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ABSTRACT. In this paper new curvature tensors have been defined on the lines of
Weyl's projective curvature tensor and it has been shown that the "distribution"
(order in which the vectors in question are arranged before being acted upon by
the tensor in question) of vector field over the metric potentials and matter ten-
sors plays an important role in shaping the various physical and geometrical
properties of a tensor viz the formulation of gravitational waves, reduction of
electromagnetic field to a purely electric field, vanishing of the contracted ten-
sor in an Einstein Space and the cyclic property.
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1. Introduction.
The relativistic significance of Weyl's projective curvature tensor has been

explored by Singh. Radhakrishna and Sharan [1] and many other authors. In previous
papers (Pokhariyal [4], Pokhariyal and Mishra [2,3], we have defined some curva-

ture tensors and obtained their physical and geometrical properties. In this pa-

per we have considered all other tensors that can be defined with the help of
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Weyl's projective curvature tensor and shown how the distribution of vector fields
over the metric potentials and matter tensors acts in shaping the properties of
all such tensors. In section two, we define tensors W5 and W6. The tensor W5
which is symmetric with the change of pair of the vector fields is broken into
symmetric and skew-symmetric parts in two ways and various relationships are ob-
tained. Further it is shown that the vanishing of the divergence of W6 in an
electromagnetic field implies a purely electric field. In the third part of this
paper six more tensors are defined with the help of Weyl's projective curvature
tensor. It is shown in the fourth part that distribution of the vector field X
over all the metric potentials of a tensor is responsible for the vanishing of the

gradient 0, of the Gufipletion O defined by Misner and Wheeler [5]. 1In the fifth

i
part the cyclic properties of the tensors are discussed while in the sixth part
we discuss the vanishing of the contracted tensors in an Einstein space. The sym-
metric properties and formulation of the gravitational waves are explained with

the help of these tensors in the seventh part. Lastly it is shown that Rainich

conditions can be written in terms of the contracted parts of these tensors.

2. TWO TENSORS W. AND W, AND THEIR PROPERTILS.

5 6
Definition. (2.1): We define the tensors W5 x,Y,2,T)
def R(X,Y,2,T) # —= [g(X,Z) Ric(Y,T) -g¥,T) Ric(X,Z)] (2.1)
and
Vg (XY,2,T) def R(X,Y,Z,T) +B-_11 [g(X,Y) Ric(z,T) -g(X,T) Ric(Y,z)] (2.2)

From (2.1), we notice that WS is symmetric with the change of pairs of the vector
fields and does not satisfy the cyclic property.

We see from(2.2) that “B does not possess any symmetry but satisfies the
cyclic property,
W (X,Y,2,T) + W, (X,2,T,Y) + W (X,T,Y,2) =0 (2.3)

We break "5 into two parts

WK, Y,2,D) = % [W(x,7,2,1) - WS(Y,X,Z,T)]
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and

VIY,2,T) = % [Wg(X,7,2,D + W(7,%,2,1)]

which are respectively skew-symmetric and symmetric in X,Y. From (2.1) it follows

that
LY,Z,T) = ROGY,Z,T) + 5ot | 8(6,2) Ric(,T) -g(Y,T) Ric(X,2)
-g(¥,2) Ric(X,T) + g(X,T) Ric(Y,2) | (2.4)
and
-1 1 ; i
v(X,Y,Z,T) 2(o-1) Lg(X,Z) Ric(Y,T) -g(Y,T) Ric(X,2)
+ g(¥,Z) Ric(X,T) -g(X,T) Ric(Y,Z)} . (2.5)
Further the cyclic property,
v(X,Y,Z,T) + v(X,Z,T,Y) + v(X,T,Y,Z) = 0 (2.6)
is satisfied. We now break W5 into two other parts
Y(X’Y’Z’T) = 1/2 I‘J (ny’Z)T) - W (XyY,T’Z)]
) 5
and
§(X,Y,2,1) = % | (X,%,2,1) + W (X,¥,T,2) |
LS 5 A

which are respectively skew-symmetric and symmetric in Z,T. From(2.1), we get

YEYZT) = REGY,ZD + i | 8X,2) Rie(r,) ~g(4,1) Rie(x,2)

