A FIXED POINT THEOREM FOR CONTRACTION MAPPINGS

V.M. SEHGAL

Department of Mathematics, University of Wyoming Laramie, Wyoming 82071

(Received November 10, 1980 and in revised form February 16, 1981)

<u>ABSTRACT</u>. Let S be a closed subset of a Banach space E and f: S \rightarrow E be a strict contraction mapping. Suppose there exists a mapping h: S \rightarrow (0,1] such that $(1 - h(x))x + h(x)f(x) \in S$ for each $x \in S$. Then for any $x_0 \in S$, the sequence $\{x_n\}$ in S defined by $x_{n+1} = (1 - h(x_n))x_n + h(x_n)f(x_n), n \geq 0$, converges to a $u \in S$. Further, if $\sum h(x_n) = \infty$, then f(u) = u. <u>KEV WORDS AND PHRASES</u>. Contraction mapping 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 47H10, Secondary 54H25.

1. INTRODUCTION.

In a recent paper [1], Ishikawa proved the following result.

THEOREM. Let S be a closed subset of a Banach space E and let f be a nonexpansive mapping from S into a compact subset of E. Suppose there exists a real sequence $\{h_n\}$, $0 \leq h_n \leq b < 1$ and an $x_0 \in S$ such that $x_{n+1} = (1 - h_n)x_n + h_n fx_n \epsilon$ S for each n > 0. If $\sum h_n = \infty$, then the sequence $\{x_n\}$ converges to a fixed point of f.

In this note, we investigate the above result when f therein is a contraction mapping (for some α , $0 < \alpha < 1$, $|| fx - fy || \leq \alpha || x - y ||$, for all x, y ε S) but does not necessarily have a precompact range. We show that if $0 < h_n \leq 1$, then the sequence $\{x_n\}$ above converges to a u ε S and if $\sum h_n = \infty$ then fu = u. The proof is much less computational in this case.

2. MAIN RESULT.

Throughout, let E denote a Banach space. The main result is

THEOREM 1. Let S be a closed subset of E and f: $S \rightarrow E$ be a contraction mapping satisfying the condition: there exists a mapping h: $S \rightarrow (0,1]$ such that for each x ϵ S,

$$(1 - h(x))x + h(x)f(x) \in S.$$
 (1.1)

If $\boldsymbol{x}_{0} \in S$ and the sequence $\{\boldsymbol{x}_{n}\}$ in S is defined by

$$x_{n+1} = (1 - h(x_n))x_n + h(x_n)f(x_n), n \ge 0, \qquad (1.2)$$

then (a) the sequence $\{x_n\}$ converges to a u ε S and (b) if $\lambda h(x_n) = \infty$, then u in (a) is the unique fixed point of f.

The following result (see Knopp [2], Theorem 4, p. 220) is used in the proof of Theorem 1.

PROPOSITION 1. Let $\{a_n\}$ be a sequence of reals with $0 \le a_n \le 1$. Then the sequence $\{\prod_{i=1}^n (1 - a_i)\} \rightarrow b > 0$ iff $\sum_{n=1}^n < \infty$.

Proof of Theorem 1. Let $h_n = h(x_n)$. It follows by (2) that

$$x_{n+1} - x_n = h_n(fx_n - x_n),$$
 (1.3)

and
$$fx_n - x_{n+1} = (1 - h_n)(fx_n - x_n).$$
 (1.4)

Thus, for each positive integer n,

$$| fx_n - x_n || \le || fx_n - fx_{n-1} || + || fx_{n-1} - x_n || \le \alpha || x_n - x_{n-1} || + (1 - h_{n-1}) || fx_{n-1} - x_{n-1} ||.$$

Therefore, it follows by (1.3) that

$$\begin{split} &|| fx_n - x_n || \\ &\leq (\alpha h_{n-1} + 1 - h_{n-1}) || fx_{n-1} - x_{n-1} || = (1 - (1 - \alpha)h_{n-1}) || fx_{n-1} - x_{n-1} || \cdot \\ & \text{Thus } \{|| fx_n - x_n ||\} \text{ is a decreasing sequence of non-negative reals. Furthermore, it follows by successive iterations on the last inequality that for any \\ & n > 0, \\ & n-1 \end{split}$$

$$|| fx_{n} - x_{n} || \leq \prod_{i=0}^{n-1} (1 - (1 - \alpha)h_{i})|| fx_{0} - x_{0} || \leq || fx_{0} - x_{0} ||.$$
(1.5)

Set $u_i = (1 - \alpha)h_i$. Since $0 < u_i < 1$, $\{ \prod_{i=0}^{n} (1 - u_i) \}$ is a decreasing sequence of positive reals and hence there is a $b \ge 0$ such that $\prod_{i=0}^{n} (1 - u_i) \Rightarrow b$. We consider two cases (i) b > 0 and (ii) b = 0. If b > 0, then by Proposition 1, $\sum (1 - \alpha)h_i < \infty$ and hence $\sum h_i < \infty$. Consequently, by (1.3) and (1.5), $\sum || x_{n+1} - x_n || \le || fx_0 - x_0 || \sum h_n < \infty$. This implies that the sequence $\{x_n\}$ is a Cauchy sequence in S and hence there is a u ε S such that $\{x_n\} \rightarrow u$. Thus (a) holds in this case. If b = 0 then is follows by (1.5) that

$$\left|\left| \begin{array}{c} x_{n} - fx_{n} \end{array}\right|\right| \to 0. \tag{1.6}$$

Since for any $m \ge n$,

$$\begin{split} || x_{m} - x_{n} || &\leq || x_{m} - fx_{m} || + || fx_{m} - fx_{n} || + || fx_{n} - x_{n} || \\ &\leq \alpha || x_{m} - x_{n} || + 2 || x_{n} - fx_{n} ||, \end{split}$$

it follows that $|| x_m - x_n || \le 2(1 - \alpha)^{-1} || x_n - fx_n || \to 0$ as $n \to \infty$. Thus $\{x_n\}$ is a Cauchy sequence and hence converges to a u ε S. Furthermore, it follows by (1.6) that u = fu. This establishes (a). Now, if $\sum h(x_n) = \infty$ then $\sum (1 - \alpha)h_n = \infty$ and hence by Proposition 1, b = i = 0 (1 - u₁) = 0. Consequently, by case (ii) the sequence $\{x_n\} \to u$ and fu = u. The uniqueness is obvious for such mappings.

