Bochner’s Theorem

(29) is established first, and the other theorems deduced from it (see [I] and [6]

for more recent accounts).

The original approach was based on the structure theory of LCA groups as

developed by L.S. Pontryagin and E.R. van Kampen. Theorem (25) in full generality
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"wa.s first published in 1935 by van Kampen [7]. The other fundamental theorems are

then deduced from (25) by judicious use of the Stone-Weierstrass Theorem and some-

what delicate construction of approximate identities for LI(G) based on the structure

theory (see [2] and [3] for instance).

Our approach here is based on the structure theory and takes (25) for granted.

It however is not dependent on the Stone-Weierstrass Theorem and the approximate

identity exploited is relatively simple. The basic techniques are use of TPI-

functions and simple complex analysis. The theorems (27), (28) and (29) are

essentially equivalent in the sense that, once one of them is established, the task

of establishing the others is relatively simple. Consequently we shall employ our

method to prove only (26) and (27).

Let T be the multipllcative group of nonzero complex numbers. We shall make

exception to our previously adopted convention by employing multipllcative (rather

than additive) notation for T and its subgroup T. We define the complexificatlon

G of G to be an abstract group isomorphic to HOM( ,T) containing G as a subgrou

and extend o to a map on G such that, if for each a G a is defined by

a I y a e y, then

G a HOM(G,T) is an isomorphism. (31)

In the special case G= T, we have Z and

n Tzo n z for all z and n Z. (32)

As a second example, consider finite dimensional real Hilbert space E. Then

G E and E can be taken any complex Hilbert space in which E is a real

form--here

-i <,B >
e _8 e for all E 8 E (33)

A function f which is the restriction to G of a function fl G such that

fo is analytic for each 6 AFF(C,G), (34)

is said to be entlre--the Uniqueness Theorem for analytic functions implies that

the function f is unique For f entire and a G we define the translation f of
a

f by

ff G 9x (x-a)
a
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The complexification
, the concept of an entire function defined on C, and

its translations are defined analogously.

We write LI(G) for the set of all entire functions f on G such that, for

each AFF(,G) and > 0,

sup{llfo(z)lll: Izl _< 6} <

(where is the Ll-norm). In particular L
I
(G) c LI(G).

LEMMA I. Let f LI(G) and a G be arbitrary. Then

(35)

f f d%G f f d%GG a G
(36)

PROOF. The function l Y a y can be written ll" __a where

ll HOM(,]R+) and HOM(,T). Define o HOM(,G) by letting, for

ll
Geach z , o(z) be the element of such that

o(z) Y expCz in

a G
c

Let c G be such that c and define T{ AFF(, by

T(z) c+o(z) for all z

Then (35) implies that, for any simple closed contour y in ,
I If (x- (z)) d%GCx) dz <
YG

so it follows from Fubini’s Theorem and Cauchy’s Theorem that

f f f(x-T(z)) d%G(X) dz f f f(x-T(z)) dz d%G(X) f0d%G=0.yG GY G

Morera’s Theorem now implies that the function FI z - f f(x-T (z))d%G(X) is
G

analytic. For imaginary z, (z) is in HOM(,T) so (z) is in G--hence T(z) is

in G as well and we have

F(z)
G
f fT(z) dG f fd%G (37)

by the invariance of the Haar integral. The Uniqueness Theorem for analytic

functions now implies that (37) holds for all z ( In particular F(0)
G
f f dAG

But T(0) =a, so (36) holds. Q.E.D.

Relative to study of the Fourier Transformation, the utility of P2(G,T) is

dependent on the size of P2(G,T) LI(G). This size can vary, as is shown by
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Theorems 2 and 3 below.

LEMMA 2. Let E be finite dimensional real Hilbert space and k ]0,I[.

Define f E C by

f(x) k<x’x> for all x E. (38)

Then f is in EP2(E,T) LI(E) and

x x >/4< l--k’ l--k
f (x) k for all x( E (39)

(where E is the dual of itself as in (33)).

E

PROOF. That f is in EP2(E follows from (17).

