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ABSTRACT. The Poisson-Hankel transform is defined as an integral transform of the

initial temperature function, with the kernel as the source solution of the general-

ized heat equation. In this paper a technique involving integral and differential

operators has been used to effect the inversion of the Poisson-Hankel transform.
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i. INTRODUCTION.

The Poisson-Hankel transform has as its kernel the fundamental solution of the

generalized heat equation. A special case of the Poisson-Hankel transform, called

the reduced Poisson-Hankel transform has been studied in [i], where a differential

operator of Laguerre-Polya class [2] has been used to effect its inversion. A

general theory of these type of operators has been developed by Widder [2], but

can not be applied to the more general Poisson-Hankel transform. Our object in

this paper is to establish a procedure for the inversion of this transform in its

general form. Our technique consists of applying an integral operator and a diff-

erential operator on the transform successively to retrieve the unknown function,

cf [3]. The differential operator is of the Laguerre-Polya class.

We shall also deduce the inversions of the Weierstrass Hankel transform and

the reduced Poisson-Hankel transform as special cases of our inversion algorithm.



486 C. NASIM

In the end we give an example to illustrate the result of the main theorem.

2. DEFINITIONS AND PRELIMINARIES.

The generalized heat equation is

32u 2 u 8+ u(x,t)
3x2 x 8x -" > O. (2.1)

A C2 solution of (2.1) is called a generalized temperature. The fundamental solut-

ion of (2.1) is the function

G(x;t) (2t)’-I/2e-x2/4t

We define the function associated with G(x;t) by

I t-iG(x,y;t) 2-3/2 F( + (xy)

2 2
i/2- x + y

e 4t I-I’2/ zu
I, 9 > 0,(22)

I (z) being the Bessel function of imaginary argument and order u. The function

G(x,y;t) is the source solution of the generalized heat equation (2.1). Note that

G(x,0;t) G(x;t).

where

The Poisson-Hankel transform is defined by

U(x,t) G(x,y;t)(y)d(y), 0 < t <

0

21/ 2-u
2

dyd(,y) y
r( +})

(2.3)

The convergent Poisson-Hankel transform defines a generalized temperature U(x,t)

with initial temperature

U(x,0+) (x).

Next, some operational considerations.

From the Euler product of the gamma function

r(z) lim
n

1 2 3 (n 1)
z(z + i) (z + n- i)

z
n

one can easily show that

8n -+Sz n
1

lira
(n- i)!

nF(- 8z)
n k=l

8n -e+Sz
lim

(n i)
n Pnn+o

(z)
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pn(Z) being a polynomial in z of order n. Now we define the operator

--I/21 n 8/2lira n Pn (8)
r(v +- n - (n i)!2

n

d 8/2 1
where O =-x x Except for the factor n I is the Euler differ-

r( +- 1
0/2

ential operator. To obtain the intended interpretation of the operator n we

write

8in n/2 N
in._____n_n

k
n
8/2 e lira Z 2 5 0k

N k=O

llm qN(8)

8/2
qN’ a polynomial in @ of degree N. To see the effect of n on a function

where a is a constant, first note that

X

and hence

Pn(8)[x] Pn(-)x where Pn is

a polynomial of degree n. Now,

8/2 [x=] llm qN(e)[x]
N/oo

llm qN(-)x
N-+o
-/2

n x

With this understanding, one can readily see that

1 x
a l a

x (2.4)
1 2 1 1

r( +- r(++)
1

Thus, i 2
will be called a linear differential operator of infinite

r( +7-
order and the effect of this operator on a function x is to reproduce it with a

constant factor. This operator is of Laguerre-P61ya class and further properties

of the operator of this class are well known, cf [5].

Next we give two applications of this operator for future reference. First,
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2 2
-a x

e i (_2x2) k
r( +

k=0

k!
k=0

x2k].

i
Also, for v + > 0,

2
(i/ T )-0)+1/2)

E (_2)k
k!

k=0

(x) i/2-

I Ir( + )

2k

1
r( + + k)

J9-1/2 (2ox)

(_1)
k

E
1P(v ++ k)

k=0
I

k! F(v +-

(2.5)

2 k

(-7)

Ik
r( ++ k)

k=O
i) k i

i i
r(v +-f-

[x2k

i
(-i)

k r(v +E + k)

k=O
1k! F(v + -

1
r(v+

2

i)
k 2k

x
ir(v ++ k)

(2.6)

We shall now consider some properties of the function G(s,y;t), s o + iT,

defined as

i t-iG(s,y:t) 29-3/2 Y( +
s
2 + y2-( 4t

e (sy)l/2-v iv_i/2 sY2t (2.7)

based on the equation (2.2) above, where > 0, t > 0, y > 0.

