BAZILEVIC FUNCTIONS OF TYPE β

K. INAYAT NOOR

Mathematics Department Islamia University Bahawalpur, Pakistan

(Received March 12, 1980 and in revised form December 7, 1980)

ABSTRACT. In this paper, a new coefficient result for the Bazileviĉ functions of type β is obtained.

KEY WORDS AND PHRASES. Bazıleviĉ functions, Starlıke, Coefficients, Close-to-convex, Univalent functions.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 30C45, 30C50.

1. INTRODUCTION.

Let S denote the class of functions f which are analytic and univalent in $E = \{z: |z| < 1\}$ and which satisfy f(0) = 0 and f'(0) = 1. Let S* be the class consisting of starlike functions. Bazileviĉ [1] introduced a class of analytic functions f defined by the following relation. For $z \in E$, let

$$f(z) = \left\{ \frac{\beta}{1+a^2} \int_0^z (H(\xi) - ai) \, \xi^{\frac{-\beta ai}{1+a^2}} -1 \, \beta/1 + a^2 \right\} \frac{1+ai}{\beta}, \quad (1.1)$$

where a is real, $\beta > 0$, ReH(z) > 0 and g ϵ S*. Such functions, he showed, are univalent [1]. With a = 0 in (1.1), we have [2] for z ϵ E,

Re
$$\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} > 0. \qquad (1.2)$$

We shall denote this class of functions by $B(\beta)$. We notice that, if $\beta = 1$ in (1.2), we have the class of close-to-convex functions first introduced by Kaplan [3].

2. MAIN RESULTS.

Denote $M(r,f) = \max_{\substack{|z=r|\\ |z=r|}} |f(z)|$, $0 \le r < 1$ and $M(r,f) \le (1-r)^{-\alpha}$, $0 \le \alpha \le 2$. Thomas [2] has proved that $n|a_n| \le K(\alpha,\beta)n^{\alpha}$. We improve his result as follows:

THEOREM 1. Let $f \in B(\beta)$, for $0 < \beta \le 1$, and be given by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$

Then, for $n \ge 2$,

$$n|a_n| \le A(\beta)M \left(\frac{2n-1}{2n}, f\right)$$
,

where $A(\beta)$ is a constant depending only upon β .

PROOF. From (1.2), we can write

$$zf'(z) = f^{1-\beta}(z) g^{\beta}(z)h(z)$$
, Re h(z)> 0; $g \in S^*$. (2.3)

Thus,

$$(zf'(z))' = (1 - \beta) f^{1-\beta}(z)f'(z)g^{\beta}(z)h(z) + \beta f^{1-\beta}(z)g^{\beta-1}(z)g'(z)h(z) + f^{1-\beta}(z)g^{\beta}(z)h'(z).$$
(2.4)

Since, with $z = re^{i\theta}$, Cauchy's theorem gives

$$n^2 a_n = \frac{1}{2\pi r^n} \int_{0}^{2\pi} z(zf'(z))' e^{-in\theta} d\theta$$
,

we have from (2.4),

$$|z|_{n}^{2}|_{a_{n}} \leq \frac{1}{2\pi r^{n}} \left\{ (1-\beta) \right|_{0}^{2\pi} |zf'(z)|_{0}^{-\beta}(z)g^{\beta}(z)h(z)|_{d\theta}$$

$$+ \beta \left|_{0}^{2\pi} |zg'(z)f^{1-\beta}(z)g^{\beta-1}(z)h(z)|_{d\theta}$$

$$+ \left|_{0}^{2\pi} |f^{1-\beta}(z)g^{\beta}(z)zh'(z)|_{d\theta} \right\}$$

$$= \frac{1}{r^{n}} |I_{1} + I_{2} + I_{3}|_{say}.$$

Now,

$$I_{1} = \frac{(1-\beta)}{2\pi} \int_{0}^{2\pi} |zf'(z)f^{-\beta}(z)g^{\beta}(z)h(z)| d\theta$$

$$= \frac{(1-\beta)}{2\pi} \int_{0}^{2\pi} |f'(z)|^{2} |f(z)|^{-1} d\theta, \text{ using } (2.3).$$

In order to estimate this integral, we use the following well-known result [4, p. 46].

