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ABSTRACT. The set S consists of complex functions f, univalent in the open unit

disk, with f(0) f’ (0) 1 0. We use the asymptotic behavior of the positive

semidefinite FitzGerald matrix to show that there is an absolute constant N such
o

n
that, for any f(z) z + an z S with la31 <- 2.58, we have [an < n for all

n=2
n>N

o
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1. INTRODUCTION.

Let S denote the class of all normalized univalent functions f(z)

z + a
k

z in the open unit disc D. The Bieberbach conjecture states that, for
k=2

functions in S, one has anl _< n for all n N. It is known to be true for n <- 6.

The best known estimate for all coefficients is la -< (I.066)n (Horowitz [i]).
n

a
n

On the other hand, Hayman’s Regularity Theorem (Hayman [2]) states that lira _< 1
nn-o

z
for each f e S and that equality holds only for the Koebe function K(z) 2’

(l-nz)
JNI i, for which JanJ n. This implies that lanl -< n for n -> no(f).

Hayman [3] also proved that A /n tends to a limit, where A is the maximum of
n n

anl for all f S. It is still an open question as to whether this limit is equal

to i. The asymptotic Bieberbach conjecture asserts that lim A /n 1, where
n

An max ..lanl-
feS
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Ehrig [4] has proved via the FitzGerald Inequality [5] that if f S and

laB1 < C < 2.43, then lanl < n for all n _> No, where No depends only on C and not

(as in Hayman’s Regularity Theorem) on f. This result is a proof of the Asymptotic

Bieberbach Conjecture for a subclass of S.

In this paper, we apply the Asymptotic FitzGerald Inequalities to get, by ele-

mentary means, an improvement of Ehrig’s result (Theorem i) and the result in [6],

(see Remark 2).

2. PRELIMINARY RESULTS.

THEOREM A. (FitzGerald Inequality, [5] . Let

f(z) z + ak(f) z
k=2

be in S and define

qmn (f) qnm(f) j (m,n) b
2 2

b
2 (f)

j=l
J

f bm(f) n

where bj(f) .laj(f) I; j(m,n) j(n,m), j N, and for m < n:

m-lj-n for lj-nl < m

j (m,n)
0 if otherwise.

Then the FitzGerald matrix

Q(f) (qmn (f))m,n N

is positive semi-deflnite.

THEOREM B. (Asymptotic FitzGerald Inequalities [7]). Let {f n e N, be a
n

sequence of functions in S, such that

a) f converges locally uniformly to f S
n

b) lim inf b (fn)/n < 8 < lira sup bn(fn)/nnn-o n-o
c) (f) lira b (f)/n

nn-o
d) d lira a(fn).

n-o

Then A Q(jl,J2 ’Jr-l’ (f) ,(j),8,d d) (f), defined below, is a

positive semi-deflnite matrix.

Denote by E the m x n matrix whose elements are all equal to one. Moreover,
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let H (f) be the m n matrix defined by its elements hst(f j2 b
2

(f). We
mn t Jt

use the notation

where

(f))l<s t<p (rest l<s t<p,Mp(X) (x))Q(JI’ ’Jr-1 (f) (qjsj t

47x2/6- x for s t

rest(X) x2(l- x2) for s # t

and 6 lit sup 6 where 6 suPk bn(fk)/n. Then matrix A has the following form:
n nn-o

(f)HTr_I q r(f), Mq r(e(f)), 82(l-e2(f))Eq_r i d2(l-2(f))Eq r,p-q

2HTr-l,l(f)’ B2(I 2(f))El,q r’ (762/6 B4)EI,I d2(I B2)El,p_q
2HT

r l,p_q(f) d2(l e2(j)) E d
2 B2p-q, q-r
(i Ep_q, i, Mp_q (d)

where HT is the transposed matrix of H.

THEOREM C. [6]. Let f S; if laB1 -< 2.042, then lanl n for all n >- 2.

3. MAIN RESULTS.

For the proof of the Theorem i, we need the following lemmas:

LEMMA i. Suppose that n > i and that

(H) sup a I,
n f H n

2
where H is a compact subclass of S. Let f(z) z + a2z + be in H with

]anl n(H). Then f(z) satisfies the differential equation

n n-I
2 }2 (v) -v-i

va -n+v+ va
z {f’(z) a f(z) n-i + v v n-v)z z i._._.

n a a
n v=2 v=l n n

Here, a
(v)

are the coefficients of f(z) v, where
n

f(z)V (V) n
a g
n

n=v

The proof of this lemma is completely similar to that of Theorem i in

Schaeffer and Spencer ([8], p. 612).
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As an application of the Lemma i, we have the following:

nLEMMA 2. If f(z) z + a z e H is the extremal function maximizingn
n=2

such that a
3

> 0, then 2a
3 a + 2.

