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ABSTRACT. Let S be a closed subset of a Banach space E and f: S + E be a strict

contraction mapping. Suppose there exists a mapping h: S (0,1] such that

(I h(x))x + h(x)f(x) e S for each x e S. Then for any x
0

e S, the sequence

{x in S defined by Xn+1 (i h(x ))x
n
+ h(xn)f(Xn) n > 0 converges to a

n n

u e S. Further, if l h(xn) -, then f(u) u.

KEF WORDS AND PHRASES. Conraton mapping

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primay 47H10, Secondary 54H25.

i. INTRODUCTION.

In a recent paper [i], Ishikawa proved the following result.

THEOREM. Let S be a closed subset of a Banach space E and let f be a nonex-

pansive mapping from S into a compact subset of E. Suppose there exists a real

sequence {h }, 0 < h < b < i and an Xo, S such that Xn+1+/- (i h )x + h fx S
n n n n n n

for each n > O. If .h =, then the sequence {x converges to a fixed point of
n n

f.

In this note, we investigate the above result when f therein is a contraction

mapping (for some , 0 < e < i, II fx- fy II <_ e II x- y II, for all x, y e S)

but does not necessarily have a precompact range. We show that if 0 < h < I, then
n--

the sequence {x above converges to a u e S and ifh then fu u. The
n n

proof is much less computational in this case.

2. MAIN RESULT.

Throughout, let E denote a Banach space. The main result is
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THEOREM i. Let S be a closed subset of E and f: S E be a contraction map-

ping satisfying the condition: there exists a mapping h: S (0,I] such that for

each x e S,

(I h(x))x + h(x)f(x) S. (i.l)

If x
0

e S and the sequence {x in S is defined by
n

Xn+I (i h(Xn))Xn + h(xn)f(Xn) n > 0, (1.2)

then (a) the sequence {Xn converges to a u e S and (b) if h(xn) =, then u in

(a) is the unique fixed point of f.

The following result (see Knopp [2], Theorem 4, p. 220) is used in the proof

of Theorem i.

PROPOSITION i. Let {a be a sequence of reals with 0 < a < i. Then the
n n

n
sequence (i a )} b > 0 if f a < .

i=l i n

Proof of Theorem i. Let h h(Xn). It follows by (2) that
n

Xn+I x h (fx
nn n Xn)

and fx x (i h )(fx x ).
n n+l n n n

Thus, for each positive integer n,

II fXn -Xn II < II fXn -fXn_l II + II fXn_I -Xnll
< all x -x II + (i- h

n i II fx IIn n-I n-i Xn-i
Therefore, it follows by (1.3) that

<_ (hn_I + i hn_l) fXn_I Xn_I II (i (I )hn_l)l fXn_I Xn_I II’

(i.3)

(i.4)

Thus {If fx x II} is a decreasing sequence of non-negative reals. Further-
n n

more, it follows by successive iterations on the last inequality that for any

n> 0,
n-i

II fx x II < (I (I )hi)Ilfx0 x
0 II < II fx

0
x
0 II. (i.5)

n n
i=0

n
Set Uo (i )h.. Since 0 < Uo < i, H (i Uo)} is a decreasing sequence

1 i i 1
i’0 n

of positive reals and hence there is a b > 0 such that (i ui) b. We con-
i=0

sider two cases (i) b > 0 and (ii) b 0. If b > 0, then by Proposition i,

(i e)h. < and hence [_h. < =. Consequently, by (1.3) and (1.5),
1 1

II Xn+I x
n II < II fx

0
x
0 II hn

< .
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This implies that the sequence {x is a Cauchy sequence in S and hence there is
n

a u e S such that {x u. Thus (a) holds in this case. If b 0 then is fol-n

lows by (1.5) that

Since for any m > n,

II x fx If 0. (1.6)n n

m n m m m n n n

m n n n

it follows that II x x II <_ 2(1- )-i II x fx II 0 as n- . Thus
m n n n

{x is a Cauchy sequence and hence converges to a u S. Furthermore, it fol-
n

lows by (1.6) that u fu. This establishes (a). Now, if h(x then
n

-(1 c)h and hence by Proposition 1 b -iIIo (1 u 0 Consequently
n i

by case lii) the sequence {x u and fu u. The uniqueness is obvious for
n

such mappings.

For x, y e E, let ix,y] {z e E: z (i h)x + hy, 0 < h < i}. Let

(x,y) [x,y] \ ix,y}. As an application of Theorem i, we have

COROLLARY i. Let S be a closed subset of E and f: S E be a contraction

mapping. If for each x s S, there exists a y e [x,fx] r, S such that fy e S, then

f has a fixed point.

PROOF. Define h: S (0,i] as follows. If fx e S, let h(x) i and if

fx S, then choose a y [x, fx] n S with fy S (such a y exists by hypothesis).

Clearly, y # x and y (I h)x + hfx for some h with 0 < h < i. Let h(x) h

in this case. Thus (I.i) holds. Note that if f(x) S then h(y) i. Now, for

any x
0

e S and the sequence {x defined by (1.2) that is
n

Xn+1 (i h(Xn))Xn + h(Xn)f(xn)’ either h(Xn 1 or h(Xn+I) 1 according as

fx e S or fx S. In either case h(x . Thus by Theorem i, f has a fixed
n n n

pcint.

It is known (see [3]) that if S is a closed subset of E and x, y e E such that

x is an interior point of S and y S, then there z e (x,y) n S. As a consequence

of this result and Corollary i, we have

COROLLARY 2. Let S be a closed subset of E and f: S E be a contraction map-

ping. If f(S) c_ S then f has a fixed point.

PROOF. If for x e S, fx e S, then y x satisfies the condition in Corollary
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i and if fx S then by hypothesis x S. Consequently there is a y e (x,fx) S

with fy e S. Thus by Corollary i, f has a fixed point.

We now give two examples. Example i shows that Corollary 2 is indeed a special

case of Theorem i. In Example 2, we show that if h (xn) < in Theorem I, then

the sequence {x may not converge to a fixed point.n

EXAMPLE i Let S 0, 2
-n

n S0}. Define a mapping f: S R (reals) by

f(2-n) 3-2-(n+3) n > 0,

f (0) 0.

It is clear that any x, y e S, II fx- fy II < (318) II x- y II. Let h: S (0,I]

be defined by h(0) I and h(x) (4/5) for x O. It is easy to verify that for

x-- 2-n, (I h(x))x + h(x)f(x) 2
-(n+l)

while for x 0, it is clearly 0. Thus

(i.i) holds. Further, if x0 i then by (1.2) x 2
-n

and since .h(x
n n

Theorem i implies the existence of a u e S with fu u (which is 0 in this case).

Note that f(S) is not a subset of S.

EXAMPLE 2. Let {an be a sequence of reals defined by aI I and
n -i < it follows by Proposition i thata =i (I 2 for n > 2 Since -in 2

{a b > 0. Let
n

S [O,b] u {a n > i}.
n

-i
Let fx 2 "x for each x e S. Define h: S (0,i] by

h(x) i if x e [0,b]

2-n, if x a n > i.
n

Then for any n _> i, an+I (i -h(an))an + h(an)f(an). Since f[0,b] _c [0,b], it

follows that f satisfies (lol) /l.so, if x
0 l, and the sequence {Xn is as con-

structed in (1.2), then x a and {x b but f(b) b. Note that
n n n

_)h(Xn? x-n) < in this case.
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