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ABSTRACT. This paper gives a steady linear theory of the combined effect of the

free and forced convection in rotating hydromagnetic viscous fluid flows in a por-

ous channel under the action of a uniform magnetic field. The flow is governed by

the Grashof number G, the Hartmann number H, the Ekman number E, and the suction

Reynolds number S. The solutions for the velocity field, temperature distribution,

magnetic field, mass rate of flow and the shear stresses on the channel boundaries

are obtained using a perturbation method with the small parameter S. The nature of

the associated boundary layers is investigated for various values of the governing

flow parameters. The velocity, the temperature, and the shear stresses are dis-

cussed numerically by drawing profiles with reference to the variations in the flow

parameters.
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1. INTRODUCTION.

In the last several years considerable attention has been given to the study
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of the hydrodynamic thermal convection due to its numerous applications in geo-

physics and astrophysics. Several authors including Gupta [I], Jana [2], Nanda and

Mohanty [3], Mishra and Mudali [4], Mohan [5], Soundalgekar [6], Yen [7], and Gill

and Casal [8], have investigated the effects of the free and/or forced convection

on hydromagnetic fluid flows confined to non-porous boundaries under various geo-

metrical configurations. Some of these authors have also considered the effects of

wall conductance on the heat transfer aspect of hydromagnetic channel flows. It

has been shown that the wall conductance exerts a destabilizing influence on the

flow whereas the magnetic field stabilizes the flow.

In spite of these studies, relatively less attention has been given to the

simultaneous effects of the free and forced convection on the hydromagnetic rotat-

ing viscous flows confined to porous boundaries. Such work seems to be important

and useful partly for gaining basic understanding of such flows, and partly for

possible applications to geophysical and astrophysical problems. The present paper

deals with a steady linear theory of the combined effect of the free and forced

convection in rotating hydromagnetic viscous fluid flows in a porous channel under

the action of a uniform magnetic field. The solutions for the velocity field,

temperature distribution, magnetic field, mass rate of the flow and the shear

stresses on the channel boundaries are investigated using a perturbation method

with the small suction Reynolds number S. The structure of the associated boundary

layers is examined for various values of the governing flow parameters. The velo-

city, the temperature, and the shear stresses are discussed numerically by drawing

profiles with reference to the variations in the flow parameters.

2. MATHEMATICAL FORMULATION OF THE PROBLEM.

We consider an incompressible electrically conducting viscous steady fluid

flows in a channel bounded by two porous non-conducting parallel plates at z + L.

Both the fluid and the boundary plates are in a state of solid body rotation with

a uniform angular velocity about the z-axis normal to the plates. We take a

Cartesian coordinate system Oxyz rotating with the angular velocity with the x-

axis taken in the direction of pressure gradient and the z-axis positive upward.
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A uniform magnetic field of strength B parallel to the z-axis is applied to the
O

fluid system, and the fluid is driven by a constant horizontal pressure gradient.

The present analysis is based on the Boussinesq approximation which implies that

e << I, when the density is given by 0 0 (1 e), 0 is the density at the
O O

temperature T is the temperature variation from T and is the coefficient
O O

of thermal expansion. The Boussinesq approximation also implies that the proper-

ties of the liquid, , the kinematic viscosity and < the thermal diffusivity, are

independent of temperature and hence can be taken as constants.

With the Cartesian coordinate system and the Boussinesq approximation, the

unsteady motion of a viscous conducting fluid in the presence of a magnetic field

B in this rotating coordinate system is governed by the Navier-Stokes equations,

the continuity equation and the energy equation with usual notations

u- + (u_ V) u__ + 2 k u__ -VP* k_g(1 ) +-- j B + v V2u__
O

div u 0,

(2.1)

(2.2)

+ (u v)e < v2e
8t

(2.3)

where the velocity u (u, v, w), P is the pressure including the centrifugal

force, j is the current density and g is the acceleration due to gravity. We

further assume that j, B and the electric field E_ satisfy the Maxwell equations

with usual notations.

