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ABSTRACT. Denote solutions of ’(z) + p(z)W(z) 0 by W(z) z[l + anzn] and
n=l

W(z) z[1 + 3 b zn] where 0 < aft) < 1/2 < afG) and z2p(z) is holomorphic in
n-1

n

zl < i. We determine sufficient conditions on p(z) so that [W(z)]1/5 and

[W(z) ]l/ are univalent in zl < 1.
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1. INTRODUCTION.

Consider the differential equation

W"(z) + p(z)W(z)= O, where (1.1)

nz2p(z) P0 + Plz + + Pnz + o’ (.)

is holomorphic for zl < i.

The indicial equation associated with the regular singular point of the equa-

tion (i.i) at the origin is

12 - + P0 0 (1.3)
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and has roots which we designate by and , where + 1 and

We will also use the notation

i + icz2’ i + i2" (1.4)

Corresponding to the root there is always a unique solution of (1.1) of the

form

n
n=l

valid for Izl < i.

We restrict our attention in this paper to those for which

then obtain a unique solution of (1.1) of the form

[} > O. We

W(z) z[l + 5 b zn] (1.6)
nl

n

valid for zl < i.

We define two normalizations F(z) and F(z) of the solutions of (1.5) and (1.6)

as follows

(z) [w(z)]l z +

F(z) [W(z)]I/ z + (1.7)

where we choose that branch of each function for which the derivative at the origin

is 1.

Next we consider the "comparison" equation

W"(z) + p(Z)Wc(Z 0, with

z c(Z) c(z*(z) ) + 0’ c > 0,

2* * * *nz +and where z p (z) PO + Plz + + Pn

(.8)

(1.9)

is non-constant and holomorphic for zl < i with Pi’ i 0, i, 2, real and

* z2p*P0 -< 1/4. With these restrictions on z) the solutions of (1.8) are real on the

real axis (see [i]). We will designate the exponents associated with the regular

singular point of (1.8) at the origin by and where + 1 and

(Z _> 1/2 _> As in the case of equation (i.I) we obtain for any a unique

solution of (1.8) of the form



UNIVALENCE OF NORMALIZED SOLUTIONS 461

W . (z) z [I + an(C)zn] (i.I0)
C ,C n=l

valid for zl < i, and for any 6" > 0 a unique solution of the form

W . [i + 5 bn(C)zn (I.ii)
,C n=l

valid for zl < 1.

In Ill Robertson determined fairly general sufficient conditions on p(z) rela-

tive to p*(z) under which F(z) is univalent in zl < 1. In [2] Brown extended

these results to F(z) but only for real satisfying 0 < _< 1/2. In the Main

Theorem of this paper we present sharp sufficient conditions on p(z) relative to

pc(Z) under which the function F(z) is univalent and spirallike in zl < l, where

may be complex valued. We then compare these results to those of Robertson for

F(z).
PRELIMINARIES

S will denote the class of functions f(z) holomorphic and univalent in the unit

disk D {z: zl < l} and normalized so that f(0) 0, f’(0) 1.

We shall say that f(z) E F, if and only if for some real number , II < ,
and some , 0 < < l,

a zf’(z)
f(z) >

for all z 6 D. F m F is the class of functions called spirallike in D, [3], [4]
,0 .

Functions in the subclass S () F
0

are called starlike of order in D S*(0) is

the class of functions starlike in D. It follows that S*() c F c S; (see [2]).

We will need the following result.

THEOREM 2.1. Let z pC(z), W. (z), and W.
,C ,C

and (1.11) respectively. If for all zl < I

(z) be defined by (1.9), (1.10),

then for fixed C ,.C
w. (Izl)

,C

g(z2p*(z)} _< Izlp*(Izl)

is monotonic decreasing for all zl < n(, R .(C)),
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2,cand. W -(I zl) is monotonic decreasing for all zl < rain(l, R .(C)) where

,C
R .(C) and R .(C) are the smallest positive zeros of the functions W’. (r) and
a a,C

W’. (r) respectively.

In the case of G this result is given on page 262 of [i]. For 13 the result

follows from (3.16) and Theorem 3.18 of [2] after noting that if z2p*(z) is non-

constant the equality R[z2p*(z)] Izl2p*(Izl) cannot hold for all 0 _< r _< rI on any

ray 8 constant # 0.

The condition that z2p*(z) be nonconstant is necessary to ensure strict mono-

tonicity in the results above since if z2p*(z) is constant so are

G ,C ,C
W . (Izl) and w . (Izl)
G ,c 13 ,c

3. LEMMAS.

In this section we prove the lemmas used to obtain Theorem A and The Main

Theorem in section 4.