The proof of this lemma is completely similar to that in Garabedian and

Schiffer ([9], p. 118).

Hayman [2] showed that for each f e S, the limits

2
e(f) lira (l-r) M(r,f) lira

r-1 n-o

a (f)
n

exist, where Moo(r,f is the maximum of If(z) on Izl r. The number (0 -< -< I)

is called the Hayman index of f.

n
LEMMA 3. [i0]. If f(z) z + a z S and la?l is given then

n
n=2

a
n
(f)

-2 -i
(f) lira < 4b exp(2-4b

nn-o

where b 2 (2 la21 )1/2 and this inequality is sharp for 0 a21 2

nLEMMA 4. If f(z) z + a z satisfies the conditions of the Lemma 2
nn=2

with a31 > i, then

fan (f) -2
(f) lira _< 4C exp(2- 4C-I)

nn-oo

where C 2- - (la3,- i)I/2 I/2.

PROOF. By Lemma 3, we have

(f) _< 45
-2

exp(2 4b i)

where b 2 (2 a21) I/2. Since we may assume a
3

real positive (otherwise, we

-iOf(ei0z)
arg a

3 < 2), we obtain thatconsider e e H, where 0 < 0
2

b 2- (2- la21) I/2
2- - (la31- i

2- - /(la3l- i) i121112 c.

i12]i12

Hence,

c(f) _< 4C
-2

exp (2 4C-i).

LEMMA 5. [7]. Let {f }, n N, be a sequence of univalent functions in S,
n



ASYMPTOTIC BIEBERBACH CONJECTURE 541

that converges locally uniformly to a function f in S and suppose that (f) > O.

Then 762 2(f) >_ 64 where and 6 are chosen as in theorem B

PROOF. Consider the (q r + l) (q r + i) principal minor

Q((f) (f) ,B)

Mq_r( (f) B2 (i_2 (f))Eq_r,

2 (i-2 (f))El,q-r (762/6-4) El i

of the matrix A in theorem B. A well-known result about positive semidefinite

quadratic form is that all principal minor determinants of the matrix of the coef-

ficients of the quadratic form are non-negative. Let (f) and n q-r. If we

use induction, we obtain:

Det Q( ,) (2/6)n (i_2) (762_64/2 + 2n 6-(n+l) (72_6B4/2) O;

hence, for 0 -< < I

(762 2 64) + 6(I-2)B4
> 0o

6n (i-2)+i
Since n is arbitrary, the resultlows. The case i is immediate.

k
THEOREM I. Let f(z) z + a

k
z be in S. If i < la31 < 2.58, then there

is an absolute constant N (independent of f), such that la < n for all n > N
o n o

PROOF. Suppose the contrary and take a sequence {gk }, k e N, of univalent

functions in S such that

i) {gk}, k e N, converges locally uniformly to a function go S,

ii) 1 < b3(gk a3(gk <- 2.58,

2
iii) 2a3(gk a2(gk + 2,

iv) bnk(gk) -> n
k

for sequence n
k going to infinity.

REMARK. The functions are the extremal functions maximizing la3(gk) in

the compact subclass H
k

{g S; i -< b3(g) < 2.58 and bnk(g) > nk} of S. Applying

Lemma 2 to the subclass Hk, we obtain condition (iii).

We pick for each n
k

one of the functions of

{gj }, j 0,I

which maximizes bnk and denote it by fnk; precisely, let {fnk }, k N, be a sequence
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of the functions in

such that

{gj}, j 0,i

sup b (fnk).j nk (gj bnk
We may assume that {f }, k N, converges locally uniformly to a function f S.

nk
Otherwise, we pick a subsequence of {f }, k e N. Evidently, i -< b3(f) < 2.58 and

n
k2

2a3(f a2(f) + 2. For this sequence {f }, k N, we have
n
k

nk sp fn )/nk fnk)bnk j bnk /n
k

Thus

lim sup b (fnk)/nk > i.
k-oo nk

We take 6 in Theorem B. First we show that (f) > 0. In fact, the determinant

of the 22 submatrix Q((f),6) of A Q(Jl Jr-l’ (f) ,(f),8,d d)(f) is

(72(f) 64(f)) (762 64)/36_ 64(1_ 2(f))2 >_ 0.

This excludes (f) 0 because -> i. By Lemma 5, we have

72(f)62 664 0 or 2(f) > 662/7 > 6/7.

This implies, by Lemma 4, that b3(f) > 2.58 which contradicts the assumptions.

kCOROLLARY. Let f(z) z + =a z be in S. If laB1 < 2.58, then there is
k=2

an absolute constant N (independent of f), such that la < n for all n > N
o n o

PROOF. The proof of corollary follows immediately from Theorem i and Theorem C.
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