Let E and e be as in (33) and let be the conjugation of the HJlbert space

k<Z z>leaving the elements of E fixed. Then the function fIE z is

analytic so f is entire. Lemma implies that, for each y (E,

llflll f k<t -iy,(t iy)>
dE(t) f k<t’t>e-21<In k y,t> k-<y,y> dE(t)E E

Letting x--21nk "y, we have (39). Q.E.D.

LEMMA 3. Let K be a compact subgroup of G and h an element of P2(G,TC).
Then h(K) T.

PROOF. It will suffice to show that h2(K)cT (where h21G x- h(x)2).
In view of (21) there exist p EP2(G

C
T) and g 0P

2
(G,T) with h2 --p" g.

From (13) we have g2 HOM(G,T), whence follows that g(K)
2

is a compact sub-

group of T Thus g(K) T

Let p#1G G Tx be defined by

# p(x + y)p (x,y)
p (x)p (y)

From (20) we have that p#( SBIt(G TI)
subgroup of T and so a subgroup of T.

for x,y G

Thus, for each x (G, p#(x,K) is a compact

Furthermore, by (8),

# p(2x) 2
p (x,x) p(x) p(x) p(x)

whence follows that p(K) c T.

Finally,

h2(k) c p(K) g(K) c T" TfT. Q.E.D.
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THEOREM 2. There are LCA groups G such that LI(G) P2 (G T) is void

PROOF. Let G be an LCA group with a sequence S of compact subgroups such
n

that lira )tG(Sn)=’ (such as a discrete group which contradicts Burnside’s

conjecture). Then, for h P2(G,T), Lemma 3 implies that h(Sn) c T for each n.

Thus
llhll I _> limn fS lhl dG=limn G(Sn)--" Q.E.D.

n

LEMMA 4. Suppose that G is compact and that f is a linear combination of

characters. Then f %G(G) f.

PROOF. Evidently we need only consider the case f b for b . Since the

fact that (b)--
a
=(-a) implies (-a)

G
f d%G= fG()a d%G G

f dAN
for each a G, it follows that

f bd%
GG

0 if b#O

(G) if b 0

Consequently is %G(G) times the characteristic function of the singleton b.

Similarly v must be %G(G) . Q.E.D.

Let be the directed set of open neighborhoods of 0 in G.

THEOREM 3. There is an open subgroup S of G, a set c LI(G) and a surjection

x (A,m) - f(A,m) satisfying the following properties.

flG\S =0 and fls is in the convex hull of P2(S,T) for all f (40)

f(0) =I and 1 f >_ 0 for all f (41)

For each A there exists B such that BoA and (42)

lira f f(A,m) dXG/ f f(A,m)d%
m-=o B G\B G

there exists a net f in such that the net a/l]fa[[I...- converges

uniformly to I on compacta;

LI() for each f
E

f (0) h (0) for all f,h (i.

(43)

(44)

(45)

PROOF. The Pontryagin-van Kampen Structure Theorem ([2] 24.8) implies that G

may be regarded as the direct sum of n-dimensional real Hilbert space E and a sub-

group H containing a compact, open subgroup M. We denote EM by S and its dual
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group by g. The Duality Theory ([2] 24.11, 24.10) implies that the map o S

determined by the equation

o(y) I S
for all y , (46)

is a topological epimorphism, that {y { " y lM i} may be identified with

the dual of E, and that Z-- {y { : IE i} may be identified with the dual of M

The map o[ + S has a canonical extension (also denoted by ) to an

epimorphism of G onto g such that (46) holds for all y { C. Since M is compact

and continuous homomorphisms preserve compact groups, it follows that so

we can (and shall) identify y with

As in (33) we may view E as a complex Hilbert space in which E is a real form.