Since all of the results of this section are stated for W(,z) and W . (z) we
6,C

adopt the following notational convention:

W W(z) W6(z) z13[i + bnzn]’
n=l

WC= Wc(Z W . (z)= z13 [1 + 5 bn(C)zn].
13 ,C r-i

It is important to note that all of the results of this section remain valid if

W and W
C
are replaced by either W(z) and W . (z) or by W(z) and W . (z) and,

a ,C ,C

moreover, the proofs are obtained by making corresponding changes in the proofs

given here.

zW ’. zW ’.In our lemmas we will investigate the rate of change of R--) and ---j on

i8rays issuing from the origin. For this reason we designate z by re fix 8 vary

and use (i.i) to obtain
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zW’ zW’ ]2-r .w’ -zep(z) + <.r
dr W --Q--

where W’ designates differentiation with respect to z.

Taking real and imaginary parts of (3.2) we obtain

and

d zW zW ’. zW ’. zW ’.r a[-----} a[ z2p(z)] + ar---j 2r--} +

d zW ’. zW zW zW ’.

(3.3)

Also from (1.8) and the fact that W is real for real z, we obtain for z > 0
C

d rW(r) 2 *r r(,Wc(r)) -r PC(r) +
rW(r) rW(r) 2

Wc(r) (Wc(r))
Our goal is to determine conditions on z2p(z) relative to z2p( z) which will

ensure that on every ray e constant

zW’ rW(r)
R[---} Wc(r > 0 for all 0_< r < i. (3.6)

Then it will follow from (1.7) that for e constant

8zF(z) rW6(r)
[ F(z) Wc(r -> 0 for all 0 _< r < i. (3.7)

Since g[) > 0 (3.7) implies F(z) is univalent and spirallike in zl < R(C),

where R(C) is the smallest positive zero of W(r) or 1 whichever is the smaller. We

will show that C can be adjusted so that R(C) 1 and, therefore, F(z) is univalent

in D.

In [i] the inequality (3.6) was obtained when W WG(z) and Wc(r) W . (r) by
G ,C

a method that relied upon the inequality

d zW’. zW’. g2. zW’.
r -T R|T} -> R[ zep(z)} + R|V IT

2 zW’
obtained from (3.3) by neglecting the term IT Unfortunately this inequality

is not sharp enough to yield (3.6) when W W(z) and Wc(r W . (r) by the method
8,C

2. zW’.of [i]. In this paper we retain the term [--J in (3.3) and derive estimates for
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its rate of growth relative to that of----. These estimates enable us to establish
C

(3.6) for W W6(z) and Wc(r W . (r).
,C

iewe introduce the following notation where z re e is constant, and r

satisfies the inequalities 0 < r < 1.

zw’ w6()
T() -= g--q-} Wc(

zw, w ’c (r)S(r) -g[---} r
Wc(r

(3.8)

(3.9)

M(r) zW’ W6(r)
-j[) r We(r). (3.o)

N(r) zW’ W(r)--- [--W--) r w( (3.11)

T(r) -[z2p(z)) + r PC(r). (3.)

(r) -= R[z2p(z)) + r PC(r). (3.13)

2 --l(r) [z2p(z)} + r Pc(r). (3.1)

(r) -[z2p(z)] + r pC(r). (3.15)

R(C) is the smallest positive zero of W’(r)
C

(3.16)

R* min(l, R(C)). (3.17)

In terms of this notation our goal is to establish conditions under which

T(r) > T(O) on every ray e constant, zl < R

From (3.3), (3.4), and (3.5) we obtain the following relationS:

dT(r) w()
r(r) + T(r)(l W(- T2(r) 2.zW’.+ [--. (3.18)

r dS(r)dr --;(r) + S(r)(l + W(r) + S2(r) 2.zW’.{__} + 2( We(r))2" (3.19)
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dM(r) zW’ zW’ rW6(r) 2
r

dr (r) + M(r) + 2 R[---} [---} + (Wc(r)) (3.20)

dN(r) zW’ zW’ rW(r) 2
r

dr
(r) + N(r) 2 R[----} [--W- +

Wc (r)) (3.21)

The proofs of most of the lennas in this section reflect a common simple theme

that is set forth formally in the following lemma.

LEMMA A. Let G(r) be a real-valued differentiable function on a < r < b. Let

G(r) > 0 for all a _< r < 0 _< b and G(0 O. Then it follows that G’(0) _< O.

It should be noted that from their definitions it follows that the functions

T(r), S(r), M(r) and N(r) can assume a value at most a finite number of times on any

segment e constant, 0 _< r_< r2 < i. Thus if, for example, T(r) k for some r in

0_< r_< r2 < l, then there is a smallest r 0 in this interval for which T(O) k.

