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INDIA

ABSTRACT. Let AI, be commutative semlslmple Banach algebras and A
1 02 A

2
be

their projective tensor product. We prove that, if A10 A
2

is a group algebra

(measure algebra) of a locally compact abelian group, then so are A
1 and A2. As a

consequence, we prove that, if G is a locally compact abelian group and A is a

comutatlve semi-simple Banach algebra, then the Banach algebra LI(G,A) of A-valued

Bochner integrable functions on G is a group algebra if and only if A is a group

algebra. Furthermore, if A has the Radon-Nikodym property, then, the Banach algebra

M(G,A) of A-valued regular Borel measures of bounded variation on G is a measure

algebra only if A is a easure algebra.
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i. INTRODUCTION.

Let A be a commutative Banach algebra. We shall say that A is a group algebra

(measure algebra) if A Is isometrically isomorphic to LI(G) (M(G)) for some locally

compact abelian group G. Let G be a locally compact abellan group and A be a com-

mutative semi-simple Banach algebra. The space LI(G,A) of A-valued Bochner inte-

grable functions on G becomes a commutative Banach algebra (see [I], [2] and [3]).

A natural question arises: when is LI(G,A) a group algebra? If A LI(H) for some
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locally compact abelian group H, then it is well known (Theorem 3.2 ot [3])

that LI(G,A) is isometrically isomorphic to LI(G x H). Thus LI(G,A) is a group

algebra if A is a group algebra. We shall prove that the converse is also true.

There is another way of looking at this problem. It is known that LI(G,A) is iso-

metrically isomorphic to LI(G) @2 A (see 6.5 of [4]). Thus, if A
1

and A
2

are group

algebras, then so is A
1 @ A

2. Conversely, we shall show that, if A
I

and A
2

are

two commutative Banach algebras and A
1 @2 A2 is a group algebra, then so are A

1

and A2. It seems proper to remark that we are concluding properties for A
1

and A2,
assuming corresponding properties for A

1 @ A2. This is in contrast to the appro.ch

of Gelbaum [5] and [6]. Our result for LI(G,A) readily follows from this. The

main tool in our investigation is a theorem of Rieffel [7] characterizing group

algebras. In this paper, Rieffel also characterized measure algebras. Accordingly,

we investigate whether the fact that A
1 @2 A2 is a measure algebra implies that A

1

and A
2

are measure algebras. We shall show that this is indeed the case. As a

consequence, we shall show that, if A is a commutative Banach algebra having the

Radon Nikodym property and M(G,A) is the Banach algebra of A-valued regular Borel

measures of bounded variation on G, then M(G,A) is a measure algebra only if A is

a measure algebra.

2. PRELIMINARIES.

Let E and F be Banach spaces. The projective tensor product of E and F (see

[8]) is denoted by E $ F. Every element t E @2 F can be expressed as

t E e @ f with each e E and f F such that E II eil] fill < oo. The
i=l

i i’ i i i=l
norm of t is given by

II tII= inf {xi II eill llfi]l t iF e.1 @ f’}i
where the infimum is taken over all possible expressions of t.

Let f E* F* d t e @2 Eg an E F with t e. @ f.. We define
i-1

f o E f,’e :f. and g o t E g(fi)ei The series defining f o t and g o t
i 1

converge because E ieil Ifiil < . It: is obvious that 11 f o tll illl IIll and

ilg o tl llgli 1Ito The norms here, as well as elsewhere, -fer o the Porms
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in the spaces containing the elements, t g o t and t f o t define bounded

linear maps from E @3 F to E and E @3 F to F, respectively. These maps will be

frequently used in the sequel.

L
1Let (S,F,%.) be a measure space and X be a Banach space (S,X) denotes the

Banach space of X-valued functions integrable with respect to %. We shall often

use the fact that LI(s) O X is isometrically isomorphic to LI(s,x).
Gelbaum [5] and Tomiyama [9] have shown that, if A and B are commutative

Banach algebras, then A @3 B forms a commutative Banach algebra whose maximal ideal

space is homeomorphic to the cartesian product of the maximal ideal spaces of A

and B. The maximal ideal space of a commutative Banach algebra A will be denoted

by A(A). An element of A(A) will be regarded as a multiplicative linear functional

(m.l.f.) of A. All the Banach algebras in our discussion will be taken to be corn-

mutative and semisimple. It is proved in [6] that A @3 B has an identity if and

only if both A and B have identities. It is also known [6] that A @3 B is Tauber-

ian if A and B are Tauberian. The following lemma, though simple, does not seem

to have appeared in print.

LEMMA 2.1 If A @ B is Tauberian, then so are A and B.

