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ABSTRACT. The concept of a second degree polynomial with nonzero subdegree is in-
vestigated for Abelian groups, and it is shown how such polynomials can be exploited
to produce elementary proofs for the Uniqueness Theorem and the Fourier Inversion
Theorem in abstract harmonic analysis.
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1. INTRODUCTION.

Second degree polynomials. Let G and M be fixed, but arbitrary, Abelian topo-
logical groups. Let HOM(G,M) be the group of continuous homomorphisms of G into M,
equipped with the compact-open topology. Let AFF(G,M) be the set of all functions
G > x > b+f(x) such that b € M and f € HOM(G,M). Write SBH(G,M) for the set of con-
tinuous symmetric maps lexG + M such that, for each a ¢ G, the function G > x> Y(x,a)

is in HOM(G,M). First degree polynomials with nonzero subdegree are, by definition,

elements of HOM(G,M): i.e. continuous functions £|G + M such that
f(x+y) - f(x) - £f(y) = 0 for all x, y € G, (1)

Second degree polynomials with nonzero subdegree are defined to be continuous

f(xty+z) - f(xty) - f(xtz) - f(y+z) + £(x) + £(y) + f(2) = 0O (2)
for all x, y, z € G — we write PZ(G,M) for the set of all such.
The following observations are elementary:

P2(G,M) is closed under (pointwise) addition; 3)
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£(0) = 0 for all f €P,(G,M); 4)
HOM(G,M) C P, (G,M). (5)
For £|G + M, define f*|G > M by f*(x) = f(-x) for all x €G.

Clearly

f* € P)(G,M) for all f€P,(G,M) . (6)
A function f|G > M is called even if f=£*. Write EP,(G) for the set of all even
functions in PZ(G)' Insgrting x =y = -z in (2), we obtain with use of (4)

3f(x)-£f(@2x) + f(-x) = 0. (7)
For fGPz(G,M), (7) implies

£ €EP,(G) = £(2x) = 4f(x) for all x€G. (8)
If f €P2(G,M) is even and x =-z is put into (2), then

2f(x) + 2f(y) = f(x+y) + £(x-y). 9
Conversely, if (9) holds for fEPZ(G,M) inserting x=y in (9) yields £(2x) = 4f(x).
Thus (9) is equivalent to the evenness.

If £|G > M satisfies f* =-f, it is said to be odd. Write 0P, (G,M) for the set

of all odd functions in PZ(G,M). For f EPZ(G,M) (7) implies

£ €0P2(G,M) e f(2x) = 2f(x) for all x€G. (10)
Putting x =2t+y and z=-2t -y in (2), one obtains

2£(y) + £t +y) + £(-2t -y) -£(2t+2y) -£(-2t) = Q. (11)
If f is odd, (11) reduces to

2[f(y) + f(t) - f(y+t)] =0 for all t, y€G. (12)
Thus we have

feor,(6,M) = 2 £ € HOM(G,M). (13)

In view of (10), (12), and (5), (13) can be improved in special cases:

£ €0P,(G,M) = f €HOM(G,M) if either (14)

(Vx €G) (3y€ G) 2y=x (141)
or

M has no element of order 2. (144i1)

In particular (14) holds when G is compact and connected ([2] 24.25) or when M is

torsion-free. ’
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It is not true that (14) holds in general. Let Z be the additive group of
integers and C2 the cyclic group of order two with generator 1. Define
plzez -~ c, by

1 if both m and n are odd

o - (15)
pm&n) = 0 otherwise

That p is odd is clear. That p is in P2(Z b Z, CZ) is evident from the following.