LEMMA 1. Let z2p*(z) satisi’y the conditions of Theorem 2.1. If for fixed e we

have

a) T(r)

_
T(O) for all 0 < r < l,

b) T(r) > T(O) for all 0_ r_< rI < R

rlW r
Ic) WC(rl) *-I21,

1 I21 _< 2(1 *)’

then T(r) > T(O) for all 0 < r < E

PROOF. Assume that the conclusion is false. Then there exists an r,

r < r < R for which T(r) T(O) O. Let 0 be the smallest such r. Then since

T(r) T(O) > 0 for all 0 < r < 0 it follows from Lemma A, with G(r) T(r) T(O),

dT(r) < O. We will show, however, that our hypotheses imply that dTIr)J D(%that
dr r=p dr r=p

Thus there can be no roots of T(r) T(O) on rI < r < R and consequently

T(r) > T(O) for all 0 < r < R

From (3.18) and a) and b) of our hypotheses we have

r
dr jIr=p > (0) + T(O)(I-

w6(p)
wc() 2(o). (3.22)
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rI

From Theorem 2.1 i follows that f(r) _= i.
< r < R Thus

2rW(r)
r) is monotonic increasing on

r dT(r),drJr=0 > T(O) + T(O)f(rl) T2(O)

which by d) of our hypotheses is

2 m2(o> "1"(0) + T(O)(1 26*) + 62

r Jr=O O.

Thus dT(r)l O. This is the desired contradiction from which it follows
dr Ir=-p

that T(r) > T(O) for all 0 < r < R

LEMMA 2. Let p*(z) satisfy the conditions of Theorem 2.1. Let 61
and let rI satisfy the inequalities 0 < rI < R If for fixed e we have

S(rl) > S(O), and for all 0 < rl_< r_< r2 < R
- >0,

a) () > (o),

then S(r) > S(O) for all rl_< r_< r2.

PROOF. From (3.19) and a) and b) of our hypotheses we have

dS(r), 2pW(o) pW6(p) 2 2
r

dr Jr=p ->(0) + S(O) + S2(O) + Wc(P S(O) + 2(Wc(P)) 2" (3.23)

Now use the method of proof of Lemma 1 with G(r) S(r) S(O), p the smallest

zero of G(r) on rI_< r_< r2, and

2w6()
f(r)-- Wc(r

tWO(r)
S(O) + 2( WC (r))2.

From Theorem 2.1 it follows that if 61 6 > 0 then f(r) is monotonic increasing

on 0 < r_< r2. Thus from (3.22) we have
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dS(r) dS(r) O,r
dr Jr= 0 >(0) + S(O) + $2(0) + f(O) 13 r

dr Jr=O
and the lemma follows as in the proof of Lemma 1.

LEMMA 3A. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let

0 < 132 _< 131 13 and let r
I satisfy the inequalities 0 < r

I < R If for a fixed

S(rl) > S(O), N(rl) > N(O), and if for all 0 < rl_< r_< r2 < R we have

a) (r) _> (0),

b) (r) _> (0),

zW’.c) o _< {-- _< 132,

then it follows that N(r) > N(O) for all rl_< r_< r2.

PROOF. From Lemma 2 it follows that S(r) > S(O) for all r
I _< r _< r2, and from

(3.9) we have

.zW’. rW(r) . rW(r)
R{---} < S(O) Wc(r) 131 + 13 Wc(r for all rl_< r_< r2.

Using this inequality along with (3.21) and c) of our hypotheses we have

dN(r) > M(r) + N(r) 2(131r
dr

rW(r) rW r rW(r) 2
+ 132 Wc( r) (N( r) + + r)Wc(r) WC(

where we have used the definition (3.11) in the third term.

From (3.24) we obtain

(r)>dr M( r)+N( r) [1-2(131+ )] + 2N(r)
tWO(r)
WC(r -2(81 + *) rW(r) rW(r))2

’Wc(r + 3( Wc(r .(3.25)

Now use the method of proof of Lemma 1 with G(r) N(r) N(O), 0 the smallest

zero of G(r) in rl_< r_< r2, and

+ 13. rW(r) rW(r) 2
f(r) 2IN(O) (131 )] ’Wc(r + 3( Wc(r))

Then from (3.25), Theorem 2.1, and a) and b) of our hypotheses we have

r r)jr=0 > M(O) + N(O)[1- 2(
1

+ )] + f(o). (3.26)
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From Theorem 2.1 it follows that if 62 _< i
increasing on 0_< r _< r

2.
Thus from (3.26) we have

then f(r) is monotonic

dN(r) *r
dr r=0

> v(O) + N(O)[1- 2(81 + 8 )] + f(O)

.e
v(0) + N(0) -212

+

r(rr)r=0 0.

The lemma now follows as in the proof of Lemma 1.

COROLLARY 3A. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let

0 < 62 _< l and let rI satisfy the inequalities 0 < rI < R If for a fixed e

iw rleierle ’(

W(rleie)
0 < rI _< r _< r2

> 0, S(rl) > S(O), N(rl) > N(0), and if for all

< R we have

rW(r) .
> max ( 2’ 0),d) Wc(r

zW’
then it follows that [----} > 0 and N(r) > N(O) for all rI _< r _< r2.

