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3ABSTRACT. Integral solutions of x + %y + i xyz 0 are observed for all integral

For % 2 the 13 solutions of the equation in positive integers are determined.

Solutions of the equation in positive integers were previously determined for the

case % i.
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i. INTRODUCTION.

The Diophantine equation

3
x + Xy + I xyz 0 (i)

2
is always satisfied by the positive triple (2% + I, 2, 2% + 2% + i). For % i,

S. P. Mohanty [i] has given all 9 positive solutions of this equation and in a sequel

[2] has given all integral solutions of this equation. In this paper we determine

all of the 13 positive solutions of

3
x + 2y + 1 xyz 0. (2)

Equation (2) has an infinite number of integral solutions. For example, (-i,0,

z), (-l,y,-2) are solutions of (2). In general (-I, O, z) and (-I, y,-%) satisfy

(i).

THEOREM. There are only a finite number of solutions of (2) in positive integer&

PROOF. As in [i] we write the given equation (2) as an equivalent system. If

(x,y,z) satisfies (2), then xI2y + 1 and ylx3 + i. Conversely, if x, y are positive

integers for which xl2y + i, ylx3 + i, then xylx3 + 2y + 1 hence for some positive z
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3
one has x + 2y + i xyz 0.

3
Hereafter, we focus attention on the system x l2y + i, y lx + 1. If (x, y) are

positive integers for which these statements prevail, then there are positive integers

r, s for which

rx 2y + 1 (3)

3
sy x + 1 (4)

Eliminating y from (3), (4), one has

s(rx i) 2x
3
+ 2 (5)

which may be written as

x(sr 2x2) s + 2

Let n sr 2x2, a positive integer, to secure xn s + 2 from (6).

(6)

Then

2x
2

sr- n (xn- 2) r n rnx (2r + n). (7)

The extremes of this equation imply 2x < rn from which we gain the existence of a

postive integer for which

rn 2x + k (8)

Combining (7), (8) we have

xk= 2r+n (9)

and finally, that

(n- 2)(r- i) + (x- i)(k- 2) 4. (io)

If we write

A (n- 2)(r- i)

B (x- l)(k- 2)

then (I0) becomes A + B 4. We continue the proof by considering the cases

A < 0, B < 0, A 0, B 0, and then the case where A, B are both positive.

Case A < 0. For this case, n 1 and B > 0 (in particular, k > 2).

From (i0)

From (8), with n i,

r + 3
x 1 +

k 2

2x +k + 3

(ii)

x= 1 +
k 2
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and hence

2k + i 9
x= 2+

k- 4 k- 4

Thus, k 419 and k 5, 7, 13, 3, I, -5. For k -5, y is negative; for k i, 3,

x is negative. Given k, x (2k + l)/(k 4), r 2x + k and y (rx 1)/2.

Starting this sequence with k 5, 7, 13 one secures (x, y) (5, 42), (ii, 148),

(3, 28) respectively.

Case B < 0. This case implies k 1 and A > 0 (in particular, n > 2). For

k i, (8), (9) becomes rn 2x + 1 and x 2r + n. If we eliminate n from these

equations, we secure

(r- 2) x 2r
2

+ 1 (12)

The case r 1 is included below (Case A 0). r 2 imples x 4 + n by (9). Since

2y rx 1 2n + 7, y is not an integer and so no solution results from r 2. We

now consider r > 2 and write

2r
2

+ 1 9
x 2r + 4 +

r 2 r 2

from which we infer that r 3, 5, ii, i, -i, -7. For the last three values, x < 0.

For r 3, 5, ii we calculate x (2r
2 + l)/(r 2), y (rx 1)/2 to secure,

respectively, the pairs (x, y) (19, 28), (17, 42), (27, 148).

Case A 0. In this case, B 4. Since B 4, (x, k) (2, 6), (3, 4), (5, 3).

Since A 0, either r 1 or n 2. If r 1 we recall that 2y x 1 (from (3))

hence (x, y) (3, i), (5, 2) result as solutions (x 2 does not give an integral y).

If n 2 we compute r from 2r 2x + k (equation (8)) and then compute y from

2y rx i to secure one usable r(=5) from wh’ch the solution (x, y) (3, 7)

results.

Case B 0. This case is similar to A 0 and gives three pairs (x, y) (5, 7),

(i, 2), (i, i).

Case A > 0 and B > 0. This gives three subcases. (a) A i, B 3;

(b) A B 2; (c) A 3, B I. Clearly, these cases yield a finite number of

solutions since, in particular, x and r are bounded and, because of (3), y may be

determined from them.
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For (a) we have (n 2)(r i) i, (x I)(k 2) 3. Thus, n 3 and r 2.

None of the possible pairs (x, k) (2, 5), (4, 3) gives an integral y.

For (b), (n- 2)(r- I) (x- i)(k- 2) 2. Thus (n, r) (4, 2), (3, 3) and

(x, k) (2, 4), (3, 3). The pair r 3, x 3 yields the only solution, (x, y)

(3, 4).

Similarly, for (c) one secures no solution.

This concludes the proof of the theorem.

We conclude by giving the complete set of positive triples (x,y,z) for which

(2) is satisfied: (1,1,4), (1,2,3), (3,1,10), (3,4,3), (3,7,3), (3,28,1), (5,2,13),

(5,7,4), (5,42,1), (11,148,1), (17,42,7), (19,28,13), (27,148,5).
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