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ABSTRACT. The stability of the plane interface separating two viscous superposed

conducting fluids through porous medium is studied when the whole system is immersed

in a uniform horizontal magnetic field. The stability analysis is carried out for

two highly viscous fluids of equal kinematic viscosities, for mathematical simpli-

city. It is found that the stability criterion is independent of the effects of

viscosity and porosity of the medium and is dependent on the orientation and

magnitude of the magnetic field. The magnetic field is found to stabilize a

certain wave number range of the unstable configuration. The behaviour of growth

rates with respect to viscosity, porosity and medium permeability are examined

analytically.
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i. INTRODUCTION.

The instability of the plane interface between two fluids, under varying

assumptions of hydrodynamics and hydromagnetics, has been discussed by Chandrasekhar

[i]. Bhatia [2] has studied the influence of viscosity on the stability of the

plane interface separating two incompressible superposed conducting fluids of
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uniform densities, when the whole system is immersed in a uniform horizontal magne-

tic field. He has carried out the stability analysis for two highly viscous fluids

of equal kinematic viscosities and different uniform densities. When the fluid

slowly percolates through the pores of the rock, the gross effect is represented by

Darcy’s law which states that the usual viscous term in the equations of fluid

motion is replaced by the resistance term (/k1) q, where is the viscosity of the

fluid, kI the permeability of the medium and q the velocity of the fluid. Wooding

[3] has experimentally observed, in the absence of viscous dissipation and consider-

ing only Darcy resistance, that convection sets on as a fairly regular cellular

pattern in the horizontal. This problem in the case of a conducting fluid consider-

ing both Darcy and viscous resistances has been investigated by Prabhamani and

Rudraiah [4]. Saville [5] has studied the stability of motions involving fluid

interfaces in porous media. Various problems of fluid flows through porous medium

have been treated by Saffman and Taylor [6], Chouke et al [7], Scheidegger [8],

Yih [9], Nayfeh [i0] and Rudraiah and Prabhamani [ii].

The instability of two viscous superposed conducting fluids through porous

medium may find applications in geophysics. It is therefore the motivation of this

study to examine the effects of viscosity and medium permeability on "the stability

of the plane interface separating two incompressible superposed conducting fluids of

uniform densities, when the whole system is immersed in a uniform horizontal magnetic

field. We examine the roles of viscosity, medium permeability and magnetic field on

the instability problem. This aspect forms the subject matter of the present study

wherein we have carried out the stability analysis for two highly viscous fluids of

equal kinematic viscosities and different uniform densities.

2. PERTURBATION EQUATIONS.

Consider the motion of an incompressible, infinitely conducting viscous fluid

(of variable viscosity o(Z)) in the presence of a uniform magnetic field H(Hx,Hy,0).
Let q(u,v,w), g0, gP and h(hx,hy,hz) denote the perturbations in velocity, density

pressure p and magnetic field H respectively. Then the linearized perturbation

equations of a fluid flowing throuaporous medium when both Darcy as well as viscous

resistances are present are:
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0 q Vp + g60 + (Vh) 09 1
e t q + (Vq).V+(V-V)q], (2.1)

V’q 0, V’h 0, (2.2)

e V x (qXH), (2.3)

e p + (q.V)p 0. (2.4)

Equation (4) ensures that the density of every particle remains unchanged as

we follow it with its motion, v(=/O) denotes the kinematic viscosity of the fluid,

e is porosity (0<e<l) and g (0,0,-g) is the acceleration due to gravity, e i

and k
I correspond to nonporous medium. Analyzing the disturbances into normal

modes, we assume that the perturbed quantities have the space (x,y,z) and time (t)

dependence of the form

f (z) exp ikxx+ikyy+nt), (2.5)

where k k are horizontal wave numbers (k
2

k 2+k 2), n is the growth rate ofx’ y x y

the harmonic disturbance and f(z) is some function of z.