The flow is assumed to be fully developed and steady so that all the physical

variables except the pressure, depends only on z. It then follows from the con-

tinuity equation (2.2) that w =-w a constant. Clearly, w > 0 for suction and
O O

w < 0 for injection. Thus the governing flow equations are
O

u P* 22u BO ( Bx.w 2v + +
o z -- o -i-!z ore

(2.4)

w + 2u= v +
z oPe

(2.5)

Z

B BxBy ___z + B
0oUe x --/ g(1 13e), (2.6)
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2 0 v u 2 v 2-
(uT+o--)e ,.---+.- [(-- + (-fT) +

az p

2B Bw (Bx) + =0x __o o u
2 q - z

8z z

w B
y

_
o 8v

;)z
2 q \Sz I +-- ’f 0

i 2 2(i +J ),C o -x y
o p

(2.7)

(2.8)

(2.9)

By is the magneticwhere (Bx, Bo) are the components of the magnetic field, e
permeability, o is the electrical conductivity, 8 is the coefficient of volume

-i
expansion, C is the specific heat and q (op) is the magnetic viscosity. The

p e

last two terms of the energy equation (2.7) represent the viscous and ohmic dissi-

pation respectively.

Integration of (2.6) gives that

(B
2
+.B

2 + B 2 + plx + 8g 18 dz, (2.10)P* -gz
20oPe x y o

where P1 is the uniform pressure gradient with which the fluid is driven along the

x-axis.

It is assumed that the porous plates at z + L of thickness d are cooled or

heated by a constant temperature gradient A
1
along the x-axis so that the tempera-

ture varies linearly along the plates. Eliminating P* from (2.4) and (2.6), we

obtain

O AlX + Ol(z), (2.11)

where Ol(z) is an arbitrary function of z.

We next take To + AlX + @I0 and To + AlX + @II as the temperatures at the

lower and upper plates respectively.

It is convenient to write down the non-dimensional form of the basic field

equations (2.4) (2.9) through the non-dimensional variables (starred) defined by

the relations

1 L (u,v), and (B * B *) n By(x*, z*) =’" (x,z), (u*,v*)
x y (Bx, )’

O

(2.12 abc)

We next combine the non-dimensional equations (2.4) and (2.5) and use (2.10)
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to obtain the equation (after dropping the asterisks)

d2F
dz

2
dF F

H
2 dB

S z 2i + z Gz + R, (2.13)

Similarly, it follows from (2.8) and (2.9) that

d2B dB dF
SPmz +z 0,

dz
2

(2.14)

where F u + iv is the complex velocity field, B B + iB is the complex magne-x y
wL

tic field, S o__ is the cross-flow Reynolds number, Pm is the magnetic
n L4

Prandtl number H B L
o 1/2

o ---- is the Hartmann number, G 8g A - is the
o

L2
Grashof number, E

L2
is the Ekman number and R P1 -)vSubstitution of (2.11) into (2.7) yields the energy equation in the non-

dimensional form

x 2 2 du 2 dv 2
S

z
Gu Ec + Ec z + z (2 15)

P
dz

2 dz

where P is the non-magnetic Prandtl number, Ec BgL/C is the Eckert number
p

and gL
3 (eI 010)/2.

The boundary conditions on the velocity and temperature fields are

(u,v) (0,0) at z =_+ (2.16 ab)

0 at z (2.17)

gBL3 (ell- I0)/2 o (say) at z =-I, (2.18)

The boundary conditions on the magnetic field are

dB B B1+- at z I, (2.19)
dz

where - dB B B2
dz - at z -i, (2.20)

d
o B1 Bxl + iByl B2 Bx2 + iBy2 l is the electrical conduct-

ivity of the plate, Bxl and By are the values of Bx and By in the vacuum region

d d
z => + and Bx2 and By2 are the values of Bx and By in the region z =< -I ---L
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The magnetic field within ,the plates can be obtained using the Maxwell

equation J (I E and Curl B eJ (since u_ 0 on the plates). If there is a net

current through the channel in the y-direction, the induced electric field exists

in the y-direction. In view of this, it is observed that the magnetic field

components outside the boundary (in the vacuum) exist only in the x-direction and

vanish in the y-direction. The components Bxl and Bx2 are fixed by knowing the

net current in the y-direction through the channel and its return path.

3. SOLUTION OF THE PROBLEM.

We shall adopt a small perturbation method with S, the cross-flow Reynolds

number as the perturbation parameter, in order to solve the differential equations

(2.13) and (2.14). Thus we assume

F F + SF
1
+ 0 (S2)

O

B B3 + SB4 + 0 (S2),

(3.1)

(3.2)

Substituting (3.1) (3.2) into (2.13) and (2.14) and equating the like

powers of S, we obtain

and

F
F" 2i __qo + H2B, Gz + R,
O E

FI H
2Fy 2i + B F’

E
o

(3.4)

(3.5)

B’-’ + F’ 0
3 O

(3.6)

B + F
1

Pm B’
O

(3.7)

where the prime denotes the differentiation with respect to z.

