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ABSTRACT. Qualitative behavior of solutions of possibly singluar integral

equations is studied. It includes properties such as positivity, boundedness

and monotonicity of the solutions of the infinite interval.
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I. INTRODUCTION.

Both qualitative and quantitative analyses of solutions to integral

equations of Volterra type have been done in the past; see, for example, [i-ii].

The purpose of this paper is to extend some of the results in [5] on properties

of solutions to integral equations of the form

t

f(t) i I K(t T)f(T)dx

0

(i.i)

to cases where the kernel K(t) or its derivatives may be infinite at the origin.

It includes properties such as positivity, boundedness and monotonicity of the

solution on the infinite interval.

2. DECREASING KERNELS

In this section, properties of the solutions to (i.i) with the possibility
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of the kernel being monotonically decreasing are studied.

2THEOREM 2.1. If (I) K(O) a < 0 and (2) 4K’ < a where K’ is a

constant satisfying K’ (t) < K’ for all t > 0 (K’ (0) needs not be finite), then

f(n)(t) > 0 for t > 0, n 0,1,2.

PROOF. The equation under consideration is f i k * f. By theorem

I.i.i in [5], f also satisfies

-ytf(t) e L * f, (2.1)

where y is any constant and

-yt K’ "tL(t) (a- )e * e- (2.2)

If a < y, then L(0) < 0. Differentiation of (2.2) leads to

L’(t) (y2 ay)e-’t + K’ ye-Yt * K’. (2.3)

If y < 0, then t

(y2 .ytL’ (t) <_ ay)e- + K’ K’ e-Yz dr

(2 a +’)e-xt (2.4)

a a
The polynomial in (2.3) is minimal for y . Taking y , (2.4) becomes

2
a yte’(t) <_ (---+ K’)e-

and so L(t) < 0 for all t > 0.

Differentiation of (2.1) leads to

f’(t) =-ye-Yt L(t) L * f’

and

2e-Ytf"(t) y L’(t) + aL(t) L * f".

From the Neumann Series [12], we conclude that f(n)(t) > 0 for all t > O,

n 0,1,2.

The following theorem on positive decreasing kernels has been obtained in

[5].
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THEOREM A. If (i) K(t) > 0 on (0,) (K(0) needs not be finite) and (2)

K’(t) < 0 on (0,=), then f(t) > 0 for t > 0.

Under different conditions, monotonicity of the solution can be obtained,

using Theorem 2.1.

THEORENZ2 If (i) K(0) a > 0, (2) K’(t) < 0 for 0 <_ t <_ T (K’(0) needs not

be finite) and (3) ’ < aK(T) a where K’ is a constant satisfying K’ (t) <_ K’

for 0 < t < T, then (I) f(t) > 0 and (2) f’(t) has at most one zero on [0,T].

PROOF. Consider the fundamental equation corresponding to (2.1), namely,

h(t) i L * h. (2.5)

If a < y, then L(0) < 0. If y is positive, then from (2.3),
t

(t) < (y2 ay) + - y K’ (T)dTL’

0

(72 ay) + K--T- yK(t) + ay

2
< y K(T)y + . (2.6)

Let the bound on L’(t), in (2.6), be denoted by L’. To apply Theorem 2.1, y must

be chosen so that a < y and 4- < L2(0). The last inequality leads to

4(y2 K(T)y + T) < (a- )2
or

2
3y

2 + 2[a 2K(T)]y + (4-r a < 0. (2,7)

Let the polynomial in (2.7) be denoted by p(y). The roots of p(y) 0 are

y [2K(T) a] _+ 2 /a2
aK(T) + K2(T) 3-T

3
(2.8)

Let the large and small roots in (2.8) be denoted by y+ and y_ respectively.

Clearly, y_ < a, and in requiring that a < y+, we obtain
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3a < 2K(T) a + 2 Ja2
aK(T) + K2(T) 3K--2

K
2[2a- K(T)] 2

< a aK(T) + (T) 3-,
2

a aK(T) + - < 0.

Therefore at y a, L(0) < 0 and p(y) < 0. By Theorem 2.1, h
(n) (t) > 0 for

0 < t < T, n 0,1,2.

By a convolution theorem [13], the solutions f and h are related by

f(t) e-Yt + e-Yt * h’, (2.9)

from which it follows that f(t) > 0 for 0 < t < T. Differentiation of (2.9)

leads to

f’(t) -ye-Yt + h’(t) ye
-Tt

* h’, (2.0)

and from (2.9) and (2.10), we obtain

yf(t) + f’(t) h’(t),

so

yf’(t) + f"(t) h"(t). (2.11)

Since f’(O) =-a < 0 and h"(t) > O, it follows from (2.11) that f’ has at most

one zero.

3. INCREASING KERNELS

Equations of the form (I.I) with monotonically increasing kernels are now

studied. A result from [5] will be stated first.

THEOREM B. If (i) K(t) > 0, K’(t) > 0 and K"(t) < 0 for 0 < t < and (2)

2
4b <_ a where a K(0) and b K’(0), then If(t) < 1 for 0 < t < .

Boundedness of the solutions for the next class of increasing kernels can be

obtained, using Theorem B.

THEOREM 3.1. If (i) K(t) > 0, K’(t) > 0, K"(t) > 0 and K"’(t) < 0 for

2 2
a
3

0 < t < , (2) a < 4b, (3) 3b < a and (4) 2 9ab +27c < 0, where a k(0),

b K’(0) and c K"(0), then If(t) < 2 for0< t < .
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PROOF. The equation is f(t) I K * f. As before, let h be the solution

to the fundamental equation (2.5) corresponding to the equivalent equation (2.1).