For perturbations of the form (2.5), equations (2.1)-(2.4) give

H
0( +

kl
u + (ik h -ik h ik 6p + i

x y y x x
[(D2-k2)u + (D)(ik w+Du)] (2.6)

H
n 9 x0( + I v + (ik h -ikxhy ik p + i

D
2

k
2

y x y [( )v + (D)(ikyW+Dv)], (2.7)

H Hn x i( + l)W + (mhx-ikxhz) + (Dh -ik hz) D6p-g6 + [(m2-k2)w+2(D)(Dw)]
Y Y

(2.8)

ik u + ik v + 0, ik h + ik h + Dh 0,x y xx yy z (2.9)

n6p w(D0)/e, (2.10)

nh (ik H + ik H q/g, (2 ii)xx yy

where D d/dz.
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Multiplying (2.6) and (2.7) by-ik and-ik respectively and adding, using (2.9)-
x Y

(2.11) and finally, eliminating p between the resulting equation and (2.8), we

obtain the equation in w:

i[k
2 n __) n __) gk2

(DO) w (k H +k HO ( +
el

w D {0 ( + Dw}] --- x x y yk
1

2 (D2_k2)w

+ i [p(D2_k2)2w + 2(Dp)(D2-k2)Dw + (D2p)(D2+k2)w] 0. (2.12)

3. TWO SUPERPOSED VISCOUS FLUIDS OF UNIFORM DENSITIES.

Here we consider the case when two superposed fluids of uniform densities O1

and 02 and uniform viscosities I and 2 are separated by a horizontal boundary at

z 0. The subscripts I and 2 distinguish the lower and upper fluids respectively.

Then, in each region of constant 01, i and constant 02 P2’ equation (2.12) becomes

(D2-k2) (D2-K2)w 0, (3.1)

where

K
2 k2 + n {i +

g 1

n-l + (k H +k H )2}.
4n20 x x y y (3.2)

Since w must vanish both when z (in the lower fluid) and z + (in the

upper fluid), the solutions appropriate to the two regions can be written as

AIe+k
z

+K
I
z

w
I + Ble (z<O), (3.3)

-kz
-K

2
z

(z>0) 3.4
w
2 A2e + B2e

where AI, BI, A2, B
2

are constants,

/k2 {i + +
2 (k H +k H )2}K1 / +

i 4n
x x y y

and

/

2 1n {i + + (k H +k H )2}.K2 /k2 + q 4n202 x x y y

(3.5)

(3.6)
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In writing the solutions (3.3) and (3.4) it is assumed that K
1

and K
2

are so

defined that their real parts are positive. The solutions (3.3) and (3.4) must

satisfy certain boundary conditions. The boundary conditions to be satisfied at

the interface z 0 are (Chandrasekhar [i], p.432)

W, (3.7)

and

(3.8)

(D2+k2)w, (3.9)

must be continuous.

Integrating (2.12) across the interface z O, we obtain another condition

n 2 2 D2_k2 i 2{02 ( + .) Dw
2 - )Dw2

+ (k H +k H Dw2}xx yy z=O
+/-

HIn i 2{01 ( + )DwI -- (D2-k2)DWl + - (k H +k H DwI}xx y y z=0

gk----2
(02-0

2k2 ( (Dw)
ng l)wO 2-i 0

(3.1o)

where w and (Dw) are the unique values of these quantities at z 0.
O O

Applying the conditions (3.7)-(3.10) to the solutions (3.3) and (3.4), we

obtain

AI
+ B

1
A
2
+ B

2

kAI + KIBI -kA
2 K2B2,

HI {2k2Al + (KI2+k2)BI 2 {2k2A2 + (K22+k2) B2}’

1 2
-k02 (- + -i)A

2 k0
i i

I (Z + n--l) A1 (kAl+kA2) 4n2gl (kxHx+kyHy)

k
2

gk2
(02_01) (AI+BI+A2+B2) +- (HI-2) (kAI+KIBI-kA2-K2B2)2n2g

(3.11)

(3.12)

(3.13)

(3.14)
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Eliminating the constants AI,A2,BI,B2 from (3.11)-(3.14), we obtain

i i -i -I

k K
1

k K
2

2k2I i(KI2+k2) -2k22 -2 (K22+k2

I i [+CR-C- - [21-R-C KI 0.2 0.2u2
k e nkI

0.1I 1 2 Cll K1 i 2
nkI

2(k’VA) + --(k-VA)n klkn n

t2u2 K2.
nklk

o, (3.15)

where

2
H +k H )
xx yy01, 2 (.VA) 2 (k

0.1,2 pl+P2 4(pl+P2)e

-2 k2 Pl-P2 k2R (c,2-0.I) C (elV1n ne pl+P2 ne (2u2)

and V
A

is the Alfvn velocity vector.