The boundary conditions (2.16) (2.20) reduce to

F F 0 on z + 1,
o I

on z I,
B
4+ 0

(3.8 ab)

(3.9 ab)

B
3

B
2B -- + -- 0

B
4B--= 0

on z -I,
(3.10 ab)
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The solutions of (3.4) (3.7) with the above conditions are

a
3F al + a2

coshlz sinhlz
coshl +

sinhl
z} + Sb7z (3.11)

3
Sb z

H2B a9 a6 sinhlsinhlz a7 coshlCshlz + 63 + asSz2 + aSz’ (3.12)

where
2

H
2 2i + S 2a+--’ al -i0 l0b2

all GH2], a
2

+ S[ all 2a10b2],al0 2t al0 al0

2 2ia GSb
a
3

G + SPmb31 a5 E I
H2 alob2b5 G2 + R, a

6
(a2 + 2al0Sb2) --+ I 12 tanhl,

a7 H2 G 2Sb2G
12 13

+ S Pm b
4

+ b2b5G H2G iS Pm b3

13 al0 tanhl, a
8 -- +

21 E

GH
2 GH2

a9 (I + cothl)
A3 212

H2
1 + 2) +- (Bxl + Bx2 + H2S (I + )

Gb
2(I + cothl) 7 (i + b5) alO tanhl + b4 Pm] + iS Pm

E (i + 2S)b4,

al0
b (1 + )

12
+ H

2
(tanhl I), aII

i
(i + 3) H2G Pm

El
3

G 6i (H2G Pm3(I + tanhl) (b2b5al0 cothl) -- (I + ) 2b2a 3(1 + ) G b2213 I0

And the constants b are given by
n

(I
2 + H2pm)

b3
2ial0

b R(I + ) 1/2(Bxl + Bx2) b
2 13 7 (R + E’

i 2ial0 i 2 i
i b

6
b4-- 7 E R), b

5 (g- 21 ), b
6 7 G H2pm, and b

7 E

If Qx and Qy represent the dimensionless mass flow rates, then

2a2 2
Qx + iQy -- tanhl + Sb

7
+ 2a (3.13)

u
The non-dimensional shear stresses Y and

v
y z are obtained at the

upper and lower plates from (3.11), and are given by
a
3(T + i I a tanhl +7 (I cothl i) + 2S b 7x yz-- 1 2

a3
(Tx + iy)z=_l a21 tanhl +i (I cothl i) 2S b 7

(3.14)

(3.15)
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To solve the energy equation, it is convenient to write A + i where

is a fictitious function which satisfies the differential equation

d27 S P" d
2 zz=P Gv,

dz
(3.16)

with the boundary conditions

(+I) o. (3.17)

We next combine (2.15) with (3.16) to obtain the equation for A

d2A _---dA + Ec H
2 dB dB + Ec

dF dF
P 2

S
dz dz dz dz dz

dz
GF. (3.18)

The boundary conditions on & are then given by

& 0 on z and A 80 on z -i (3.19 ab)

Substituting F and B in (3.18) and solving the resulting differential equa-

tion with the boundary conditions (3.19 ab), (z) can readily be determined. How-

ever, since the solution for O(z) is quite complicated, we avoid writing the long

expression for it.

4. THE VELOCITY FIELD MAGNETIC FIELD AND THE ASSOCIATED BOUNDARY LAYERS.

In order to investigate the salient feature of the boundary layers, we shall

consider the following special cases related to various magnitudes of the Ekman

and Hartmann numbers.

Case (i): E << and H
2

>> I.

To determine the flow field, the magnetic field and the associated boundary

layers on the plate z I, it is convenient to write z in (3.11) (3.12),

and then take the limit of the resulting expressions as -/ 0 0 such that

is finite. This leads to the following results:

a a3 S H2
u + iv a + (a +7) exp (-) (cosB- i sin) -7 (i- ) + 4

2(I ) G Pm,

(4.1)

H2(B + iB
i S H

2 2ia 2ia
x Y 3 E 4

)3 G Pm + (I )2
H
2 2iS Pm + R)] +

2
2 [G + E E E

2blb2S b b (I + )
i + (I + )} + 2b5 G
-R s G b2 a2 3 4 2

H2

+7 (G + 2S G b2)
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S Pm 2ial+ 3 E R) + b2b5G
3 ,]alO exD (-a) (cosB- i sinB) + G H2 G H

