A FIXED POINT THEOREM FOR CONTRACTION MAPPINGS

V.M. SEHGAL
Department of Mathematics, University of Wyoming Laramie, Wyoming 82071
(Received November 10, 1980 and in revised form February 16, 1981)

ABSTRACT. Let S be closed subset of a Banach space E and $f: S \rightarrow E$ be a strict contraction mapping. Suppose there exists a mapping $h: S \rightarrow(0,1]$ such that ($1-h(x)) x+h(x) f(x) \varepsilon S$ for each $x \varepsilon S$. Then for any $x_{0} \varepsilon S$, the sequence $\left\{x_{n}\right\}$ in S defined by $x_{n+1}=\left(1-h\left(x_{n}\right)\right) x_{n}+h\left(x_{n}\right) f\left(x_{n}\right), n \geq 0$, converges to a $u \in S$. Further, if $\sum h\left(x_{n}\right)=\infty$, then $f(u)=u$. KEY WORDS AND PHRASES. Contraction mapping 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary 47H10, Secondary 54 H 25.

1. INTRODUCTION.

In a recent paper [1], Ishikawa proved the following result.
THEOREM. Let S be a closed subset of a Banach space E and let f be a nonexpansive mapping from S into a compact subset of E. Suppose there exists a real sequence $\left\{h_{n}\right\}, 0 \leq h_{n} \leq b<1$ and an $x_{0} \in S$ such that $x_{n+1}=\left(1-h_{n}\right) x_{n}+h_{n} f x_{n} \in S$ for each $n>0$. If $\sum_{h_{n}}=\infty$, then the sequence $\left\{x_{n}\right\}$ converges to a fixed point of f.

In this note, we investigate the above result when f therein is a contraction mapping (for some $\alpha, 0<\alpha<1,\|f x-f y\| \leq \alpha\|x-y\|$, for all $x, y \varepsilon S$) but does not necessarily have a precompact range. We show that if $0<h_{n} \leq 1$, then the sequence $\left\{x_{n}\right\}$ above converges to a $u \varepsilon S$ and if $\sum_{h_{n}}=\infty$ then $f u=u$. The proof is much less computational in this case.
2. MAIN RESULT.

Throughout, let E denote a Banach space. The main result is

THEOREM 1. Let S be a closed subset of E and $f: S \rightarrow E$ be a contraction mapping satisfying the condition: there exists a mapping $h: S \rightarrow(0,1]$ such that for each $\mathrm{x} \varepsilon \mathrm{S}$,

$$
\begin{equation*}
(1-h(x)) x+h(x) f(x) \varepsilon S \tag{1.1}
\end{equation*}
$$

If $x_{0} \in S$ and the sequence $\left\{x_{n}\right\}$ in S is defined by

$$
\begin{equation*}
x_{n+1}=\left(1-h\left(x_{n}\right)\right) x_{n}+h\left(x_{n}\right) f\left(x_{n}\right), n \geq 0 \tag{1.2}
\end{equation*}
$$

then (a) the sequence $\left\{x_{n}\right\}$ converges to $a u \in S$ and (b) if $\sum h\left(x_{n}\right)=\infty$, then u in (a) is the unique fixed point of f.

The following result (see Knopp [2], Theorem 4, p. 220) is used in the proof of Theorem 1.

PROPOSITION 1. Let $\left\{a_{n}\right\}$ be a sequence of reals with $0 \leq a_{n}<1$. Then the sequence $\left\{\prod_{i=1}^{n}\left(1-a_{i}\right)\right\} \rightarrow b>0$ iff $\sum a_{n}<\infty$.

Proof of Theorem 1. Let $h_{n}=h\left(x_{n}\right)$. It follows by (2) that

$$
\begin{align*}
x_{n+1}-x_{n} & =h_{n}\left(f x_{n}-x_{n}\right) \tag{1.3}\\
\text { and } f x_{n}-x_{n+1} & =\left(1-h_{n}\right)\left(f x_{n}-x_{n}\right) . \tag{1.4}
\end{align*}
$$

Thus, for each positive integer n,

$$
\begin{aligned}
\left\|f x_{n}-x_{n}\right\| & \leq\left\|f x_{n}-f x_{n-1}\right\|+\left\|f x_{n-1}-x_{n}\right\| \\
& \leq \alpha| | x_{n}-x_{n-1}\left\|+\left(1-h_{n-1}\right)\right\| f x_{n-1}-x_{n-1} \| .
\end{aligned}
$$