Evaluating the determinant (3.15), we obtain the following characteristic

equation

(Kl-k) [2k2(0.191-0.292 C I 92 2{ (K2-k) + 0’2 ( + n--l) + n (’VA)

0.2v2e 2} I (iuI+0.2)2) 2 2+ {0.2n +
kl

+ -- (k’VA) {R
n e nkl n2 (k’VA)

(lUle 92_2k[{eln +
el

+ ! (.V+A)m}{a2 1

n-l
C

n ( + + (K2-k) + (.VA) 2}
n

0.2)2e u
1+ {0.2n + k’-=-’- + (g 2 1 C -)"-)" 2}"VA) {0.1( + n-l) g (Kl-k) + n (k’VA)

elle+(K2-k) [{0.1n +T + --n (’A)2} {R le 0.1Vl+e2)2sk
I

-2 (.VA)+ 2}
n

i Ul C-2k2(0.1l-0.2u2){l( + --nkI) (Kl-k) + (k-VA)2}] O.
n

(3.16)
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Since KI
and K

2
involve square roots, the dispersion relation (3.16) is quite

complex. We therefore carry out the stability analysis for highly viscous fluids.

Under this assumption of highly viscous fluids, we have

K k[l +__n + .e +
k

2 k2kl
2

e(k H +k H
xx y,y 1/2

4-Ox)nk
2

k [i + n---n-- + e +
e(Pl+02) (.VA)2],2k2kl2k

2
2nk

2
0

(3.17)

so that

n e e 2
ml-k 2Ulk

+ + (’VA) (3.18)
2nkalV1

and

n e e /- 2
m2-k 22k + +

2nk22
(k’VA) (3.19)

Substituting the values of K
I

and K
2

from (3.18), (3.19) in (3.16) and putting

(the case of equal kinematic viscosities for mathematical simplicity

as in Chandrasekhar [l]),we obtain the following dispersiom relation

i 6 3 2ala2 2 i k2u 5 (.V-A) 2
32e 4k

2 2
2xn + + + + -)]n + +A+-- +

el (i-2)e U e (i-2 ( e i2 k

2 2
U + [q {2A+ k+ kl (al-2) (i-E) + 2la2U+ 2kI

x(l-e)+ U {4i2+E(i-2) 2} ]n4 e e 2k2 2 e

+ (k-VA)2 {2 +
2ala2 (i-2) +

klala2
2

ekk’VA 2+ la {A + (k’VA)
2k22

(al_a2)
2+ 2e (12+22) +

kl
(l-E)}

kl
2

+ I {2(k’VA) (i +--kl + +
2ala2

(k-VA) 2}]n2(i-2)

e )2}+ e+ [e(k’VA)4{2 +
2i2

(i-2 i2 (k’VA)
2 {e (.VA) 2 +

kI
kI
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2k21)((Zl-2) e 2A 4
+

cic2
(l-e) }]n + Cl--- (k’VA) 0, (3.20)

2 gk
where we have written 2(k-VA)__ +

g __(i-2) A.

(i) Stable case

For the potentially stable arrangement i>2 we find by applying Hurwitz’

criterion to (3.20), that (as all the coefficients in (3.20) are then positive)

all the roots of n are either real and negative or there are complex roots with

negative real parts. The system is therefore stable in each case. The potentially

stable configuration, therefore, remains stable whether the effects of viscosity

and medium porosity are included or not.