-g(X,T) Ric(Y,2) + g(¥,2) Ric(X,T) | 2.7)

and

i
"Ric(Y,T) g(X,2) -g(Y,T) Ric(X,z) +

§(X,Y,Z,T) = TU}U

+ g(X,T) Ric(Y,2) -g(¥,2) Ric(X,T):l' (2.8)

from (2.7), we notice that the cyclic property,
v(X,Y,2,T) + v(X,2,T,Y) + v(X,T,Y,2) = 0 (2.9)

is satisfied. From (2.4) and (2.8), we get

u(X,Y,Z,T) = R(X,Y,Z,T) + §(X,Y,Z,T) (2.10)
Similarly from (2.5) and (2.7), we have

v(X,Y,Z,T) = rR(X,Y,Z2,T) + v(X,Y,Z,T) (2.11)
Equations (2.10) and (2.11) reduce to the following equation

R(X,Y,T,Z) + R(Y,X,Z,T) = WS(X,Y,T,Z) + WS(Y,X,Z,T) (2.12)
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The vector

g.. & jklm _P
- —ii k plim (2.13)

ab
V-¢' R R

is called the gradient of the completion @, of a non-null electromagnetic field
with no matter by Misner and Wheeler and its vanishing implies that field is
purely electrical. A semi-colon stands for covariant differentiation.

Interchanging the dummy indices l,m (2.13) can be written as

TR Y (2.14)

By setting wh = 0; we get
6 pml;m

R (2.15)

pm;l Rpl;m

which on substitution in (2.14) implies that Oi = 0.

"hus the vanishing to the divergence of W6 in an electromagnetic field implies a

purely electric field.

OTHER TENSORS

In this section we shall define all other tensors that can be defined with the

help of the Wely's projective tensor mention other tensors defined in earlier
papers.
Definiti - (3.1). We define the tensors

w7(X,Y,Z,T) def R(X,Y,2ZT) + ﬁT g(Y,z) Ric(X,T) -g(X,T) Ric(Y,2)| (3.1)

W (X,Y,2,T) def R(X,Y,2,T) + ;—1—1 [g(z T) Ric(X,Y) -g(X,T) Ric(Y, z)] (3.2)

W(X,Y,2,T) def R(X,Y,Z,T) + —1—1" g(Z,T) Ric(X,Y) -g(¥,2) Ric(X, T)' (3.3)

Three more tensors W 1 and W can be defined in a similar manner to complete

10°Y 12

the set of such tensors.
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The other tensors defined in previous papers (Pokhariyal and Mishra [ 2-31] are

given by
W (X,7,2,T) = R(X,Y,2,T) + n_%[g(x,'r) Ric(Y,z) -g(¥Y,T) Ric(X,Z): (3.4)
Wy (X,Y,2,T) = R(K,Y,2,T) + 2= [g(X,2) Ric(Y,T) -g(¥,2) Ric(X,T) ] (3.5)
Wy (X,Y,2,T) = R(X,Y,2,T) +ﬁi—ng(Y,Z) Ric(X,T) -g(Y,T) Ric(X,Z)_] (3.6)
and
W, (X,Y,2,T) = R(X,Y,2,T) + n—fT[g(x,z) Ric(Y,T) -g(X,Y) Ric(z,T)j. (3.7)

The Weyl's projective curvature tensor is given by (Eisenhart [ 6])
W(X,Y,Z,T) = R(X,Y,Z,T) + n—}i_ Lg(X,Z) Ric(Y,T) -g(X,T) Ric(Y,Z)] .(3.8)

We now look into the distribution of the vector fields in all these tensors and
show that it shapes these tensors to yield different physical and geometrical pro-
perties.