Therefore, it follows by (1.3) that
$\left\|f x_{n}-x_{n}\right\|$
$\leq\left(\alpha h_{n-1}+1-h_{n-1}\right)| | f x_{n-1}-x_{n-1}\left\|=\left(1-(1-\alpha) h_{n-1}\right)| | f x_{n-1}-x_{n-1}\right\|$. Thus $\left\{\left|\mid f x_{n}-x_{n} \|\right\}\right.$ is a decreasing sequence of non-negative reals. Furthermore, it follows by successive iterations on the last inequality that for any $n>0$,

$$
\begin{equation*}
\left\|f x_{n}-x_{n}\right\| \leq \prod_{i=0}^{n-1}\left(1-(1-\alpha) h_{i}\right)\left\|f x_{0}-x_{0}\right\| \leq\left\|f x_{0}-x_{0}\right\| \tag{1.5}
\end{equation*}
$$

Set $u_{i}=(1-\alpha) h_{i}$. Since $0<u_{i}<1,\left\{\prod_{i=0}^{n}\left(1-u_{i}\right)\right\}$ is a decreasing sequence of positive reals and hence there is $a \quad b \geq 0$ such that $\prod_{i=0}^{n}\left(1-u_{i}\right) \rightarrow b$. We consider two cases (i) b >0 and (ii) $b=0$. If $b>0$, then by Proposition 1 , $\Sigma(1-\alpha) h_{i}<\infty$ and hence $\Sigma \mathrm{L}_{\mathrm{i}}<\infty$. Consequently, by (1.3) and (1.5),

$$
\Sigma\left\|x_{n+1}-x_{n}\right\| \leq\left\|f x_{0}-x_{0}\right\| \sum h_{n}<\infty .
$$

This implies that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in S and hence there is a $u \in S$ such that $\left\{x_{n}\right\} \rightarrow u$. Thus (a) holds in this case. If $b=0$ then is follows by (1.5) that

$$
\begin{equation*}
\left\|x_{n}-f x_{n}\right\| \rightarrow 0 \tag{1.6}
\end{equation*}
$$

Since for any $m \geq n$,

$$
\begin{aligned}
\left\|x_{m}-x_{n}\right\| & \leq\left\|x_{m}-f x_{m}\right\|+\left\|f x_{m}-f x_{n}\right\|+\left\|f x_{n}-x_{n}\right\| \\
& \leq \alpha\left\|x_{m}-x_{n}\right\|+2\left\|x_{n}-f x_{n}\right\|
\end{aligned}
$$

it follows that $\left\|x_{m}-x_{n}\right\| \leq 2(1-\alpha)^{-1}\left\|x_{n}-f x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence and hence converges to a $u \in S$. Furthermore, it follows by (1.6) that $u=f u$. This establishes (a). Now, if $\sum h\left(x_{n}\right)=\infty$ then
$\sum(1-\alpha) h_{n}=\infty$ and hence by Proposition $1, b={ }_{i} \stackrel{N}{=}_{\infty}^{\infty}\left(1-u_{i}\right)=0$. Consequently, by case (ii) the sequence $\left\{x_{n}\right\} \rightarrow u$ and $f u=u$. The uniqueness is obvious for such mappings.

For $x, y \in E$, let $[x, y]=\{z \in E: z=(1-h) x+h y, 0 \leq h \leq 1\}$. Let $(x, y)=[x, y] \backslash\{x, y\}$. As an application of Theorem 1, we have

COROLLARY 1. Let S be 2. closed subset of E and $f: S \rightarrow E$ be a contraction mapping. If for each $x \varepsilon S$, there exists a $y \varepsilon[x, f x] f_{1} S$ such that fy εS, then f has a fixed point.

PROOF. Define $h: S \rightarrow(0,1 \mathrm{~J}$ as follows. If $\mathrm{fx} \varepsilon \mathrm{S}$, let $\mathrm{h}(\mathrm{x})=1$ and if fx $\& S$, then choose a y $\varepsilon[x, f x] \cap S$ with $f y \varepsilon S$ (such a y exists by hypothesis). Clearly, $y \neq x$ and $y=(1-h) x+h f x$ for some h with $0<h<1$. Let $h(x)=h$ in this case. Thus (1.1) holds. Note that if $f(x) \notin S$ then $h(y)=1$. Now, for any $x_{0} \in S$ and the sequence $\left\{x_{n}\right\}$ defined by (1.2) that is, $x_{n+1}=\left(1-h\left(x_{n}\right)\right) x_{n}+h\left(x_{n}\right) f\left(x_{n}\right)$, either $h\left(x_{n}\right)=1$ or $h\left(x_{n+1}\right)=1$ according as $f x_{n} \varepsilon S$ or $f x_{n} \notin S$. In either case $\sum h\left(x_{n}\right)=\infty$. Thus by Theorem 1 , f has a fixed pcint.