PROOF. Let us show that B is Tauberian. It can be shown in the same way that

A is Tauberian. Let b B and e 0. Take A(A) and a A such that (a) i.

Let t a @ b. Choose s e A @3 B such that has compact support K and IIs-tll < .
Let KI { e A(B): (@,) K}. Then KI

is compact. Let x o s. Then is

supported in KI and

lib-x[[ llqbo t qb o s[I _< lit- st[ < e

This proves that B is Tauberian.

Let (S,F.) be a measurable space and X be a Banach space. Let be an X-valued

set function on Y.. The total variation V() of is defined for any E S as

fol lows.
n

V()(E) Sup {E [[ (Ei)[l: E.’s disjoint E E for i < i < n}
1

i

the supremum being taken for all possible choices of E.’s.
1
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An X-valued measure on (S,7.) is a countably additive set function from 7. into

X. is said to be of bounded variation if V() is finite. The space M(S,Y.,X) of

X-valued measures of bounded variation on S forms a Banach space under the norm

Let , be a positive measure on (S,7.) and LI(S,X) be the Banach space of X-

L1valued functions on S, integrable with respect to . If F (S,X), then we can

define the mapping F: 7. X by F(E) f F d%. Then F is an X-valued measure
E

of bounded variation on S. Let (S,7.,X). We say that has the derivative F

with respect to % if equals F for F LI(s,x). We say that X has the Radon-

Nikodym property (X has RNP) if every X-valued measure of bounded variation on

an arbitrary measurable space (S,7.) has a derivative with respect to V(). If X is

separable and the dual of a Banach space or is reflexive, then X has RNP (see [i0]

and [ii]). An example of a separable Banach space which does not have RNP is

LI[0,1] (see [12]).

Let G be a locally compact abellan group and let A be a commutative Banach

algebra. M(G,A) denotes the Banach space of A-valued regular Borel measures of

bounded variation on G. Suppose the range of every M(G,A) is separable. This

is true if A has RNP or if G is second countable. Under these conditions, we can

define the convolution of measures and belonging to M(G,A). This makes M(G,A)

LIa co-utatlve Banach algebra (see [13]) The algebra (G,A) is an ideal in M(G,A)

(see [14]). There is a natural isometric isomorphism from M(G) 83 A into M(G,A)

(Theorem 4.2 of [15]). This is a Banach algebra isomorphism and, if A has RNP,

then it is onto (Theorem 4.4 of [15])

Let A be a commutative and semlslmple Banach algebra and m 6 A(A). Let

{a e A: re(a) IIm[[ [I[}. Then P is a cone in A and therefore introducesP
m m

an order in A. Let R {a-b: a,b e P }. m is said to be L’-inducing if the
m m

following conditions are satisfied:

(2) P is a lattice.m

(3) If a,b e R and a ^ b 0 then
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(4) If a A, then there exists unique elements, al, a
2 Rm, such that

a a
I + i a

2

(5) Let lal V{Re (e
i8

a): 8 [0,2]}. Then flail II lal II
IV and ^ respectively denote supremum and inflmum. Re (a) a

I
where

a a
I + i a2, a

i
E Rm]. We note that if (i) (3) hold, then Rm forms a real ab-

stract L-space in the sense of Kakutani [16], and hence R is a boundedly complete
m

lattice (see page 35 of [7]). Therefore, lal is well defined.

In [7], a L’-induclng m.l.f, is defined to be a m.l.f, which satisfies the

following condition in addition to (i) (5).

(6) For a,b A, la.bl < lal Ibl.
However, White [17] has shown that a m.l.f, satisfying (i)- (5) automatically

satisfies (6), and hence our definition is equivalent to that of [7]. We now

state Rieffel’s characterization of a group algebra.

THEOREM RI. Let A be a commutative semlsimple Banach algebra. A is a group

algebra if and only if

(a) every m.l.f, of A is L’-induclng, and

(b) A is Tauberian.

Let A be a commutative semisimple Banach algebra and let D be the collection

of L’-inducing m.l.f.’s of A. Consider the *-topology on D. A continuous function

p on D is said to be a D-Eberleln function if there exists a constant k > 0 such

that for any choice of points ml"’’’mn of D and scalars l’’’’’an; we have

n n

IE
1 i P(mi) < k lllE i mill ,"

A

The following theorem of Rieffel characterizes a measure algebra.