If x=m#n, if y=p& v and z =M @N, then

plxty+z) | p(x)| p(y) | p(z) | p(xty)| p(x+z)| p(y+z)
m,n even
others arbitrary!p(y+z) 0 p(y) | p(z) | p(y) p(z) p(y+z)
m even
others odd 0 0 1 1 0 0 0
m,V even
others odd 0 0 0 1 1 0 0
mn,N even
others odd 0 0 1 0 0 1 0
m,V,N even
others odd 0 0 0 0 1 1 0
m,U even
others odd 1 0 0 1 0 0 0
m,M even 0
others odd 1 0 1 0 0 0
m,l,V even 1 1
others odd 0 0 0 0 0
m,U,N even 0 0 0 0 0 1 1
others odd )
m,1,N,V even 1 0 0 0 0 1 0
others odd
m,M,v even 0 0 0 0 1 0 1
others odd
n,M,N even 0
others odd 0 0 ! 0 0 1
m,M,v,N even
others odd 1 0 0 0 0 1 0
m,1,M even 0 0 0 0 0 0 0
others arbitrary

The cases in which n is even can be found from the above table invoking the symmetry
of P.
Thus
p€0P,(z6Z, C,) and p £ HOM(Z®Z, C,). (16)
If ¢ is in SBH(G,M) and f(x) = Y(x,x) for all x€ G, then f is said to be

quadratic —the set of all such will be written QD(G,M). That
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QD(G,M) < EPZ(G,M) (17)
is elementary. On the other hand, consider the function p defined in (15) and
assume that p(x) = Y(x,x) for all x € Z® Z. Then

1=(p(1el)=y(1&¢0,160) + y(1¢0,001) + P(0S1,160) + P(0&1,001)
=p(l®0)+ 2y(1+0,0861) + p(0P1) = 0+0+0 = 0,
an absurdity. Thus

pE€ Epz(zen, G,) but p £QD(G,M). (18)
For 1y € SBH(G,M) and f(x) = Y(x,x), the equation f(x+y) = £(x) + £f(y) + 2¢(x,y)
shows that

f € HOM(G,M) = (VY x,y €G) 2y(x,y) = 0. (19)

There is a partial converse to (17). If h is any element of P2(G,M), then

h*|GxG > (x,y) » h(x+y) - h(x) ~h(y) is in SBH(G,M) (20)
as follows readily from (2). If h is even and f =2h, a direct computation with
(8) yields f(x) = h#(x,x) for all x €G. Thus

{2h:nh € EP, (G,M)} < QD(G,M) .

Any function f € P2(G,M) of the form 2h for h€ P2(G,M) can be written
f=(h+h*) + (h—h*) and so

2h €EP,(G) +0P,(G) . ‘ (1)

2. TRANSLATION-PSEUDO-INVARIANCE.

For f|G > M and a € G, the translation fa|G + M is defined by f_(x) = f(x-a)
for all x€G. Thus the only translation-invariant functions are constants. A
function fIG + M will be said to be translation-pseudo-invariant (TPI) if, for each
a €G, there exists af’a € AFF(G,M) such that

£ =af? 45, (22)

a
THEOREM 1. The TPI-functions f such that £(0) =0 are the elements of P2 (G,M).
PROOF. Let f €P,(G,M) be arbitrary. Define Y|GxG + M by
Y(x,y) = f(x+y)-£f(x)-£(y) for all x,y €G. Direct computation with (2) shows
that ¢y is in SBH(G,M). Thus, for all a,x €G,

fa(x) = f(x-a) = Y(x,-a) + f(x) + f(-a)
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so
fa = af’a+ f where ocf’a|G dx »> f(-a) + YP(x,-a). (23)
Now let f be an arbitrary TPI-function. Then, for each a € G, there exists
g(a) € M and na € HOM(G,M) such that
£,(x) = gla) + n?(x) + f(x) for all x€G.

For a,b,x € G we have

ga+b) + 20 x) + £(x) = £ 0 = £ (-b+x)

g@@) + n2(-b+x) + £(-b+x) = g(a) + n>(-b) + nZ(x) + g(b) +n>(x) + £(x),
whence follows that

+b

g(a+b) +na b.

= g(a) + g) +n®) +n® +n (24)
Since the left side of (24) is symmetric in a and b, the right side is as well.

Thus n?(b) = nb(a) for all a,b €G.

Consequently the function Y|GxG ) (x,y) -+ nx(y) is symmetric and is, in fact, in

SBH(G,M). Hence na+b =na + nb

so (24) becomes
g(a+b) = g(a) + g(b) + Y(a,b) for all a,b€G.
For Xx,y,z €G, the above yields
Bty +2) - glxty) - glx+2) - gly+a) + g + g) + g(2) =
[g(x+y+z)-gx+y) -g(2)] - [g(x+2)-gx)-g(2)] - [gly+2)-g(y)-g(2)] =
V(x+y,z) - V(x,2) - ¥(y,2z) =0
so g€P,(G,M). Furthermore, for each x €G,

£(x) =£_(0) =g(-x) +nX0) + £(0) = g¥x). Q.E.D.