4. Reduction of Electromagnetic field to a purely electric field

The vanishing of the gradient ei of the completion 6 of a non-null electromagnetic
field with no matter, defined by equation (2.13), implies that the field is purely
electrical. From the set of these tensors, we see that the vanishing of the

divergence, of either of the tensors W, WA and w6 implies 6, = 0. Looking into the

i
structure of these tensors from (3.8), (3.7) and (2.2), we notice that the vector
field X is distributed in such a fashion that it is always present in the metric

potentials. Thus we have a theorem.

lheorem (4.1): The vanishing of the divergence of all those tensors in which the
sector field X is present in all the metric potentials, reduce the electromagnetic
field to a purely electric field.

5. Cyclic Property

We study the cyclic properties of the tensors by fixing the vector field present
in the first place. If we look into the structure of the tensors W, W3,WA, W6 and
w9, we find that the vector field X is distributed in such a way that it is

present either in both the metric potential terms or in both the matter tensor
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terms. Thus these tensors satisfy the cyclic properties with fixed X. Hence

we have the following theorem:

Theorem (5.1): All the tensors, in which the vector field X is distributed in
such a fashion that it is present either in both the metric potentials or in both
the matter tensors alone,satisfy the cyclic properties with fixed X.

6. Vanishing in Einstein Space

The space for which

REKLY) = = g(X,Y) (6.1)
holds is called an Einstein space (Eisenhart [6]). If the contracted tensor after
subsituting (6.1)vanishes , we say that it vanishes in an Einstein space.

Looking into the tensors W,WZ,W6,W7, and W8 we find that the combination of

the vector fields X and T or the combination of vector fields Y and Z is present

in the metric potential terms with a negative sign. Thus the contracted part of

these tensors, with vector fields x and T or Y and Z respectively, vanish in the

Einstein space.

7. Symmetry and Formulation of Gravitational Waves

Inspecting the symmetric properties of the tensors we notice that W and W3 are
skew-symmetric in Z,T while Wl and W2 are skew-symmetric in X,Y, and ws is sym-
metric with change pairs of vector fields.

We break these skew-symmetric tensors into symmetric and skew-symmetric parts and
notice that the skew-symmetric parts of those tensors, in which the combinations
of the vector fields X,T and Y,Z are distributed in a term among the metric po-
tentials and matter tensors in such a way that a negative sign is always present
with this term, on contraction vanish identically in an Einstein space. All such
tensors enable us to extend the Pirani formulation of the gravitational waves to
the Einstein space with the help of the defined skew-symmetric parts.

It is seen that the skew-symmetic parts defined with the help of other symmetric
or skew-symmetric tensors, do not vanish identically in an Einstein space. Hence
the Pirani formulation of gravitational waves cannot be extended to the Einstein
space with the help of these tensors. Thus we have the following theorem:
Theorem (7.1): The skew-symmetric parts defined by those skew-symmetric tensors,

in which the combinations of vector fields X, T and Y,Z, are distributed in a term
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among the metric potentials and matter tensors with a negative sign, enable to

extend the Pirani formulation of gravitational waves to the Einstein space.
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The Rainich conditions [7] for the existence of the non-null electrovariance, can

be obtained by the defined tensors, if we replace the matter tensor by tensors

obtained after contraction of the defined tensors in an electromagnetic field.

Discussion:

We conclude from the above results that the physical and geometrical

properties of a tensor are mainly determined by the distribution of vector fields

over the metric potentials and the matter tensors.

Thus the various properties of

Weyl's projective curvature tensor are due to a particular type of distribution of

vector fields contained in it and not due to its invariance in two spaces Vn and

V.
n

In view of the above results the properties of the tensors studied by Singh,

Radhakrishna and Sharan [ 1], Pokhariyal and Mishra " 2 , 3] and by other authors

can be obtained by looking into the structure of these tensors.
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