(ii) Unstable case

For the potentially unstable arrangement 2>i the system is unstable in the

hydrodynamic case for all wave numbers k in the presence of viscosity effects and in

the absence of porosity effects (Chandrasekhar [I]). Also the system, in the present

case, is unstable if

2 gk
2(k’VA) <

e (a2 i)"

In the present hydromagnetic case we find, by applying Hurwitz’ criterion to (3.20)

when 2>i that the system is stable for all wave numbers which satisfy the

inequality

2(.V+A)2 > gk (2 i), (3.21)

i.e. 2k(VlCOS@ + V2sin@)2> (2 el)’ (3.22)

where VI and V
2

are the Alfvn velocities in the x and y directions and G is the angle

between k and H
x

The stability criterion (3.22) is independent of the effects of viscosity and

medium porosity. The magnetic field stabilizes a certain wave number range k > k*

where
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k* g(2-l)/2g(VlCOS@+V2sin@)2, (3.23)

of the unstable configuration even in the presence of the effects of viscosity and

medium porosity. The critical wave number k*, above which the system is stabilized,

is dependent on the magnitudes V
I

and V
2

of the magnetic field as well as the

orientation of the magnetic field 8.

We now examine the behaviour of growth rates with respect to viscosity,

2
porosity and medium permeability analytically. Since for 2>i and 2(k’VA) <

(e2-l) (3.20) has one positive root let n denote the positive root. Then
0

(3.20) is satisfied if n is substituted in place of n. To study the behaviour of
o

growth rates with respect to viscosity and medium permeability, we examine the

natures of dno/d and dno/dkl. It follows that

5 4 3 2 dno(6A6 no + 5A
5 no + 4A

4 no + 3A
3 no + 2A2 no + AI) dk

I

3 5 i 62e 2 2

kl
2 no +--kl2 kI

+ 4k2 (al-a2) (l-e)+ {4ala2+e(al-a2)2} n
o

+ i 2e (.A)2_2Age + 3V3 2 4k23g(l-e2)2(l-e)
kl

2 (i---- kl
2

+
kl

2 2
Ve }n3+ 2i292 +
kI

o

22e(.A) 2
e (12+22) k2+

2
+

i2 k
I kl

2 e 2re)(el_2)2 (l-g)} + 2(k’VA) (i +

kl
2 k

I

2 22v2e A ve+
3

k
1 2ela2k1

2 2 2
2 (k’VA) (al-2) no

+ e (+ 2
VA) {(k’VA) 2-A} n

al2kl
2 o’

and

5 4 3 2 dno
(6A6no + 5A5no + 4A4no + 3A3no + 2A2no + AI) d

(3.24)
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[3__ k
2

2 5 [6g + 8k
2

2 1

el +- (2-e)(i-2) ]n +
kl

2 -i (i-2) (l-e)+i {4i2+e(i-2)

+ [3g22
2AE 6k2g2 4la2E 2 2E(’V+A12

kl
2 kl

+ (1-2)2
kl

2
kl

2 (l-E) +
kl

+ e__+
l2kl

2k
2
(el-a2)

2
(I-E) 2 3

(k’VA) n
o

ele2kl
2 (e12+e22) +

l2kl (i_2)
2

(l-E) + 2(-V+A 2 kl

2}] n 4
o

2
E /+ 2 2. 2+ 4rE__

22

(k.VA)
2 2UE2A

kl
2

kl
2 +

2klela2 (k’VA) (al-e2) n
o

2
E + 4 E2A 2 2k2E 4 2(+ [l2k------ (k’VA) l2kl (k’VA) + 2 2 (k’VA) (i-2) l-E) ]no,

al 2
(3.25)

5 4 3 2
where A

5
A
4

A
3

A
2

and A
1

are the coefficients of n n
o

n
o

n
O O

and n
o

respectively in (3.20) where n is substituted for n. It is evident from (3.24)
o

and (3.25) that dno/dkI and dno/d9 may be both positive or negative. Similarly

it can be shown that dn /dE may be both positive or negative. Thus the growth
o

rates both increase or decrease with the increase in viscosity, porosity, and medium

permeability. The viscosity, porosity, and medium permeability therefore have both

stabilizing as well as destabilizing tendencies on the growth rates.
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