3. THE FUNDAMENTAL THEOREMS OF ABELIAN ABSTRACT HARMONIC ANALYSIS.

In the sequel G will be a fixed, but arbitrary, locally compact, Abelian,
Hausdorff, topological group (LCA gp.) For any such group G we write >‘G for a
Haar measure on G, 1P (G) for the Lp—space relative to )‘G (p€[l,°]), and M(G)
for the Banach space of bounded, complex, regular Borel measures on G and B (G)
for the set of continuous, positive-definite functions on G. Let T be the group of
complex numbers of unit modulus and & any LCA group topologically isomorphic to

HOM(G,T).



446 K. MCKENNON

The fundamental theorems of Abelian abstract harmonic analysis are as follows:
(DUALITY THEOREM) There exists a continuous bihomomorphism @ from (25)
Gx & to T such that, if for a€G and b€ & the a and b are defined by
al 43y »aey and b|GIx+x0 b,

then the maps _
G>a >2a € HOM( &, T) and & 3 b > b € HOM(G,T)

are both topological isomorphisms;
(UNIQUENESS THEOREM) if, for each u € M(G), 1 is defined by (26)

ﬁl&ay-»é-x'ydu(y),

then ﬁ is nonzero whenever 1 is nonzero;
(INVERSION THEOREM) if, for each f €L'(G) and heLl(8), £ and f are  (27)
defined by

§|13y-*(f;f(t)~tey dA,(y) and hlc dx > fyh(s) xes dy (s),

then AJ, can be normalized such that, whenever £ is in LI(JO for f € Ll(G), then
%V = f;

(PLANCHEREL'S THEOREM) AJ, can be normalized such that, for each (28)
fer?@) n Ll ,

i €1 axg = 1,112 arg

(BOCHNER'S THEOREM) 'MG) = {fi:ne€ m&'} . (29)

There are two basic approaches to the proof of the fundamental theorems. The
more modern approach is based on the Gelfand-Naimark theory of commutative Banach
Algebras. It is based on the observation that, under the convolution
operation x defined by

£ hG) = [ £G-O)h (e for all £, herl(c) and x €c, (30)

LI(G) is a commutative Banach algebra whose spectrum is topologically isomorphic to
HOM(G,T). This approach was taken by D.A. Raikov in [5]. Here Bochner's Theorem
(29) is established first, and the other theorems deduced from it (see [1] and [6]
for more recent accounts).

The original approach was based on the structure theory of LCA groups as

developed by L.S. Pontryagin and E.R. van Kampen. Theorem (25) in full generality
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"was first published in 1935 by van Kampen [7]. The other fundamental theorems are
then deduced from (25) by judicious use of the Stone-Weierstrass Theorem and some-
what delicate construction of approximate identities for L1 (G) based on the structure
theory (see [2] and [3] for instance).

Our approach here is based on the structure theory and takes (25) for granted.
It however is not dependent on the Stone-Weierstrass Theorem and the approximate
identity exploited is relatively simple. The basic techniques are use of TPI-
functions and simple complex analysis. The theorems (27), (28) and (29) are
essentially equivalent in the sense that, once one of them is established, the task
of establishing the others is relatively simple. Consequently we shall employ our
method to prove only (26) and (27).

Let Tc be the multiplicative group of nonzero complex numbers. We shall make
exception to our previously adopted convention by employing multiplicative (rather
than additive) notation for Tc and its subgroup T. We define the complexification

Gc of G to be an abstract group isomorphic to HOM( & ,Tc) containing G as a subgroup,
and extend @ to a map on Gcé:‘ & such that, if for each a € Gc, a is defined by

;|,33y-*aey, then

Gc a-+a € HOM(G,TC) is an isomorphism. (€3))
In the special case G=T, we have & = Z and

zen=2z" for all zETCandnGZ. (32)