2

2%
2

2%
2

H2+ -- (Bxl
G b2(l + b5)

+ Bx2) + SH2 (I + )
%3

2ialoPm
-a16+7( E R)]

(i + 2)

i S INn 2ialo+ (I + 2) R),
El2 E

(4.2)

where and are the real and imaginary parts of A, and

al
262a16

G H2 Pm
a I + S x--r-a at0 + S [262a10- all

24 ]’ a2 0 al0

2ial b
a3’ G + S Pm E R) and al0 %2(I + )

The solution (4.1) represents the steady hydromagnetic boundary layer flow which

consists of the Ekman-Hartmann layer on the boundary plate. The non-dimensional

-I 2 1/2]-1/2thickness of this layer is of the order e [H2 + (H
4 + which is in

agreement with the result of Debnath [9] and also with that of Nanda and Mohanty

[3] for the case E << and H2 0(i). In particular, the Ekman-Hartmann layer

reduces to the Ekman layer of thickness O(E1/2) or the Hartmann layer of thickness

1 H
2 20( according as << or >>

Case (ii): E << i and H2O(1)
In this case, the solutions are obtained from (3.11) (3.12), and have the

form

EH
2

1 H2E22 + 1/2 E cos{ (i )}u air + a3r S G Pm + [(a2r a3i)
/---

+ (a2i
EH

2 H2E
1/2 E a3r) sin{ (I -- )}] ep{- -- (I + -- )},

(4.3)

V ali + a3i + [(a2i 1/2 E a3r) cos { (i ----)}H2E

(a2r + 1/2 E a3i
EH

2
EH

2
sin{ -- (I ---- )}] exp{-- (I +--- )}

/E
(4.4)

2d7 EH2H2B S(I ) + d8(l ) + [d13 sin (i -- )}x /E
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d
EH2 EH2

12 cos { (I ---- )}] exp {------ (I +-- )}

i.i
2 b

+_ (Bxl + Bx2) + S Pm I R)2
(1 + )

1 +

5
1 2 3
8- S E H2G (I + 6) (5d14 + d15) (4.5)

H2B d9(l )3 + dl0( I )2 + d
Y

EH211(1 ) + [d13 cos (i ---- )}

+ d12 sin { (I EH2 H2E----- )}] exp {--- (i +-- )}

5
E G H2 (I 26) 3

H
2

(i 6) d15+ 1/4 G E H
2 + +) S E G + _(d144 E

b R)1/2 S E H2R (I + )
1+ 6 (4.6)

where alr ali etc. denote the real and imaginary parts of a I respectively, and

5 5

3d12 E
2

H2 3d12 E 2
d3 16(1 + 6) + Pro), d4 16(1 + 6)

(H2 Pm- ),

2E3 8 H2d5 85(I + 8) + Pro), d6
4E3 1

8"5 (I’-+ "8) 2H2 Pm ),

Pm 2ali S G Pm H2 E
2 2ali

d7 .2- (R
E )’ d

8 R +
4 E

G Pm H2 E S Pm alr G H
2 E 2alr S G E

d9 12 dl0
E
2 4 dll E +

2

d12 1/2 H2E [a2r a2i Sbl(d5 + d6)] + d3 + (I + )d5

_3 3

_H2 GE
2 bl

4 + S G d5(l + 8) + S em R} E4 1+6

d13 1/2 H2 E [a2i a2r + Sbl(d5 + d6)] d4 + 1/2 GE

33

H2[1/4 G E SGd6(l + 6) + S Pm E2 bl
4 {1+8 3GR}] + --(I + 8)d

5 + blE
2(1 + 8)’
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5

H
2 6

2
3H2pmE3

d14 Pm + E and d15 85

It is noted that the exponential terms in the above solution decays vewy

EH2
rapidly as increases and exceeds the value /(i +--- In the limit

the flow field and the magnetic field assumes the form

u aI + 1 2E2r a3r - S G P (4.7)

v ali + a3i (4.8)

H
2

S2Pm
b IH2Bx Sd7(l )2 + dS(l ) +_ (Bxl + Bx2) + 1 + 5) + R)

S2Pm( bl R)
S G H2 3d15

5(1 + 5) (5d14 + E )’+.2) I + / E
(4.9)

H2B d3(l )3 + dl0( I )2 + dll( 1 )
G H2 E

y 4
+ 1/4 G H2E (I +)

3S G H2 d15 SH2R bl+ (I + 5) d14 E
5(1 + 5) 1+(S

R). (4.10)

The velocity field (4.3) (4.4) shows the existence of the modified Ekman

EH
2

)- 1
layer of thickness of the order /-(I +--- It follows from (4.7) (4.10)

that both components of the velocity field persist, and are functions of the verti-

cal coordinate z. This means the violation of the Taylor-Proudman theorem valid in

an inviscid rotating fluid flows. Thus the suction or injection at the porous

plates prevents the flow to reduce to two-dimensional. However, in the non-porous

case the limiting flow satisfies the conditions of the Taylor-Proudman theorem.