-zW’
PROOF. To prove that J[---} > 0 for all rl_< r_< r2 note that if 0 is the

zW
smallest zero of [--} in the interval rI < r < r2, then we can apply Lemma 3A on

the interval rI_< r_< 0 to obtain N(r) > N(O) for all rI <_ r _< 0.

it follows that

S
zW’ . rW(r)

{---} > 2 + Wc(r) (3.27)

Then from 3. ii)

for all rI_< r_< . (3.27) and d) of our hypotheses give

. rW(r)
2 B + Wc(r) _> 0 on rl_< r_< 0. (3.28)
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Then (3.27) and (3.28) imply that

eiew
W(0e

zW’.
which contradicts the assumption on p. Thus {-- _> 0 for all rI _< r _< r2. Now

from Lemma 3A it follows directly that N(r) > N(O) for all rI _< r_< r2.

LEMMA 3B. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let 2 < O,

I21 _< E1 8 and let r
I satisfy the inequalities 0 < r

I < R If for a fixed 8

we have M(rl) > M(O), S(rl) > S(0), and if for all 0 < r
I _< r _< r

2 < R we have

a) (r)

_
(0),

b) a(r)

_
_zW’_

c) _< a[--q-} _< 0,

then it follows that M(r) > M(O) for all rI <_ r _< r2.

PROOF. The method of proof is the same as that of Lemma 3A. Start with (3.20)

instead of (3.21) and replace the condition 0 < I2 _< I1 by I121 _< I1
dM

>0oThe lemma then follows by establishing the contradiction Jr=0

COROLLARY 3B. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let 2 < 0,

Ii21 --< i1 l-x-’ *and let r
I satisfy the inequalities 0 < rI < R ." If for a fixed O,

rleiSw rle
i8

[
W(rleie)

< O, S(rl) > S(0), M(rl) > M(O), and if for all

0 < r
I _< r_< r2 < R we have

C) zW
[-V-} -> 2"
rW(r)

d) Wc(r > max

then it follows that M(r) > M(0) for all rI _< r _< r2.

PROOF. The method of proof is the same as that of Corollary 3A using M(r) in

place of N(r) throughout.



470 R.K. BROWN

LEMMA 4A.

0 < 2 -<’ and let rI satisfy the inequalities 0 < r
1

M(rl) > M(O), and if for all 0 < rI <_ r <_ r2 < R we have

a) (r) _(0),

) (r) > (o),

Let z2p*(z) satisfy the conditions of Theorem 2.1. Let

< R If for a fixed e

C) .zW’.
J[---} -> 2’

d) Wc(r) _> max(8

then it follows that M(r) > M(O) for all r
I _< r _< r2.

PROOF. From (3.20), (3.8), and a) and b) of our hypotheses it follows that

rW6(r) -zW’ rW6(r) 2dM(r) > (0) + M(r) + 2(T(O) + Wc(r)) [--Q--} +
WC

r
dr r)

with equality for r O. Using definition (3.10) we rewrite this inequality in the

form

dM(r)r
dr >I/(0) + M(r)(l- 2T(O)) -2(M(r)+ T(O)) rW6(r)wc(9) rW6(r),kr)

2

"c" (3.29)

Now use the method of proof of Lemma i with G(r) M(r) M(O), 0 the smallest

zero of G(r) on rl_< r_< r2, and

rW(r) rW(r) 2
f(r)-- -2(M(O) + T(O)) Wcr (.Wc(r))

From Theorem 2.1 it follows that if 2 -< (i
on 0 < r _< r2. Then from (3.29) we have

/2 then f(r) is monotonic increasing

r
dr Jr=

,w6(), w6()
_>/(0) + M(0)(I- 2T(0)) -2(M(0) + T(0))kWC---T) (WC(0)
>(o) + (o)(- 2T(O)) -2((0) + T(O)) -M(r)Jr

dr r=O O,

and the lemma now follows as in the proof of Lemma i.
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Let z2p*(z) satisfy the conditions of Theorem 2.1.LEMMA 4B. Let B2 < O,

l * *I21 --< 2 and let r
I satisfy the inequalities 0 < rI < R If for a fixed e

N(rl) >N(O), and if for all 0 < rl_< r_< r2 < R we have

a) (r) _> (0),
b) T(r) _> T(O),

c) zW’.

d) rW6(r)
Wc(r _> max(*- e21 o),

then it follows that N(r) > N(O) for all rl_< r_< r2.

PROOF. The proof proceeds precisely as that of Lemma 4A except that (3.11) is

used in place of (3.10), and the condition I121 < 2 replaces IB2 _< 2

L4MA 5A. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let

i * *0 < 2 --< 2 and let rI satisfy the inequalities 0 < rI < R If for a fixed e

s(rl) > s(0), M(rl) > M(O), and if for all 0 < rl_< r _< r2 < R* we have

a) (r) _> (0),

b) (r) _>(0),

c) T(r) _> T(O),

zW’

rW .
e) --C - max ( 2’ 0),

then it follows that S(r) > S(O) for all rI_< r_< r2.