THEOREM R2. Let A be a commutative Banach algebra and let D be the set of L’-

inducing m.l.f.’s of A. Then A is a measure algebra if and only if

(1) D is a separating family of linear functionals of A,

(ii) D is locally compact in the *-topology, and

(lii) every D-Eberlein function is the restriction to D of the Gelfand trans-

form of some element of A.
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The ’if’ part is nothing but Theorem B of [7]. The ’only if’ part follows

from the following and the familiar properties of Fourier-Stieltjes transforms.

PROPOSITION 2.1. The L’-inducing m.l.f.’s of M(G) are precisely those that

are given by F, the dual of G.

PROOF. Let S be the structure semigroup of M(G) (see 4.3 of [18]). M(G) can

be identified (3.2 of [18]) with a weak*-dense subalgebra of M(S). Under tlis

identification, the m.l.f.’s of M(G) are given by , the collection of semicharact-

ers of S. Let f e . Then, using the arguments of Proposition 2.5 of [7] (see

also Proposition 2.8 of [7]), we can prove that f represents an h’-inducing m.l.f.

if and only if if(s) i for all s E S. By 4.3.3 of [181, f e ;f i} is

the canonical image of F in S. This proves our proposition.

3. IN RESULT.

Our main result is the following theorem. All oter results are derived as a

consequence of this.

THEOREM 3.1. Let AI,A2 be commutative semisimple Banach algebras and

A= A1 @ Let ’% (+/-) be given by (4,) for ’(AI) and . i:(A2). Then

is L’-indu ing if and only if and are L’-inducing.

PROOF. Suppose ,] is L’-inducing. We shall show that satisfies (i) (5)

for # to be L’-inducing. Since I ii]ii
_

iI%’II -< i, if follows thai

iii. il’il i. Let P it A: (t) iltil} and P {r AI" (r) ri[ . Choose

A
2 =a fixed s such that %(s) iIs;. i. Let t P and r o t. Then

,(r) (v o t) D(t) it ’Ii. Therefore, r e PC.. On the other hand, if

r P then .l(r @ s) %(r) v,(s) (r) ril ir ilsll .r @ s ’, and so r @ s P

t
I

t
2

t then o t o and ifThus we have shown that, if e A and t
I 2’ 2

rl,r2
A and r

i - r2, then r
I

@ s >_ r
2

@ s.

r
i

v rNow, let ,r
2 P. len it is easy to see that r

o ((r
I

@ s) v (r
2

@ s)) and r
I

A ro_ o ((r @ s) A (r @ s)). Fr ex,mple, if-

r o ((r
I

@ s) v (r
2

@ s)), then, since (r @ s) v (r
2

@ s) r! @ s [f follows

that r r]. Similarly, r r2. On the other hand, if r’ r and r’ r2, tle

r
I

v dr’ O s s and r’ O s r
2

O s Therefore, r’ r Note tllat r
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r
I

A r
2

depend only on r
I

and r
2

and not on s. Therefore, P is a lattice. We

can also see that (rI
v r2) s (r

I
@ s) v (r

2
@ s) and (r

I ^ r2) @ s (r
I

O s)

(r
2

@ s). For example, it is obvious that (r
I

v r2) @ s -> (r
I

O s) v (r
2

@ s) and

furthermo re,

ll(rI v r2) @ s- (r I s) v (r
2

@ s)l

I] [(r
I

v r2) @ s- (rI
@ s) v (r2 @ s)]

[rI
v r

2
o ((r

I
@ s) v (r2 @ s))] 0.

Next, if t R and r < R, then # o t R and r 0 s R;,. Moreover, all the above

relations are true for r
I

v r
2

and r
I ^ r

2
for rl,r2 e R. Now, let rl,r2 R

and r
I

A r
2

0. Then rI
s r

2
@ s R and (rI s) A (r

2
@ s) 0. Therefore

litI 8 s + r
2

@ all =llrI @ s r
2 si, and hence llrI + r

2 =llr I r21 I. Hence sat-

isfies (3).

Suppose now that r AI. Then r @ s A and r @ s t
I + it2, with tlt 2 R.

Then r # o (r @ s) o t
I
+ i o t 2. Also, if r r

I
+ ir

2
r
3
+ ir

4
for

r
i

e R, then r @ s rI
@ s + i r

2
@ s r

3
@ s + i r

4
@ s. Therefore,

r
I

o s r
3

o s and r
2

@ s r
4

@ s. Hence, rI r
3

and r
2

r4. We have also

--(Re r@ s Re (r @ s). Thus satisfies (4). We now show that satin-shown that

fies (5). Let r AI. First, we show that Irl ’ o Ir 8 s and Ir 8 s Ir 8s.