It is known (see [3]) that if S is a closed subset of E and $x, y \varepsilon E$ such that x is an interior point of S and $y \notin S$, then there $z \varepsilon(x, y) \cap \partial S$. As a consequence of this result and Corollary 1, we have

COROLLARY 2. Let S be a closed subset of E and $f: S \rightarrow E$ be a contraction mapping. If $f(\partial S) \subseteq S$ then f has a fixed point.

PROOF. If for $x \in S, f x \in S$, then $y=x$ satisfies the condition in Corollary

1 and if $f x \notin S$ then by hypothesis $x \notin \partial S$. Consequently, there is a $y \varepsilon(x, f x) \cap \partial S$ with fy εS. Thus by Corollary $1, f$ has a fixed point.

We now give two examples. Example 1 shows that Corollary 2 is indeed a special case of Theorem 1. In Example 2, we show that if $\sum_{h}\left(x_{n}\right)<\infty$ in Theorem 1, then the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ may not converge to a fixed point.

EXAMPLE 1. Let $S=\left\{0,2^{-n}: n \geq 0\right\}$. Define a mapping $f: S \rightarrow R$ (reals) by

$$
\begin{aligned}
\mathrm{f}\left(2^{-\mathrm{n}}\right) & =3 \cdot 2^{-(\mathrm{n}+3)}, \mathrm{n} \geq 0 \\
\mathrm{f}(0) & =0
\end{aligned}
$$

It is clear that any $x, y \in S,\|f x-f y\| \leq(3 / 8)\|x-y\|$. Let $h: S \rightarrow(0,1]$ be defined by $h(0)=1$ and $h(x)=(4 / 5)$ for $x \neq 0$. It is easy to verify that for $x=2^{-n},(1-h(x)) x+h(x) f(x)=2^{-(n+1)}$, while for $x=0$, it is clearly 0 . Thus (1.1) holds. Further, if $x_{0}=1$, then by (1.2), $x_{n}=2^{-n}$ and since $\sum_{h\left(x_{n}\right)}=\infty$, Theorem 1 implies the existence of $a v \varepsilon S$ with $f u=u$ (which is 0 in this case). Note that $f(\partial S)$ is not a subset of S.

EXAMPLE 2. Let $\left\{a_{n}\right\}$ be a sequence of reals defined by $a_{1}=1$ and $a_{n}={ }_{i=2}^{n}\left(1=2^{-i}\right)$ for $n \geq 2$. Since $\sum_{2}{ }^{-i}<\infty$, it follows by Proposition 1 that $\left\{a_{n}\right\} \rightarrow b>0$. Let

$$
\mathrm{S}=[0, \mathrm{~b}] \cup\left\{\mathrm{a}_{\mathrm{n}}: \mathrm{n} \geq 1\right\}
$$

Let $f x=2^{-1} \cdot x$ for each $x \in S$. Define $h: S \rightarrow(0,1]$ by

$$
\begin{aligned}
h(x) & =1 \text { if } x \varepsilon[0, b] \\
& =2^{-n}, \text { if } x=a_{n}, n \geq 1
\end{aligned}
$$

Then for any $n \geq 1, a_{n+1}=\left(1-h\left(a_{n}\right)\right) a_{n}+h\left(a_{n}\right) f\left(a_{n}\right)$. Since $f[0, b\rfloor \subseteq\{0, b]$, it follows that f satisfies (1.1). Also, if $x_{0}=1$, and the sequence $\left\{x_{n}\right\}$ is as constructed in (1.2), then $x_{n}=a_{n}$ and $\left\{x_{n}\right\} \rightarrow b$ but $f(b) \neq b$. Note that $\sum h\left(x_{n}\right)=\sum\left(x^{-n}\right)<\infty$ in this case.

REFERENCES

1. ISHIKAWA, SHIRO. Fixed Points and Iteration of a Nonexpansive Mapping in a Banach Space, Proc. Amer. Math. Soc. 59 No. 1(1976), pp. 65-71.
2. KNOPP, KONRAD. Theory and Applications of Infinite Series, Second English edition, Hafner Company, New York.
3. SU, C. H. and SEHGAL, V. M. Some Fixed Point Theorems for Nonexpansive Mappings in Locally Convex Spaces, Boll. U.M.I., (4) 10(1974), pp. 598601.