PROOF. By Lemma 4A we have

.zW’_ rW6(r) . tWO(r)
[--q-}_<-(O)- We()= 2 / wc() > (3.30)

for all rI _< r _< r2. Thus from (3.19) and (3.30) it follows that

dS(rr
dr _>(r) + S(r)(1 +

2tWO(r) $2 tWO(r) 2 tWO(r)
WC(,-)) / (r) (-.(0) We)

/ e(-Wc(). .)
Now use the method of proof of Lemma 1 with G(r) S(r) S(O), p the smallest

zero of G(r) on rl_< r_< r2 and
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rW(r) tWO(r) 2
() e(s(0) (0))( wc(r)) + wc())

From Theorem 2.1 it follows that if 2 -<(I /2 then f(r) is monotonic

increasing on 0 < r _< r2. Then from (3.31) and a) through d) of our hypotheses

it follows that

S
2-s() >(o) + s(o) + (o) -(o) + (o)dr Jr=p

rdS(r) jdr r=O O,

and our lemma follows as in the proof of Lemma I.
2

LEMMA 5B. Let z p (z) satisfy the conditions of Theorem 2.1.

I21 --<(l 2, and let rI satisfy the inequalities 0 < rI < R*.
e, N(rl) > N(0), S(rl) > S(0), and if for all 0 < rI _< r _< r2 < R

Let 2 < O,

If for a fixed

we have

a) (r) > 9(0),

b) (r) > G(O),

c) T(r) > T(O),

d) zW
J[---] _< IB2

e) rW (r)
#.>mx( lel 0)we(r)

then it follows that S(r) > S(O) for all rI _< r _< r2.

PROOF. The proof proceeds precisely as that of Lemma 5A except that Lemma 4B

is used in place of Lemma 4A, and the condition I21 _< (i )/2 replaces

LEMMA 6. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let r
I satisfy.

the inequalities 0 < r
l_ < R If for fixed 8 T(rl) > T(0), and if for all

0 < rI_< r_< r2 < R we have

a) "r(’) _> "r(o),

b) 2. zW’. 2
f.----J _>

then T(r) > T(O) for all rI_< r_< r2.
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PROOF. With G(r) and p defined as in Lemma i, we obtain from (3.18) and our

hypotheses

rdT<r)] > r(O) + T(O)(I- 2*) T2(O) +
dr r= 0

rdT(r)| 0
dr 3r=p

and the lemma follows as in the proof of Lemma 1.

LEMMA 7A. Let z2p*(z) satisfy the conditions of Theorem 2.1. Let

0 < 2 --< i and let r
I satisfy the inequalities 0 < rI < R If for a fixed

iSw rlei8re ’(
8 S(rl) > S(O), N(rl) > N(0), T(rl) > T(O), [ i > 0; and if for all

W( rmei8
0 < r

I _< r _< r2 < R we have

a) (r)

_
(0),

b) T(r)

_
T(O),

c) M(r)

_
M(O),

9"
zW’.

e)
rW(r)
Wc(r _> max ( 2’ 0),

then T(r) > T(O) for an rI _< r _< r2.

PROOF. From (3.11) and e) of our hypotheses it follows that

(N(0) +
rW(r)
Wc(r))

_
0 for all rI _< r _< r2. Then from (3.18) and Corollary 3A we have

W(r) T2 rW(r) 2

rdTdr > T(r) + T(r)(l- 2r Wc(r)) (r) + (N(0) + Wc(r)) (3.3)

for all rl_< r_< r
2.

Now use the method of proof of Lemma 1 with G(r) and 0 defined as in Lemma 1

and with

rW(r) rW(r) 2
f(r) =-2(T(0) -N(0)) WC(r + (WC(r))

From Theorem 2.1 it follows that if 2 -< i then f(r) is monotonic

increasing on 0 < r _< r2. Thus, from (3.32) and b) of our hypotheses we have
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rdT(r)
dr Jr= 0

N
2

> (0) + T(O) T2(O) + (0) + f(O)

(0) + T(O)(I- 2*) T2(O) + (N(O) + *)

rdT(r) 0
dr r=0

and our lemma follows as in the proof of Lemma i.

LEMMA 7B. Let z2p*(z) satisfy the condition of Theorem 2.1. Let rI satisfy

the inequalities 0 < rI < R and let 2 < O, I21 < i If for a fixed e

S(rl) > S(O), M(rl) > M(O), T(rl) > T(O), [rlei@W(r.leie )] < 0, and if for all

W(rlee)
0 < r

I < r < r2 < R we have

a) (r) _> (

b) T(r) _> r(O),

c) (r) _>

d) zW
[} _> I2,

e)
rW(r) .
Wc(r

_
max I21, ),

then T(r) > T(O) for all rI_< r _< r
2.