As a second example, consider finite dimensional real Hilbert space E. Then

G= % =E and Ec can be taken any complex Hilbert space in which E is a real

form--here

-i <a,B> (4

acefB =ce for all 0€E , B€ 4 =E. (33)

A function f which is the restriction to G of a function f¢l Gc -+ ¢, such that

% o is analytic for each o€ AFF(C,G“), (34)
is said to be entire--the Uniqueness Theorem for analytic functions implies that
the function fc is unique. For f entire and ac¢ Gc, we define the translation fa of

f by
f£lesx tfx-a).
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The complexification Jvc, the concept of an entire function defined on jc, and
its translations are defined analogously.
We write Lé(G) for the set of all entire functions f on G such that, for

each O EAFF(C,GC) and § >0,

sup{||f 8§} < = (35)

sl lz| =
. 1 1 1
(where || ||, is the L -norm). In particular, L€(G) c L (G).

LEMMA 1. Let fGLé(G) and a GGG be arbitrary. Then

- . 36
{; £, dAg éfd)\c (36)
PROOF. The function a| &3>y > a ey can be written |a]*+ —2— where
—_ a
|3| € HoM(¥, ") and -2 ¢ HOM(S,T). Define o€ HOM(E,G) by letting, for

a
each z€@¢, 0(z) be the element of G‘t such that

a(z) | &3y > exp(z 1In |;(y)|).

Let c€G be such that ¢ = and define T € AFF(C,G%) by

T'l“"

1(z) = c+0(2) for all z€@¢ .
Then (35) implies that, for any simple closed contour y in €,

S I If(x-‘l’(z))| d)\G(x) dz < ©
Y G

so it follows from Fubini's Theorem and Cauchy's Theorem that

£.éf(x-‘t(z)) d}\G(x) dz = é{ f(x-1(2)) dz d)\G(x) = éOd)\Gto.

Morera's Theorem now implies that the function F[d: dz > é f(x-1(2)) d)\G(x) is
analytic. For imaginary z, 0(z) is in HOM( &,T) so 0(z) 1is in G--hence T1(z) 1is
in G as well and we have

F(z) = é fT(z) d)\G = {;fd)\c 37)

by the invariance of the Haar integral. The Uniqueness Theorem for analytic
functions now implies that (37) holds for all z€€. In pe-nrticular F(0) =éf d)‘G .
But T1(0) =a, so (36) holds. Q.E.D.

Relative to study of the Fourier Transformation, the utility of P2 (G,Tc) is

dependent on the size of PZ(G,TC) ﬂLl(G). This size can vary, as is shown by
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Theorems 2 and 3 below.
LEMMA 2. Let E be finite dimensional real Hilbert space and k € ]0,1] .
Define f|E -~ € by

f(x) = K% for all x€E. (38)
(14 1
Then f is in EPZ(E,T yn Le(E) and

X X
<T— y — >/4
f(x) = k 10k Ink “l£ll,  for all x€E (39)

(where E is the dual of itself as in (33)).
PROOF. That f is in EPZ(E) follows from (17).
Let Ec and @ be as in (33) and let ° be the conjugation of the Hilbert space

<z,z°>

Ec leaving the elements of E fixed. Then the function fc|Ec >z > k is

analytic so f is entire. Lemma 1 implies that, for each y €E,

- ° - . -
ey =/ K Stemiy, (t,1y) %> () = é KKt ~2i<Inkey,t> | ~<y,y> (o) .
E

Letting x =21nk *y , we have (39). Q.E.D.

LEMMA 3. Let K be a compact subgroup of G and h an element of P2(Gc,TC).
Then h(K) ¢ T.

PROOF. It will suffice to show that h>(K) < T (where h2|c%>x » h(x)?).

In view of (21), there exist p €EP2(Gc,Tc) and g€ OP2 (GC,T¢) with hz-p e g.

From (13) we have gz € HOM(GC,TC), whence follows that g(K)2 is a compact sub-

group of T(I . Thus g(K) ¢ T.

Let p¥|c®xc® > 1 be defined by

p(x+y) ¢

# -
p (x,y) = P PG for x,y € G .

#

From (20) we have that p’ ¢ SBH(GG,TG). Thus, for each x €G, p#(x,K) is a compact

subgroup of T¢ and so a subgroup of T. Furthermore, by (8),

(2x)

2
P(x) *p(x) L

P#(x,X) =

whence follows that p(K) ¢ T.