We have

o r O sl Re (eir) o r O sl . o (Re (ei0 r@s))

o [ir @ s Re (ei rOs)],

for every @ [0,2]. Therefore, q o Ir s -> Irl. On the other hand,

rl _> Re (e
i i0 (el0r). Hence Irl O s >- Re (e r) O s Re (r @ s)). Therefore,

Irl O s >- ;r O sl, so that Iri -> , o ir O s

Also, since Irl O s _> Ir O sl, we get

irl O s ;r @ s

[Irl , o Ir O sl] 0.

Therefore, Irl O s Ir O s I. Now

[I ;rl II llsll =If ir; II. This proves that satisfies (5). Hence is L’-inducing.

We can show similarly that is L’-inducing.
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Conversely, suppose and are L’-inducing. We shall show that Q is L’-indu-

cing. It is obvious that IIII I. Since is L’-inducing m.l.f, of AI, by Propo-

sition 2.3 of [7], there exists a locally compact Hausdorff space X and a positive

regular Borel measure on X such that A
I

is isometrically limear isomorphic and,

under the order induced by , order isomorphic to LI(x,). The dual of AI is then

represented by L(X,) and, under this representation, is represented by the corn-

sCant function II#II i on X. Now, O A
2

LI(x,) , A
2 LI(x,,A2 ereaf-

ter, we shall not distinguish between elemnts of A and LI(x,,) and, for

L
1

F (X,,A2), statements llke "F A" will be used without elanatlon. For

F A, we observe that F P
n if and only if o F P. This is so, because

IIFII >-Ii o o F) I.
du(x)

This shows that F E P if and only if F(x) P a.e. (U). Let FI,F2 E Pn"
Using the continuity and other properties of the lattice operations, it is easy to

prove that the function F
1

v F
2

defined a.e. (U) by (F
1

v F2)(x),- Fl(X v F2(x),
belongs to LI(x,,A2) and consequently defines an element of PQ. This proves that

P is a lattice. Other details involved in showing that N is L’-inducing are also

now easy to verify and hence we omit them. This completes the proof of our Theorem.

Having proved our main theorem, we now proceed to give its consequences.

THEOREM 3.2. Let A
1

and A
2
be commutative semislmple Banach algebras. Then

A
1 8 A

2
is a group algebra if and only if A

1
and A

2
are group algebras.

PROOF. As mentioned in the introduction, it is well known that, if A
1
and A

2

are group algebras, then so is A
1 8 A2. The converse follows from Lemma 2.1,

Theorem R
1

and Theorem 3.1.

The following is an immediate consequence of Theorem 3.2.

THEOREM 3.3. Let G be a locally compact abelian group and let A be a commu-

tative semlslmple Banach algebra. ThnLI(G,A) is a group algebra iff A is a group

algebra.
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PROOF. The result follows from Theorem 3.2 and the fact that the Banach al-

gebras LI(G,A) and LI(G) A are isometrically isomorphic.

THEOREM 3.4. Let A
I

and A
2
be commutative semisimple Banach algebras and

A A
I

A2. If A is a measure algebra, then AI and A
2

are measure algebras.

PROOF. Let D, D1, D
2
be the set of L’-inducing m.l.f.’s of A, AI, and A

2
re-

spectively. Theorem 3.1 implies that D D
1

x D2. Since D satisfies condition

(i) of Theorem R2, it easily follows that DI and D
2

also satisfy this condition.

Since D is locally compact in the *-topology, D
I and D

2
are also locally compact

in the *-topology. It remains to show that AI and A
2

satisfy condition (iii) of

Theorem R2. We shall do this for A2, the case of AI being similar. Since A is a

measure algebra, it has an identity. It follows that A
I

and A
2
have identities.

Let e be the identity of AI. Let p be a D2-Eberleln function. Define the function

P on D by P(,) p(). Obviously, P is continuous. Moreover,

n n

lie i P($i’i)I lie i P(i)I < kll i i II A
However, for any a A2,

n n
<a,

1 i i> <e @ a, 17. i(i,i)>
n

Therefore, II i iII < I
1 i($1 i)llA,. This shows that P is a D-Eberlein funct-

i A
ion and therefore there exists t A such that () P() for every t A(A).

Choose A(AI) and let b o t. Then () p() for every A(A2). This

shows that A
2

satisfies condition (iii) of Theorem R
2

and the proof of our theorem

is complete.

THEOREM 3.5. Let G be a locally compact abelian group and A be a commutative

semisimple Banach algebra having RNP. Then M(G,A) is a measure algebra only if A

is a measure algebra.

PROOF. The theorem follows from Theorem 3.4 and the fact that the algebras

M(G) A and M(G,A) are isometrically isomorphic under the hypothesis of our

theorem.
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