Differentiation of (2.2) leads to

L’(t) (y2 ay + b)e-Yt + K" * e-Yt (3.1)

and

L"(t) (_y3 + ay2 by + c)e-Yt + K"’ * e-Yt

2
Since a < 4b, L’ (t) > 0 for any y. The requirement that 4L’ (0) < L2(0)

(3.2)

leads to

2 24(y ay + b) < (a y)

or

3y
2

2ay + (4b a2) < 0. [3.3)

Let the polynomial in (3.3) be p(y). The discriminant of p(y) 0 is

16(a
2

3b) > 0 and the vertex of p(y) is at y , so p() < 0. Taking

a
y , L(t) > 0 for all t, and

3 i
-y + ay

2
by + c (2a

3
9ab + 27c)

so from (3.2), L"(t) _< 0. By Theorem B, lh(t) < i for0<_ t < =.

By the convolution theorem in [13], f(t) and h(t) are related by

f(t) h(t) e-Yt * h,

so
t

If(t) <_ i + y I e-Yr d
0

-yt
1- (e l)

2
The case of 4b < a is examined in the following theorem.

THEOREM 3.2. If (I) K(t) > 0, K’(t) > 0, K"(t) > 0 and K"’(t) < 0 for
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/ 2
i a- Va -4b

0it <= (2) a <
2

and (3) 2a
3

9ab + 27c < 0, where

a K(0), b K’(0), c K"(0), then If(t) <_ 2 for 0 < t < =.

a
L2PROOF. As in Theorem 3.1, taking y leads to 4L’(0) <_ (0), L(t) > 0

2
and L"(t) ! 0. But since 4b <_ a mow, condition (2) in this theorem guarantees

that L’ (t) > 0. The proof can be complete as before.

The next class of increasing kernels can be studied accordingly.

THEOREM 3.3. If (I) K(t) > 0, K’(t) > 0, K"(t) > 0, K"’(t) > 0 and

K(4) 2 8
a
2 3(t) < 0 for 0 <_ t < =, (2) a < 3b, (3) b <_ (4) a 4ab + 8c ! 0 and

(5) -3a
4 + 16a2b 64ac + 256d < 0, where a K(0), b K’(0), c K"(0) and

d K"’(0), then If(t) < 4 for 0 < t < =.

PROOF. Differentiation of (3.2) leads to

-Tt K(4) e-TtL"’(t) (T4 aT
3 + bT

2
cT + d)e + * (3.4)

The requirement that 3L’(0) < L2(0) in Theorem 3.1 leads to

2 23(T aT + b) < (a T)

or

2 2
2T aT + (3b a < 0. (3.5)

Let the polynomial in (3.5) be P(T). Since the discriminant of P(T) 0 is

p(a)33a2 8b) > 0, we have <_ 0. In order for the condition (4) in Theorem 3.1

to be satiisfied, we must have

2(a -T) 3 9(a -y)(T2 aT + b) + 27(-T
3 + aT

2
by + c) < 0,

3
2(a3 3a2T + 3aT

2
T 9a(T2 aT + b) + 18(-T

3 + aT
2 by) + 27c < 0

or

-20T
3 + 15aT

2 + 3(a2 6b)T + 2a3 9ab + 27c < 0. (3.6)

Let the polynomial in (3.6) be q(T). Then
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15
a
3 a+ + 3(a2 6b)+ 2a3 9ab + 27c

27 3 27a - ab + 27c

27 (a3- 4ab + 8c)

Note that a
3 4ab + 8c <_ 0 implies that a

2 4b <_ 0. The remaining inequality

required in Theorem (3.1) leads to

(a _y)2 < 4(y2 ay + b)

or

3y
2

2ay + (4b a2) > 0. (3.7)

Let the polynomial in (3.7) be r(y). The dlscrlmlnant of r(y) 0 is

16(a2 3b) < 0, so r(y) > 0 for any y.

Taking y , we have from (2.2) that L(t) > 0. Since a
2
! 45, (3.1)

leads to L’(t) > 0. If y , then

3 33 ay2 a a ab-y + by + c 6- +
16 4 + c

64 3a3 16ab + 64c)

>0

by condition (5) in this theorem, and

4 44 3 2 a a a2b acy ay + by cy + d 25- 6- + 16 4 + d

3a
4 a2b ac+

256 16 4 +d

i 4_-m(-3a + 16a2b 64ac + 256d)
ZDb-

It follows from (3.2) and (3.4) that L"(t) > 0 and L"’ (t) < 0. By theorem (3.1),

]h(t)[ < 2 for 0 < t < (R).
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As before, f(t) and h(t) are related by

f(t) h(t) ye-Yt * h

and so t

f(t) <_ 2 + 2y I e-YT dr

0

2- 2(e-Yt i)

< 4.

The case of 3b < is examined in the following theorem.

THEOREM 3.4. If (i) K(t) > 0, K’(t) > 0, K"(t) > O, K"’(t) > 0 and

a a- 2 /a2 3b 3K (4)(t) < 0 for 0 < t < , (2) <
3 (3) a 4ab + 8c < 0 and

4 K"(4) -3a + 16a2b 64ac + 256d < O, where a K(0), b K’(0) c (0) and

d K"’(0), then If(t) < 4 for 0 < t < =.

a
PROOF. As in the proof of Theorem 3.3, the choice of y satisfies

conditions (3) and (4) in Theorem 3.1. The zeroes of the polynomial r(y) in

(3.7) are at

a-2 a -3b
Y-- 3

so r() > 0 and the remaining inequality (2) of Theorem 3.1 is true.

The rest of the proof is the same as that of Theorem 3.3.
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