Finally,
h2(k) ¢ p(K) *g(K) € T+T=T. Q.E.D.
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THEOREM 2. There are LCA groups G such that L1 G) I'IPZ(GC,TC) is void.

PROOF. Let G be an LCA group with a sequence Sn of compact subgroups such
that 1lim AG(Sn) =» (such as a discrete group which contradicts Burnside's
conjecr::::e). Then, for h €P2(GC,T¢), Lemma 3 implies that h(Sn) CT for each n.
Thus

[nll, = lim fsn|h| dAg=1lim Ao (S ) = . Q.E.D.

LEMMA 4. Suppose that G is compact and that f is a linear combination of
characters. Then £ =AG(G) - f.

PROOF. Evidently we need only consider the case £ =b for b€ . Since the
fact that (), =b(-a) *b dimplies b(-a)* é bd AG=£(B')8 dg = b ),
for each a€G, it follows that

_ 0 if b#0
LPd =@ ifb=0 -
Consequently b 1is )\G(G) times the characteristic function of the singleton b.
Similarly % " must be )\G(G) °b. Q.E.D.
Let M be the directed set of open neighborhoods of 0 in G.

THEOREM 3. There is an open subgroup S of G, a set (GC Ll(G) and a surjection

MxN > (A,m) > f(A’m) € G satisfying the following properties.
fIG\S =0 and fIS is in the convex hull of PZ(S,TC) for all f€ G ; (40)
£(0)=1 and 12 £f =0 for all f€G; (41)
For each A€ M, there exists B € * such that BCA and (42)
R TWI N S PRI
there exists a net fa in G such that the net Ea/”falll converges (43)

uniformly to 1 on compacta;

%éLé(}) for each f€G ; (44)

£7(0) = 27(0) for all f,heq. (45)

PROOF. The Pontryagin-van Kampen Structure Theorem ([2] 24.8) implies that G
may be regarded as the direct sum of n-dimensional real Hilbert space E and a sub-

group H containing a compact, open subgroup M. We denote E®M by S and its dual
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group by 8. The Duality Theory ([2] 24.11, 24.10) implies that the map o| & + S,
determined by the equation

o(y) = ?IS for all y€ 4, (46)

is a topological epimorphism, that &= {y € ‘S: ;IM = 1} may be identified with
the dual of E, and that 7= {y€ g: §|E=1} may be identified with the dual of M .

The map 0| & * 8 has a canonical extension (also denoted by 0) to an
epimorphism of GC onto gc such that (46) holds for all y € ,}vc. Since M is compact
and continuous homomorphisms preserve compact groups, it follows that 7 = 7/{‘: so
we can (and shall) identify SGQW( with SC .

As in (33) we may view EC as a complex Hilbert space in which E is a real form.
Let ° be the conjugation of Ec leaving the elements of E fixed. Since & is
topologically isomorphic to E, there exists an isomorphism GIEG - Gc sending E

to @& satisfying

-i<x)y>

x06(y) = e for all x€E and y€ES . 47)

Homomorphisms n € HOM(J«C,EG) and Y € HOM( Jvc,?ll) are determined by the equation
o(y) = 6on(y) @u(y)  for all y¢ °. (48)
We may (and shall) assume that }‘S is the restriction to S of. AG’ that

AM(M) =1=2X_(m, that )\E satisfies

m
_ 1
é'gd)\s = é}}; gx+y) d)\M(y) d)\E (x) for all gé€L (S), (49)
that GIE is )‘E—)‘e- measure preserving, that )\ssatisfies
1
A = + A A for all €L (8) 50
fgg dg ]é%{g(x y)dm(y)d a(X) o g (50)

Weil's Theorem ([3] 28.54) permits us to normalize }‘J« such that

1
= . 1
!égd)\s igoo d}‘,} for each g€L (8) (51)

For each A€M, let AE and AM be the canonical projections (relative to the
direct sum S=E®M) ofA into E and M respectively. Since to each x EM\AM
there corresponds at least one y € § such that ;(y) = ;(x) #1, it follows from the
compactness of M\AM there is a finite subset F(A) of § such that

M\AM c {x€M: xey#1 for some y€F(A)}. Define
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Then hA satisfies

h,(0) =1, 12 h, 20,and h,(x) <1 for all x¢€ M\AM.