LEMMA 2.1. If G(s,y;t) G(s,y,t) is the function defined in the equation

(2.7), and A and B9 are some constants, then

Y (02 + T2)
e 4t (2.8)

and



INVERSION OF THE POISSON-HANKEL TRANSFORM 489

2
2 s Y (s,y;t) G(s y;t)](ii) s G(s,y;t)

2 + 1 G+I

< t-3/2 lyl-V (02 + 2)
2 2

(o- y)
-V/2 4t

PROOF. By using the asymptotic expansion of the Bessel function

I(z)
z

(2z)
and definition (2.7) conclusion (i) follows immediately.

Conclusion (ii) follows by direct differentiation and making use of conclusion

(i).

As direct consequences of the above lemma, we have that

(i)

(x- y)

G(x,y;t) <- Au t
-I/2

(xy)
-v

e (2.10)

Then

(ii) G(s,y;t) is a continuous function of the variables s and y.

’o -oy
LEMMA 2.2. Let y e l(y) dy < oo, for positive a and > O.

0

U(x,t) F G(x,y;t)(y)d(y)

0

exists for 0 x < and can be analytically extended into the complex plane so

that U(s,t) is analytic for o Re(s) >_ 0.

PROOF. Using the estimate (2.10) and the value

we have

i/2-)
2 2)

d] (y) y dy
1

r( +y)

IU(x,t) < IG(x,y;t)qb(Y) di(Y)

0

< A(x,t) y e

0

(x- y)
4t

2 1 2 2
(x y) " y x (2.11)Since 0 -< y co,
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therefore,

2 2 2
(x- y) x y

4t < e4t 8t

and

2

U(x,t) < B (x, t) y e

0

(y)[ dy <

1
due to the hypothesis with a t > 0. Hence, the integral defining the

function U(x,t) exists and is, in fact, absolutely convergent. Now we consider

U(s,t) I G(s,y;t) (y)d(y), s o + iT.

0

Now using the estimate (2.8) of G(s,y:t), we have

IU(s,t)l s flG(s,Y; t) @(Y)d(Y)

0

2
(o- y)_

(o,’r,t) y e ,(y) dy

0

2

8t
< A(O,I,t) y e

0

[)(y) ]dy <

using the inequality (2.11) and the hypothesis. Hence, the function U(s,t) exists

and is defined by an absolutely convergent integral. Now to prove that U(s,t) is

analytic in the half-plane o > 0, we need to show that

-s G(s,y;t) (y) d(y)

0

converges uniformly in the region o 0.

By making use of the estimate (2.9), we obtain

G(s,y:t)(y)d(y) A(O,I,t) y e

0 0

+ By (O,,t) y

0

(0 y) 2

4t

(o- y)
4t
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Now due to the hypothesis and using the inequality (2.11), both the integrals on

the right hand side above, converge for all s and for t > 0, giving us the desired

result and hence the lemma.

As corollaries of Lemma 2.2, we have

IU(s,t) < Av(t) (0
2 + T2) -v/2

o2 + T
2

4te (2.12)

where s o + iT and t > 0; and

x2

4tU(ix,t) O(e ), x

0(i), x 0 (2.13)

3. THE INVERSION.

We give below a lemma which is a direct consequence of a general result,

[2; Theorem 2.1].

i tLEMMA 3.1. If f(x) 2 / t) --x0

then

29+i -t2/x2
e dt, x > 0, > 0,

1 1r( +-
If(x)] (x), 0 < x < .

PROOF. We write the above integral as

[ 1 x
f(x) (t) k( dt,

0

where

k(x) 2e-I/x2 x-(2 + i).
1 i iNow the Mellin transform of k(x) is k*(s) F(v + A-- -s), o < 2v + i and k*(s)

is of Laguerre-P61ya class. Thus

1 i
k*(O) f(x) #(x) or

i 1 f(x) #(x), x > 0

rC+y-y)

i%e Main Theorem: Let e
-ay

(y) dy < , > O, > 0
0

and

U(x,t) f G(x,y:t) q(y) dl(y)
0

be the Polsson-Hankel transform. If
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then

R(x;t) r( + ) J e

0

2 2

2
16t

G(v;t) U(iv,t) d(v)

r( +
2

i -x / 4t
R(x;t) e (x), x > 0, t > O,

(3.1)

where the functions G(v;t), G(x,y;t) and d(v) are defined above.

PROOF. From the result (2.8) and the definitions of the functions G(v:t) and

d(v), it is clear that the integral defining R(x;t) exists. Also note that

exists due to Lemma 2.2.