Let be the conjugation of E
C
leaving the elements of E fixed. Since is

topologically isomorphic to E, there exists an isomorphism 81E sending E

to satisfying

-i<x,y>
x e(y) e for all x E and y{ E (47)

Homomorphisms HOM( ,E) and 6 HOM(,Z) are determined by the equation

o(y) e OD(y) (Y) for all y 6 (48)

We may (and shall) assume that %S is the restriction to S of, %G’ that

(M) %() that %E satisfies

gd%S
/ / g(x+y)d(y)d%E(X) for all gL(S), (49)

S EM

that IE is %E-%-measure preserving, that %gsatisfies

g d%g= g(x+y) d%(y)d%(x) for all gLl(g) (50)

Weil’s Theorem ([3] 28.54) permits us to normalize such that

/ gd% / g o d% for each gLl(g). (51)

For each A I let A
E

and AM be the canonical projections (relative to the

direct sum S EM) of A into E and M respectively. Since to each x MAM

there corresponds at least one y such that x(y) y(x)# I, it follows from the

compactness of M\AM there is a finite subset F(A) of g such that

MIAM c {xM: x - y 1 for some y F(A)}. Define
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hA =- 1 + n y + (_y)
2

yEF(A) 2

Then hA satisfies

hA(O) i, 1 >_ hA
>_ O, and hA(X) < 1 for all x E MAM-

For each m]N, define f(A’m) G /JR+ by

f(A’M) IGS 0 and f(A’m)(x+y) =e-m<x’x> hA(Y) for xE, yM.

That (40) holds is evident from Lemma 2, that HOM(S,T) c P2(S,T), and the

construction of f(A,m) Let be the set of all such functions f(A,m)

(53)

That (41)

holds is obvious.

For each r > 0 let E(r) be the set {x { E: <x,x> _< r}. Then, for each m6,

the change of variables s m x yields

-m<x,x> m-n/2 -<s s>
f e dz(X) f e dz(s)"

E(r) E(mr)
(54)

Let D be an open subset of {x6M:hA(X)> 1/2} and r’ a positive number such that

B E(r’) + D is a subset of A. Then (54) yields

-m<x,x>
f f(A,m) dG 1/2 f e dE(X)

lira
B >_ lira

E(r’)
-m<x,x>m<= / f(A,m)d

G
m-o I e dE(X)

G\B E\E(r’

-nl 2E/m -<s s>
m r)’ e dE(S)=lim 1/2

m-o m-n/2 I e-<s,s> dAE(s)
EkE(mr’)

which proves (42).

For A and r>0, let A-- {y( : x y- I < r for all x A}
r

Since ttOM(,,T) bears the compact-open topology, {A*:A (l,r >0} is a fundamental

family of compact subsets of Let A{ and r { ]0,I[ be arbitrary For

6 > 0, apply (42) to obtain B 9 and f { G such that BoA and

B
fdl

G
>_ l-___/_r f fdAGr C\B
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so that

Thus, for each y A
r

f (Y) -i

/ f dE
GG\B

f f (l-y)d%
GB

f f" (l-y) d%
GG\B

2 Ifl d%
Gllflll G\B+ _< 3rllfll I llfll

This proves 43.

Let f= f(A,m) be an arbitrary element of . From (40) and (46) follows that

for each y ,
(Y) / f (--) dEG= /f (-y) d%

G S S

so that by (49) and (47)

-i<x,q (y)>f(y) f e-m<x’x> hA(S) e s e(-y) d(s) dE(X (55)
EM

x>From (39), (54) and (55) follows, upon setting c f e-<x’
E

_I
<q(y) N(y)>

4m -n/2(y) e .c. m

d%
E (x),

(hA!M)^((y)) for all y . (56)

Since g , the function

-4 <n(y),n(y) >
) y e (4m)-n/2-(hAIM)^((y))

is analytic--as an extension of , it will be denoted .
An element b of can be written uniquely as u+v where u and v

satisfies v= [[ For such b =u+v and y ,
>

e e e (57)

Since the support of h
A is a subset of a finite set F(A) (-F(A))+ F(A)U (-F(A)),

the n=ber w(A) [(hA[M)l d% is finite. us, application of (51), (50),

(57), and (54) yields
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-n/2

I < < (v) a(v)>-Am (y-u) ,q (y-u) > m q
-n/2f e dl(y) e c (4m) w(A)

_i <x x> m<(v) (v)> I4 (v) (v)>f e dkE(X e__ "c (4m)-n/2.w(A)= e-m<
E

w(A) (58)

2
c w(A)

This proves (44).

From Lemma 4 follows that

f (hAIM)^ dX= (hAIM)^v(0) I.