PROOF. The proof proceeds precisely as that of Lemma 7A except that

Corollary 3B is used in place of Corollary 3A.

LEMMA 8. If for all e, 0 _< e _< 2, and for all 0 < r < R we have

a) (r) _> ;(0), b) T(r) _> T(O), c) (r) _>(0), d) v(r) _> v(0) then it follows that

_j dM > 0 and h) rrJ > 0e) dS > O, f) > O, g) Jr=O r:Or=o

where a = e, b f, c g, and d h. Moreover, strict inequality holds in e)

through h) if l > > O.

PROOF. We prove that b = f. All four implications can be proved using the

same techniques. .
For 0 < r < R we have
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zW’
W

nz + and (3 33)8 + ClZ + + c
n

zW(z)
Wc(z)

* * n
+ ClZ+ + c z + .4n

-Pl * -CPl *where c
I 28

and c
I

with Pl and Pl28*
respectively.

defined by (1.2) and (1.9)

2 *Now T(r) > T(O) if and only if -g(z2p(z) po + r PC(r) PO -> O. Therefore,

if f(r) _> (0) for all e, 0_< e _< 2, and all 0_< r < R it follows that

(-(plz) + Crp) _> 0 for sufficiently small r and for all 8.

Thus we must have

_[Pleie *+ CpI_> 0 for all e. (3.35)

Now from (3.33) and (3.34) we have

Jr=o g[cleiS) Cl

iS *
-Ple CP1

28*"
Then if we write 8 in the form 18lei, we have

(e )

Jr=0 * -Pll #1’
CP1

dT > 0 if and only if -[plei(e’)Thus -jr=O-
CP1+---> o

for all e.

(3.36)

(3.37)

However, since 8l_> > O, we have 0 < */181 -< 1 and it follows from (3.35)

and (3.37) that ’-Jr=O -> 0 with strict inequality if 131 > 8*.

4. THEOREM A AND THE MAI THEOREM.

We have designated the first result of this section as Theorem A since it is

our analog of Theorem A of [i] when y 0.
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THEOREM A. Let W W(Z) W2(Z) Z2[I + b zn] be the unique solution of
n:l

n

W"(z) + p(z)W(z) 0 where

2 n
z p(z) P0 + Plz + + Pn

is holomorphic in zl < i, and 2 i + i2 with 0 < 21 _< 1/2.

Let W
C Wc(Z -= W . (z) z2 [i + b*(C)zn] be the unique solution of

n2,C n=l
2 *W"(z) + z pc (z)W(z) 0 where

2 * .
z pc(Z)= C[z2p*(z) p] + PO with

z2p* * * * n *z + "’’’ PO < 1/4,(z) Po + Plz+ + Pn

ooc zl < and real on the real axis; and where C > 0 and 0 < 2*_< 1/2.

Let R(C) be the smallest positive root of W(r), 0 < r < i, if such exists.

For zl < 1 let z2p(z) and z2p(z) satisfy the inequalities

() z() oI ll(lzl) Po"

Then for I21 -<(- y2 it follows that

zw’. w()
a-q- _> wc( > o

for all Izl r < R _= min(R(C), i).

We first note that (i) of our hsrpotheses ensures that z2p*(z) satisfies the

conditions of Theorem 2.1. In addition (ii) implies inequalities a) through c) of

Lemma 8. For example, inequality a) of Lemma 8 is valid if and only if

arz(z)} + zlp(Izl) _> ao} + Po’
and this is true if and only if

R[ z2P(z) po] _> [I zl2p(l zl) po

which in turn follows from (ii).
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We will obtain the result of Theorem A by proving that T(r) > T(O) on any ray.
constant, 0 < r < R To establish this fact we will need Lemmas 1 through 7

zW ’. zWwhose hypotheses require us to know whether |--Q-} _> 82 or S[--Q-) _< 82. Therefore,

we introduce on each ray @ constant, 0 < r < R the points 0i where Pi and Pi+l
_zW’

0i < 0i+l are consecutive values of r at which [---] 82 changes sign. We then

show that T(r) > T(O) on every interval O i _< r _< 0i+l.

The proof requires consideration of the following four cases.

l d[ zW’ > O,Case I: 0 < 2 < 2 --’ constant, S[--W-- ]r=o

i d zW’.Case 2. 0 < 82 < ----, e constant, r[[--} Jr=0 < 0,

l d[ zW’ > O,Case " 2 < O, 1121 <, 8 constant, - S[--} ]r=O

l d zW’Case 4" 2 < 0, I2! <, @ constant, [[V]jr=0 < 0.

For 2 0 the result of Theorem A was established by Robertson [i] for

W W(z) and W
C

W . (z) and by Brown [2] for W W(z), W
C

W . (z).
,C ,C

rW(r) . .
We will assume that --Wc (r) > I21 for all 0_< r < R since if for some

w()
’(p] I, we can restrict our attention to the interval

0_< r < 0 and then use Lemma i on the interval 0 < r < R

PROOF OF CASE i.