U(iv,t) / G(iv,y;t) (y) d(y)
0

Then we can write

R(x,t) r(u + ) e

0

2 2

16t2
G(v;t) d(v) I G(iv,y;t) (y) d(y)

0

F( + ) (y) d(y) e

0 0

2 2

16t
2

G(v;t) G(iv,y;t) d(v), (3.2)

the change of order of integration can be justified by absolute convergence; we

need only to observe that
2 2

v x

le 16t2

0

G(v;t) d(v) IG(iv
0

2 2

,y;t) (y) d(y)

-( + i) 16t v y /4t<Kt e v dv

0 0

(Y) dY < ,

by hypothesis.

From the definitions of the functions G(v;t), G(iv,y;t) and d(v), the v-inte-

gral in (3.2) can be written as
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2 2

(2t) (u + 3/2) e-y /4t i/2-u 16t
2 +I/2

y e v J-i/2
0

2+i/2 -y2/4t-y2/x2 -(2 + i)
e x

and we then obtain,
2

x
2 y2X)

R(x,t) 2x
-(2x) + l) j. e-y /4t-y2/ (y) dy

0

2 2
x
2

i e-y /4t -y / i y 2 + i
2 (y) e dy

0
y x

(2t) dv

[2, p.29).

Now the Lemma (3.1) is applicable and hence

1 -x
2 / 4t

R(x,t) e (x) (3.3)
1 1r( +-)

establishing the inversion of the Poisson-Hankel transform.

It is to be noted that the transforming function R(x,t) defined by (3.1) is

in fact the modified Laplace transform of U(ix,t). This can be recognized if we

simplify and write

-i/2 1/2
R(x,t) (4t) (v+i/2) I e

py(x,t)
P U(2p ,t) dp

0
2

where y(x,t)
x + 4 t > 0 Also note that the above inverion algorithm is

16t
2

valid for the entire function having a series expansion. The condition on

simply restricts its growth.

Next we shall discuss some special cases. Let lira U(x,t) f(x). Then the
t+l

Poisson-Hankel transform (2.3) becomes the Weierstrass-Hankel transform and is

given by

f(x) I G(x,y;l) #(y) d(y)
0

Now write R(x,l) R(x), so from (3.1)

R(x) F(X) + ) e

0

which on simplifying gives o
1 J 2

R(x)
4v+i/2

v e

0

2 2

G(v;l) f(iv) d(v).

2 2 2
v x v
16 4

f (iv) dv.
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According to the inversion algorithm (3.3), we have

-x2/4 i
e (x) R(x)

1 _)r( +

r(u +
i

4+I/2

4+i/2
2 -v2/4

v e

0

f (iv) dv

2 2 2
v x v
16 4

e

r( +

f(iv) dv

2 2

formlly. Now using the result (2.5), we obtain,

2

4
]o _2-x /4 I /4 +i/2 i/2-e (x) e v x

0
J9-1/2 f(iv) dv.

Thus,

(x) I C(ix,v;1) f(iv) dp(v),
0

giving the inversion of the Weierstrass-Hankel transform and agreeing with the

inversion given in [4].

Now if we write G(0,y;t) G(y;t) and U(0,t) f(t), then the Polsson-Hankel

transform given by (2.3) becomes

f(t) f G(y;t) (y) du(y),

0

and is called the reduced Poisson-Hankel transform. We can write it, using the

definitions of G and dp and making a suitable change of variable, as

f(t2/4) 2
i I e-y2/t2 l_y )t -(29+i)

r(u + ) 0

(y)dy.

Hence by Lemma (3.1), we have

or,

2
i 1
i f() i

r( +- }el r( + 1
2

i x i
i i U(0 ’T ir( + ) r( + )

(x)

U(x,0),
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This establishes the inversion of the reduced Polsson-Hankel transform as in

Ill.

Next we shall illustrate the inversion procedure for the Polsson-Hankel trans-

form by an example.

Let

(x) x
i

2 + e > -i, >

The function satisfies the condition of the main theorem, and

U(ix,t) G(ix,y;t)y
e
d(y)

0

(2t)-i x2/4t i/2- F e-y2/4t e+v+I/2
e x y

0
J9-i/2

xy
dy

2t

ir( + i)
(4t)

-i/2- x2/8tMl/
I/2 (++i/2)

x e
2 (++i/2), i/2 (-i/2)

(x2/4t)

[5, p. 185], M being the Whittaker function.

Now

R(x,t) F(v + )
0

Ir(v +2- +)
ir( + )

-v2x2 / 16t2
G(v;t) U(iv:t) d(v)

(4t)

2
2 x

i12 (a--i/2) e

0

+!)
2 8t

9-I/2MIv /2(e+v+I/2), i/2(9-i/2)
(v2/4t)dv

21 1
x
e x -(+e/2 + 1/2)

r( + +) ( +7
[5, p. 215].

Hence,

r( +-
1 1[R(x,t)] F( + + )

r( +
-x

2 / 4t
e x by (2.3)

-x2/4t (x),
e

2 -(+e/2 + 1/2)
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according to the main theorem, whence, as predicted,

<x x
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