For x, y \in E, let $[x,y] = \{z \in E: z = (1 - h)x + hy, 0 \le h \le 1\}$. Let $(x,y) = [x,y] \setminus \{x,y\}$. As an application of Theorem 1, we have

COROLLARY 1. Let S be a closed subset of E and f: S \rightarrow E be a contraction mapping. If for each x ε S, there exists a y ε [x,fx] \cap S such that fy ε S, then f has a fixed point.

PROOF. Define h: $S \rightarrow (0,1]$ as follows. If $fx \in S$, let h(x) = 1 and if fx $\notin S$, then choose a $y \in [x,fx] \cap S$ with fy $\in S$ (such a y exists by hypothesis). Clearly, $y \neq x$ and y = (1 - h)x + hfx for some h with 0 < h < 1. Let h(x) = hin this case. Thus (1.1) holds. Note that if $f(x) \notin S$ then h(y) = 1. Now, for any $x_0 \in S$ and the sequence $\{x_n\}$ defined by (1.2) that is, $x_{n+1} = (1 - h(x_n))x_n + h(x_n)f(x_n)$, either $h(x_n) = 1$ or $h(x_{n+1}) = 1$ according as $fx_n \in S$ or $fx_n \notin S$. In either case $\sum h(x_n) = \infty$. Thus by Theorem 1, f has a fixed pcint.

It is known (see [3]) that if S is a closed subset of E and x, y ε E such that x is an interior point of S and y \notin S, then there z ε (x,y) \cap ∂ S. As a consequence of this result and Corollary 1, we have

COROLLARY 2. Let S be a closed subset of E and f: $S \rightarrow E$ be a contraction mapping. If $f(\partial S) \subseteq S$ then f has a fixed point.

PROOF. If for $x \in S$, $fx \in S$, then y = x satisfies the condition in Corollary

1 and if fx \notin S then by hypothesis x \notin ∂S. Consequently, there is a y ε (x,fx) \cap ∂S with fy ε S. Thus by Corollary 1, f has a fixed point.

We now give two examples. Example 1 shows that Corollary 2 is indeed a special case of Theorem 1. In Example 2, we show that if $\Sigma h(x_n) < \infty$ in Theorem 1, then the sequence $\{x_n\}$ may not converge to a fixed point.

EXAMPLE 1. Let S = { 0,
$$2^{-n}$$
: $n \ge 0$ }. Define a mapping f: S \rightarrow R (reals) by
f(2^{-n}) = $3 \cdot 2^{-(n+3)}$, $n \ge 0$,
f(0) = 0.

It is clear that any x, y ε S, || fx - fy $|| \le (3/8) ||$ x - y ||. Let h: S + (0,1] be defined by h(0) = 1 and h(x) = (4/5) for x $\ne 0$. It is easy to verify that for x = 2⁻ⁿ, $(1 - h(x))x + h(x)f(x) = 2^{-(n+1)}$, while for x = 0, it is clearly 0. Thus (1.1) holds. Further, if $x_0 = 1$, then by (1.2), $x_n = 2^{-n}$ and since $\sum h(x_n) = \infty$, Theorem 1 implies the existence of a u ε S with fu = u (which is 0 in this case). Note that f(∂ S) is not a subset of S.

EXAMPLE 2. Let $\{a_n\}$ be a sequence of reals defined by $a_1 = 1$ and $a_n = \prod_{i=2}^{n} (1 = 2^{-i})$ for $n \ge 2$. Since $\sum 2^{-i} < \infty$, it follows by Proposition 1 that $\{a_n\} + b > 0$. Let

=
$$[0,b] \cup \{a_n : n \ge 1\}.$$

Let $fx = 2^{-1} \cdot x$ for each $x \in S$. Define h: $S \rightarrow (0,1]$ by

h(x) = 1 if x
$$\in [0,b]$$

= 2⁻ⁿ, if x = a_n, n > 1

Then for any $n \ge 1$, $a_{n+1} = (1 - h(a_n))a_n + h(a_n)f(a_n)$. Since $f[0,b] \le [0,b]$, it follows that f satisfies (1.1). Also, if $x_0 = 1$, and the sequence $\{x_n\}$ is as constructed in (1.2), then $x_n = a_n$ and $\{x_n\} \Rightarrow b$ but $f(b) \neq b$. Note that $\lambda h(x_n) = \sum (x^{-n}) < \infty$ in this case.

REFERENCES

- ISHIKAWA, SHIRO. Fixed Points and Iteration of a Nonexpansive Mapping in a Banach Space, <u>Proc. Amer. Math. Soc</u>. <u>59</u> No. 1(1976), pp. 65-71.
- 2. KNOPP, KONRAD. <u>Theory and Applications of Infinite Series</u>, Second English edition, Hafner Company, New York.
- SU, C. H. and SEHGAL, V. M. Some Fixed Point Theorems for Nonexpansive Mappings in Locally Convex Spaces, Boll. U.M.I., (4) 10(1974), pp. 598-601.