For each m €N, define f(A’m)| G -*]R+ by

f(A,M)IG\S = 0 and f(A’m) (x+y) ,e"m<x,x> hA(y) for x € E, y € M. (53)
That (40) holds is evident from Lemma 2, that HOM(S,T) c P2(S,T), and the

@a,m) Am) e 41)

construction of f Let G be the set of all such functions £
holds is obvious.

For each r > 0 let E(r) be the set {x € E: <x,x> < r}. Then, for each m€N,
the change of variables s = v/m x yields

I o ICX,X -n/2 s o858

> A (x) =m

dAE(s). (54)
E(r) E(mr)

Let D be an open subset of {x€M: hA(x) > %} and r' a positive number such that

B = E(r') + D is a subset of A. Then (54) yields

;W™ gy 5 1 T

vnB oy EGD
- <x,X%X>
moew [ g (Ao gy mo S e dAg(x)
G\B G E\E(r")
-n/2 -<g,s8>
= lim 3 2 E@e")® Ag(e) = o
mro  on/2 s e_<s’8>d>\E(s)
E\E(mr')

which proves (42).
For A€M and r>0, let A';E{yé d:|xey-1|<r for all x€A}.
Since HOM(J4,T) bears the compact-open topology, {A: :A€MN,r >0} 1is a fundamental
family of compact subsets of & . Let A€ % and r € ]0,1[ be arbitrary. For
8§ > 0, apply (42) to obtain B€ M and f € G such that BCA and

Jn:fd)\ It can

=
G r G\B G
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so that
J £ d)
c\B ¢ -,
(f;fdAG
Thus, for each y (A: ,
. S £ (l-y)dh, S £ (1-y) dXg
et = *G\—Bm_—f
1 1 1
2/ |f]|ax
r ”fHI G\B G -
et ] =3
1 1
This proves 43.
(A,m)

Let f=f be an arbitrary element of (. From (40) and (46) follows that
for each y € &,
f@y) = é £ (-y)di;= éf * 0l-y) dig

so that by (49) and (47)

B) = 17T h 6) TR0 50 (oy) ary(s) ar o (55)
EM
From (39), (54) and (55) follows, upon setting ¢ = [ e_<x’X> d)\E(x),
1
R = <ny),n(y)> _ R
f@¥) =e 4m eCem n/2 . (hA!M) (u(y)) for all y€ &. (56)

Since Sm = 3¢® M, the function

IR TCI LN

£y S Gm T, |07 )

is analytic-—-as an extension of ?, it will be denoted ?c .
4
An element b of &c can be written uniquely as u+v where u€ & and v€ &
satisfies v= IE] . For such b=u+v and y€ &,

- I <n(y-b),n(y-b)° >

-1,17,,<n(y-u), n(y-u)> z,l-m<n(v),n(v)>
e e

= e (57)
Since the support of ﬁA is a subset of a finite set F(A) U (-F(A)) + F(A) U (-F(A)),
the number w(A) Eé( |(hA|M)A] d)\m is finite. Thus, application of (51), (50),

(57), and (54) yields
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<n(y-b) n(y-b)> -n/2

1@yl = 10|y = £ | @ g ()¢ 2w = (58

-4 <n@y-w),n(y-u)> 2NV ,N(v)> /2

ie dig(y) re ™ ¢+ (4m)”

<x x>
f eﬁ

w(A) =

;m<n W) ,nv)>

dA_(x) * e n/2 <n(v),n(v)> 2
E .

cce(4m) TV Cew(a)= e cc” cw(A)
This proves (44).
From Lemma 4 follows that
7 Cald” Sp= @y~ = 1.