1. From Lemma 8 it follows that there exists a 0 0 < 0 < 01 such that for

all 9 S(r) > S(O), T(r) > T(O), M(r) > M(O) and N(r) > N(O) for all

0<r< 0

2. Now fix e and apply Lemma 6 to the interval p _< r _< p to obtain

T(r) > T(O) on 0 _< r _< 01.
}. From definitions (}.10) and (3.11), the definition of the 0i and the

rWd(r)
monotonicity of on 0 < r < R it follows that M(01) > M(O) and

N(01) > N(O).
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10.

4. Then by Lemma 5A applied to the interval 0 _< r _< 01 we have S(01) > S(O).

5. By Lemma 7A it then follows that T(r) > T(O) on the interval 01 _< r _< 02.
6. By Lemma 6, T(r) > T(O) on the interval 02 _< r _< 03.
7. By 4 above and Lemma 2 we have S(02 > S(O).

8. As in 3 above we obtain M(02) > M(O), N(02) > N(O) and N(03) > N(O).

9. Then by Lemma 5A we have S(03) > S(O).

From 8, 9 and Lemma 7A it follows that T(r) > T(O) on the interval

03 _< r _< 04.
By successive iterations of steps 6 through lO it follows that if

T(r) > T(O) on 0i < r _< Oi+l then T(r) > T(O) on 0i+l _< r _< 0i+2. Moreover, the

proof actually demonstrates that T(r) > T(O) on any interval of the ray 8 constant,

O<r<R
zW’ zW’

on which either [-- 2 -> 0 or [---] 2 -< O. Thus it follows that

T(r) > T(O) l -> 0 for all 0 < r < R on any ray e constant.

PROOF OF CASE 2

i. As in step i of Case i we have that there exists a 0 0 < p < 01 such

that for all e, s(r) > s(0), T(r) > T(O), M(r) > M(O) and N(r) > N(O) for

aii 0 _< r _< p

2. By Lemma 7A it then follows that T(r) > T(O) on the ilterval
3. By Lemma 6 we have T(r) > T(O).on l_< r_< 2"

rW6(r) .
4. By definition (3.10) and the monotonicity of Wc(r on 0 < r < R we have

(0) > (0).

5. By i above and Lemma 2 we have S(01 > S(O).

6. Then by Lemma 5A it follows that S(02) > S(O).

rW6(r) .
7. By definition (3.11) and the monotonicity of.c(r on 0 < r < R we have

N(02 > N(O).

8. Then by 3, 6, 7, and Lemma 7A we have T(r) > T(O) on the interval

s2/r/03.
By successive iteration of steps 3 through 8 (omitting the reference to step 1

in step 5) it follows that if T(r) > T(O) on 0i _< r _< 0i+l then T(r) > T(O) on

0i+i_< r < 0i+2. Then as in Case 1 we obtain T(r) > T(O) i _> 0 for all
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0 < r < R* on any ray 8 constant.

PROOFS OF CASE 3 AND CASE 4. The proofs of Case 3 and Case 4 are identical to

those of Case 2 and Case 1 respectively except that all A lemmas are replaced by

corresponding B lemmas.

COROLLARY A. Theorem A remains true if W(z) and Wc(Z) are replaced by either

W(z) and W . (z) or by W(z) and W .
a ,C ,C

(z).

PROOF. The result follows from the fact that all of the lemmas used in the

proof of Theorem A remain valid under the indicated substitutions.

Our Main Theorem will be derived from Theorem A precisely as the Main Theorem

of [1] was derived from Theorem A of [1]. We will not reproduce Robertson’s proofs

but simply mention that his methods apply equally well to Wc(Z) W . (z) and
,C

Wc(Z) W . (z), and then summarize the needed results in the following lemma.
,C

LEMMA .l. Let zp*(z) satisfy the conditions of Theorem 2.1 and let R be

fixed, 0 < R < 1. Then there exists a C C(R) > 0 such that when p(z) _-- PC(R)(Z)
we have W(R](R 0 and W(R(r > 0 for all 0 < r < R. Moreover, for fixed

z2p*(z) we have lim_C(R) -_- A(p*) A is finite and W(r) > 0 for all 0 < r < 1.