Suppose that f is a really mean p-valent in E and that $\frac{1}{2} \le r < 1$, $0 < \lambda \le 2$. Then there exists ρ such that $2r - 1 \le \rho \le r$ and

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f'(\rho e^{i\theta})|^{2} |f(\rho e^{i\theta})|^{\lambda-2} d\theta \leq \frac{4PM(r,f)^{\lambda}}{\lambda(1-r)} . \qquad (2.5)$$

With ρ = 1 and λ = 1 in (2.5), we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f'(\rho e^{i\theta})|^{2} |f(\rho e^{i\theta})|^{-1} d\theta \leq \frac{4M(r,f)}{(1-r)}.$$

Since $r < \frac{1+\rho}{2}$ and M(r,f) is an increasing function, M(r,f) \leq M($\frac{1+\rho}{2}$, f) .

$$\frac{1}{1-r} \le \frac{2}{1-\rho} \quad \text{since } 2r - 1 \le \rho \le r .$$

Thus

Also,

$$I_1 \leq 8(1-\beta) \frac{M(\frac{1+\rho}{2}, f)}{(1-\rho)}$$
.

Choosing $\rho = 1 - \frac{1}{n}$, we obtain for $n \ge 2$, see [5, p. 238, 240],

$$I_1 \le 8(1 - \beta) M \left(\frac{2n - 1}{2n}, f\right).$$
 n.

For $z = re^{i\theta}$,

$$\begin{split} I_2 &= \frac{\beta}{2\pi} & \int_0^{2\pi} |zg'(z)f^{1-\beta}(z)g^{\beta-1}(z)h(z)|d\theta \\ &= \frac{\beta r}{2\pi} & \int_0^{2\pi} |f'(z)\phi(z)|d\theta, \text{ where } \phi(z)g(z) = zg'(z); \text{ Re } \phi(z) > 0. \end{split}$$

Applying the Schwarz inequality, we have

$$I_{2} \leq \frac{\beta r}{2\pi} \left(\int_{0}^{2\pi} |f'(z)|^{2} d\theta \right)^{\frac{1}{2}} \left(\int_{0}^{2\pi} |\phi(z)|^{2} d\theta \right)^{\frac{1}{2}}.$$

Now

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left| f'(z) \right|^{2} d\theta = \sum_{n=1}^{\infty} n^{2} \left| a_{n} \right|^{2} r^{2n-2} \leq \sum_{n=1}^{\infty} n \left| a_{n} \right|^{2} r^{n} , \max n r^{n-2}.$$

Since the function $\log (nr^n)$ has a maximum at a point $n = \frac{1}{\log \frac{1}{r}}$, we have

$$\log nr^{n} \leq \log n_{o}r^{n_{o}} = \log \frac{1}{elog \ \underline{1}};$$

i.e.,
$$nr^{n-2} \le \frac{1}{er^2 \log \frac{1}{r}} \le \frac{1}{er^2 (1-r)}$$
 (2.6)

Also, it is well-known [6, p. 42] that
$$M(r,f) \le \frac{4}{r} M(r^2,f)$$
, (2.7)

and that the area principal for univalent functions gives

$$A(r,f) \le \pi M^2(r,f)$$
, (see [7, p. 215]). (2.8)

Using (2.6), (2.7) and (2.8), we obtain

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f'(z)|^{2} d\theta \leq \frac{16}{e} \frac{M(r,f)^{2}}{r^{3}(1-r)} . \qquad (2.9)$$

Since Re $\phi(z) > 0$,

$$\phi(z) = \frac{1}{2\pi} \begin{cases} 2\pi & \frac{1+ze^{-it}}{1-ze^{-it}} d\mu(t) = 1 + \sum_{n=1}^{\infty} c_n z^n \text{ with } |c_n| \le 2; \\ 0 & 1-ze^{-it} \end{cases} \text{ see [4].}$$