Consequently (56), (49), and (54) yield
_1

X,

< x> _n/
(0)=ffdAJ_ fe dA (x) e (4m) é(h]) dAgy

n/2 -n/2 C2 2

(4m) *(4m) *l1=2c",
which proves 45. Q.E.D.
LEMMA 5. Let S be an open subgroup of G and f an element of L1 (G) satisfying

conditions (40) and (44) of Theorem 3. Then
£ =£0) -t. (59)

PROOF. We evidently may assume that f| S erz(s,'rc). Let 8 be the dual of S
and o .&c > Sc the canonical epimorphism as in (46). By (23) of Theorem 1 there

exists a function w|S - 8‘t such that

£ =f@ v f for all x€S. (60)
For each x€G, (51), and (60), and (36) yield

f (x) = i.(l;’ f(t) tey d)\G(t) (x) oy dlyg (y) =

,gf(t) tez dA (t) -Xxez d}\g(z) =/ é f_ (t) tez d}\s(t) d)\s(z) =
f(x) éé f(t) te (z+w(x)) d)\s(z) =
f(x) f(t)tez d)\ (t) dig(z) = £(x) £é f(t) tez d)\G(t) d)\&(z) =

£(x) - £7(0). Q.E.D.
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THEOREM 4. (Fourier Inversion and Uniqueness Theorems). There exists a
normalization of )\J such that, whenever h GLI(G) satisfies }Ax ELI(J), then
h"=h A -a.e. (61)
Further, for any nonzero measure U €TM(G),
n#0. (62)
PROOF. Let S and (G be as in Theorem 3 and normalize A} such that the number
in (45) is unity.
Suppose first that h is bounded and continuous. Assume h(a) #ﬁv(a) for some

a€G. Choose A€® such that, if w = h(a) - ﬁv(a), then
Ih, ) - (ﬁ')a(x)-wl < L‘;—L for all x € A. (63)
By (42) there exist f€G and B€® such that B CA and

fnfl, + Il

JEfd\, =22 —— [ fdA,.
B C vl oz ¢
Consequently
NCORE > - + " AL>0.
[[ - D) arg | =/ l;l £, c\fn("h"“ IR71,) £dx, > 0 (64)
Direct calculation shows
(g")a = (ga)"“ for all gELl(G) with gELl(J'), (65)
and application of Fubini's Theorem yields
_ 1 1
égldlc—igldkj for all g€L (&), REL(G) . (66)

Then (65), (66) and Lemma 5 yield
é (h )a . fdAG = é (ha) 'fdAG= j;&(ha) f dljs
éhaf d)‘j =éhafd)\c
which contradicts (64). Thus h=h".
If u € M(G) is nonzero, there exists a continuous function glG + C with com-
pact support such that (J;' g(-t) du(t) # 0. Then the continuous function g=xH is

nonzero at 0 and we may define

Az {x€s: [gxu(-x)]| >J-5—’i21‘(#')i. By (42) there exist f€ (@G and BE€R
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such that BCA and

2|lg % ull
ffd)\G>—— J fdAG.
B lgx1(0)| G\B
Thus

£ exu®) -2 argo)] > 1 1Bp@le g [ewul, s aig > 0.
G\B

Hence f xg axu 1s nonzero continuous and
HExg « w7l =) £ @ew I, = NEN - Hgxw N, < = .
Thus (61) implies that (f x g« u)/w = fxgxu. Hence 0# (f*g*u)A= (f g)A . ﬁ ,
which establishes (62).
Now suppose that h €L1 (G) satisfying he Ll(ﬁ) is arbitrary. Let fa be the
net given by (43) of Theorem 3 and, for each index a, let gaE fa/”fa

), -
Then lg.‘m Jlh - gy " hll; =0 so

0= lém :28 l i [h(y) - g, () " h(y)] xey dg(y)|= Um Ih" - (g x0)""l,, - (67)

Because each ga*h is continuous and || (gm,pgh)AII1 < Ilgo"llc‘3 ﬂﬁl|1<oo , it follows from
(61) that (ga*h)’“’ =ga*h . If h” were not in Ll(G), there would exist
g eLl(6) NL™(C) such that

LR arg > Il Nl

but (67) implies

LY = . . . = ! .
g 870 @l =1tm | g ahe 2 drg] = TTmllgyll = Il - 12l =Ini 121, 5

an absurdity. Thus, flv € Ll (G) . Interchanging the roles of ~ and ¥, and of G
and & , the continuity of h and (61) imply that £ = h. It now follows from (62)

that h”=h. Q.E.D.
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