The value A, called the universal constant corresponding to z2p*(z.), is largest in

the sense that for any e > 0 there exists 8 r(

W(r(e)) 0 and W’ (r(e)) < 0.A+

), 0 < r(e) < i, such that

THE MAIN THEOREM. Let

z2p* * * * n
Z +(z) PO + Plz + + Pn

be nonconstant and holomorphic in zl < 1 and real on the real axis with P0 -< 1/4.
Let

a[z2p*(z)} _< Iz!2p*<Izl)for Izl < 1. (4.1)

2 * z2p* * *Let z pA(z) A( (z) p0 + P0
corresponding to z2p*(z). Let

where A A(p*) is the universal constant

WA(Z)--W. (z) z [+ D
,A n=l

bn(C)] Izl < i,

be the unique solution of
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W’(z) + pA(z)W(z) 0

corresponding to the smaller root of the indicial equation. Then the function

FA(z) -_- [WA(z) ]i/

is a holomorphic function, univalent and starlike in zl < i, and is not both

holomorphic and univalent in any larger circle whenever A > O.

Let z2p(z) be holomorphic in zl < 1 with

for all zl < 1. Let

W(z) W(z) z[l + x b zn] zl < 1
n

n=l

i + i2’ i > O, be the unique solution of

W"(z) + p(z)W(z): 0

corresponding to the root , with smaller real part, of the indicial equation.

Then if I21 --< 2 the function

F(z) [W(z)]l/ z +

is a holomorphic function, univalent and spirallike in zl < i.

A A(p*) is the largest possible one.

PROOF. From Theorem A we have

The constant

z) zw < z)
ar F(z)] --a[ W(z’)} _> WA(IZl >0, Izl

z2p(’z) _= z pc (z) then 2 O, W(z) =_ W .Now if we choose
,C

and from Theorem 3.23 of [2] we have

(z) _= Wc(Z)

Izlw <Izl)
Wc(II) Izl < (

Thus from (4.4) and the definition of A we have
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g[ FA(Z)} > i__ (4.5)

From (4.3) it follows that F(z) is univalent and spirallike in zl < i, and

from (4.5) it follows that FA(Z is univalent and starlike in zl < I. Moreover,

since equality holds in (4.4) when z is real and positive, and since W’ (R) 0 forA+
some R, 0 < R < l, for arbitrarily small positive values of , it is clear that

FA+(z) is not univalent in zl < 1 no matter how small a positive we take. Thus

the constant A is the largest possible. The proof that the radius of univalence of

FA(Z) is precisely I is contained in [i] page 265 and will not be reproduced here.

COROLLARY B. The Main Theorem is true when W W(z) and Wc(z) W . (z)
* 6 ,CG

I
G

whenever 1621 _< 2 and also when W W(z) and Wc(z) W . (z) whenever. ,C
G
I

The proof of this corollary is immediate since all of our previous results

remain valid under the indicated ubstitutions for W(z) and Wc(z).
5. REMARKS.

We will now indicate how the results of our Main Theorem and Corollary B

compare to or extend those of Robertson’s Main Theorem in Ill for 0.

In Ill the condition

_< zl)

replaces our condition (4.2), there is no explicit bound on IG21, and the results

refer to the case W W(Z) and W
C W . (z).

6 ,C
Our condition (4.2) is independent of condition (4.6).

Corollary B requires that

When _> 1/2 our

(4.7)

while (4.6) implies that

so that

22 2 * *

1I%1 -<i-" (4.8)
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We refer now to the "exponent plane" of Figure i in which GI and 61 are

measured horizontally and G2 and 62 are measured vertically. Our conclusions are

the following:

i. In region I only our Main Theorem applies.

2. In regions II only Robertson’s Main Theorem applies.

3. In regions III U IV Robertson’s Main Theorem applies and our Corollary B

applies with W WG(z) and WC W . (z).
6 ,C

4. In region IV Robertson’s Main Theorem applies and our Corollary B applies

with W W(z) and W
C

W . (z).
G ,C

Thus it is in region I that we have an extension of the results of [i] and [2].

Figure 1

We note that we can obtain Robertson’s Theorem A with y 0 from (3.18) with

W WG(z) and WC W . (z). This follows by noting first that the hypotheses of
G ,C

Theorem A of Ill imply that G1 -> G and that T(r) _> 0 for all 0_< r < 1. Also, if

Gl > G then T(O) > O,while if G
1

G then G2 0 and as in the proof of Lemma 8 it

follows that T’(O) > O. Now if we let p be the smallest zero of T(r) on 0 < r < 1

we obtain from (3.18)
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eie0dT(o) (0) 2[0eiew(O
dr

+

Wp(p ei@)

dT(0) > 0 or both terms in the right member of (4 9) vanish TheThus either do
former conclusion yields an immediate contradiction to the definition of 0. If we

assume the latter conclusion then an examination of the successive derivatives of

(3.18) shows that the first non-vanishing derivative of T(r) at p is positive and

of even order. Thus T(r) > 0 for all 0 < r < R

Finally we point out that for V O, IYI < /2, Robertson’s Theorem A can be

obtained by applying the same reasoning as above to the following analog of (3.18)

where W WG(z) and W
C

W . (z).
G ,C

rdT
dr

T(r) + T(r)(1-
2rW&(r) 2 zW’

We(r) sec T2(r) + sec [---).

ii
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