Consequently (56), (49), and (54) yield

v(0) =i dX E
/ e m<X’X> dXE(X).C.(4myn/2 (hAIM)^ d%

c
2 2(4m)n/2"<4m)-n-2" 1 c

which proves 45. Q.E.D.

LEMMA 5. Let S be an open subgroup of G and f an element of LI(G) satisfying

conditions (40) and (44) of Theorem 3. Then

^ ^(0) f. (59)

PROOF. We evidently may assume that fls 6P2(S,T). Let g be the dual of S

and oI g the canonical epimorphism as in (46). By (23) of Theorem 1 there

exists a function wlS such that

f f(x) "w(x) f for all x6 S (60)--X

For each x6 G, (51), and (60), and (36) yield

^(x) G f(t) t.y diG(t) (-x) ,y dl (y)

/ S f(t) tez dlG(t -x z dlg(z)
S
/ f_x(t) tez dls(t dlg(z)

f(x) f I f(t) t e (z+w(x)) dlg(zas

/ f(t) t,z dlG(t dl(z)f(x) f(t)t(R)z d%s(t dl(z) f(x) G
f(x) ^ (0). Q.E.D.
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THEOREM 4. (Fourier Inversion and Uniqueness Theorems). There exists a

normalization of %, such that, whenever h LI(G) satisfies LI(,), then

h =h %G-a.e.
Further, for any nonzero measure 6 (G),

#0.

(61)

(62)

PROOF. Let S and be as in Theorem 3 and normalize %, such that the number

in (45) is unity.

Suppose first that h is bounded and continuous. Assume h(a)#V(a) for some

aG. Choose A 91 such that, if w h(a) h (a), then

lh (x) (v) (x)-w < lw for all x{A (63)
a a 2

By (42) there exist f and B(91 such that B cA and

f fd%G
>_ 2 f fd%G.B lwl G\B

Consequently

G [h
a (")a] "fd%Gt >_ BI w f d%

G f (llhllo= + II"II) fd%
G

> 0.
2 G\B

(64)

Direct calculation shows

(,"), (ga)^v for all g (LI(G) with (LI(,) (65)

and application of Fubini’s Theorem yields

f d%
G =/ g d%, for all g ELl() (LI(G)

G
(66)

Then (65), (66) and Lemma 5 yield

f (v) f d%
G G

f (ha)^" f d%G= f(h )^ dAwG a a

f h " d%w f h f d%
G a G a G

which contradicts (64). Thus h ".

If ((G) is nonzero, there exists a continuous function gig C with com-

pact support such that f g(-t) d(t) # 0. Then the continuous function g, is
G

nonzero at 0 and we may define

A {x S: lg* U(-x) > Ig * U,0,’’! By (42) there exist f E C and B 912
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such that BcA and

Ifd%G
>

B

211g.
I f d:kGIg * (o) GXB

Thus

/G g * (t) f(t) dXG(t) > I
B

g * 1.I,(0) f dXG
j. llg, II f dX

G
> 0

2 G\B

Hence f, g , is nonzero continuous and

II(f, g . p)^ll (g, p)^ll -< IIII 1
ll(g ,)^Iloo < oo.

Thus (61) implies that (f, g, )v f, g, P. Hence 0 # (f , g, )^= (f, g)^

which establishes (62).

Now suppose that h LI(G) satisfying 6 LI() is arbitrary. Let f be the

net given by (43) of Theorem 3 and, for each index e, let go fl]lf
Then lira IIG- c," 111 0 so

0 llm sup I/ [(y) e(y) (y)] x,y dXCy)I-- limll fiv- (g,h)^ll
xG

(67)

IIEII IIII <, +/- follows fromBecause each gc, * h is continuous and ll(gm, h) 111
(61) that (g,h) =g,h. If " were not in LI(G), there would exist

LI(G) NL(G) such that

j" "-,, dX
G

> Ilhlll. Ilelloo
G

but (67) implies

J"
G

Ca" ,g dXGI =lira lGf g,h" dXGI -< llgcxll.n Ilhll I II11oo=llhlllll.elloo

an absurdity. Thus, v 6 LI(G) Interchanging the roles of and , and of G

and , the continuity of and (61) imply that "^ . It now follows from (62)

that =h. Q.E.D.
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