Thus

$$\frac{1}{2\pi} \int_{0}^{2\pi} |\phi(z)|^{2} d\theta = \sum_{n=0}^{\infty} |c_{n}|^{2} r^{2n} \le 1 + 4 \sum_{n=1}^{\infty} r^{2n} = \frac{1 + 3r^{2}}{1 - r^{2}}$$
 (2.10)

From (2.9) and (2.10), we have

$$I_2 \le \frac{4\beta}{\sqrt{er}} \frac{M(r,f)}{(1-r)} \left[\frac{1+3r^2}{1+r} \right]^{\frac{1}{2}} \le \frac{4\sqrt{2}\beta}{\sqrt{er}} \frac{M(r,f)}{(1-r)}$$

Since $r \le \frac{1+r}{2}$ and M(r,f) is an increasing function, we have for $r = 1 - \frac{1}{n}$ and $n \ge 2$

$$I_2 \le \frac{4\sqrt{2}\beta}{\sqrt{er}} M(\frac{2n-1}{2n}, f). n$$

 $\le \frac{8\beta}{\sqrt{e}} M(\frac{2n-1}{2n}, f). n$

Finally, since 0 < $\beta \le 1$, $z = re^{i\theta}$ and

$$I_{3} = \frac{1}{2\pi} \int_{0}^{2\pi} |f^{1-\beta}(z)g^{\beta}(z)| zh'(z) |d\theta$$

$$\leq M^{1-\beta}(r,f) \cdot \frac{1}{2\pi} \int_{0}^{2\pi} |g^{\beta}(z)| zh'(z) |d\theta$$

$$\leq M^{1-\beta}(r,f) \cdot \frac{2r}{1-r^{2}} \cdot \frac{1}{2\pi} \int_{0}^{2\pi} |g^{\beta}(z)| Reh(z) d\theta .$$

Since it is known [8] that $|zh'(z)| \le \frac{2rReh(z)}{1-r^2}$, then by (3)

$$I_3 \le M^{1-\beta}(r,f) \frac{2r}{1-r^2} \operatorname{Re} \left\{ \frac{1}{2\pi} \int_0^{2\pi} f^{\beta-1}(z) f'(z) e^{-i \operatorname{arg } g^{\beta}(z)} d\theta \right\}$$

Integrating by parts and using the fact that g is starlike, we obtain

$$I_{3} \leq M^{1-\beta}(r,f), \quad \beta \quad \frac{M^{\beta}(r,f)}{1-r}$$

$$\leq \beta \quad \frac{M(\frac{1+r}{2}, f)}{1-r}$$

= β M($\frac{2n-1}{2n}$, f). n, on choosing $r = 1 - \frac{1}{n}$, $n \ge 2$.

Thus, for $n \ge 2$

$$|a_n| \le e^{-\frac{1}{2}} \left\{ 8((1-\beta) + \frac{8\beta}{\sqrt{e}} + \beta \right\} M(\frac{2n-1}{2n}, f), \text{ (see [4, p. 45])}.$$

This completes the proof.

REFERENCES

- Bazileviĉ, I. E. On a case of integrability in quadratures of the Loewner-Vufarev equation, Mat. Sb. 37 (1955), 471-476, Russia.
- Thomas, D. K. On Bazileviĉ functions, <u>Trans. Amer. Math. Soc. 132</u> (1968), 353-361.
- Kaplan, W. Close-to-convex schlicht functions, <u>Michigan Math. J.</u> (1952), 169-185.
- 4. Hayman, W. K. Multivalent functions, Cambridge, (1967).
- Hayman, W. K. On successive coefficients of univalent functions, <u>J. London</u> <u>Math. Soc.</u> <u>38</u> (1963), 228-243.
- Thomas, D. K. Starlike and convex functions, Ph.D. Thesis, University of London, 1967.
- 7. Pommeranke, Ch. On starlike and convex functions, <u>J. London Math. Soc.</u> 37 (1962), 209-224.
- 8. Caratheodory, C. Conformal representation, Cambridge, 1932.