H2Case (iii): >> 1 and E- 0(I).

In this case, the solutions are given by

f3 f3 SG Pm 2u fl + (f2 +7 exp (-H)- H--- +
2H2

(4.11)

f6
V f4 + (f5 +7 exp (-H) -H-- (4.12)

H2B i
(GH

2 4
x

2H
2 7 S Pm f7 (I )2 + [R

2f4 SG(I + Pm) (I- )
E H

2
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2Sf7 2f7 G[H(f +2
H

4"
H
3

H
2 + 2SG(I + Pm)

S Pm R 2G bl
H H2

(i + Pm)
H2

(I + )] exp (- H)

H2G + - (Bxl
G+ Bx2) + SH2(I + ) (i + Pro) (i 2H2)

bl R Pm 2SblPm (I + 2)

H2
(I + 6) "H3 H4 (I + 6) E

2 (4.13)

and

H2B
Y

SGPm
(i )3

2S Pm f4 2fl
3EH2 H2E2

(I )2 + T (I )

f7 2s Pm b I G(I + Pm)[Hf5 +- + + exp (- H)
EH5 E(I + 6)H3 EH4

2Pm b
+ S H3(1 + 6) G(I + Pm) +

EH
4

EH5(I + )

SR Pm (I + 26) } (4.14)
EH2

where
2f

7 b
1bl + S( f8

G Pm
f2fl H2(I + ) -- 2H

2 H2(I + )

2f
7+ S(f8

H3
)’

f3 G S R Pm, f4 Sf9’ f5 Sfs’ f6
2SblPm b I(I + Pro)

f
6.H2) 7 +E(I +

f8 36(2f7 + G)
3G

H2
(I + 6) (I + Pm)

f9
G Pm f7

:’HE (1 + 3) 3(-- G)
EH

2

2fG(I + 6) G Pm 7
E 2H

H
2

The solutions (4.11) (4.14) represent the steady hydromagnetic boundary

-Ilayers flow which consists of the Hartmann Layer of thickness of the order H

It is noted that the results for this case are completely independent of rotation.

5. THE NUMERICAL RESULTS AND DISCUSSION.

In order to present numerical results and their discussion, it is necessary

to assume certain fixed values for Bxl +__ Bx2, R and 6. With Bxl + Bx2 3.0,

Bxl Bx2 0.5, R and 0.i, the velocity, the temperature and the shear

stresses are discussed numerically. The pressure gradient is taken to be positive
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along the direction of x increasing, and hence the flow in the opposite sense

indicated by negative u is the actual flow whereas a positive u corresponds to a

reversed velocity. The velocity profiles for u and v, the secondary flow, are

presented for different values of the Hartmann number H, and the Grashof number G

for fixed K (= i and S as well as for different values of the suction parameter

S fixing H, G and K. Figure I shows that in the absence of free convection (G --_ 0)

for fixed K and small S, as H increases the velocity profiles for u become more and

more asymmetric with the point of maximum velocity shifting towards the upper half

of the region. When G 0, even for moderate values of G, u is found to change its

direction as we move from the upper plate to the lower one. The maximum value of

u is attained in the vicinity of the upper plate, and for large values of G, there

is a sharp increase in the magnitude of u both at the upper and the lower plates

irrespective of the magnitude of H. The region of reversed velocity near the lower

plate gradually grows with the increase in G. However, for a fixed G, as H

increases the velocity near the upper plate enormously increases while the velocity

at the lower plate decreases in magnitude.

The secondary velocity normal to the direction of the pressure gradient, as

shown in Figure 2, behaves in the same manner as the primary velocity except that

the regions of adverse velocity zones grow in size almost comparable to each other

with increase in G for a fixed H. However, for a fixed G the reversed secondary

velocity zone near the lower plate shrinks with the increase in H. It has been

pointed out earlier that the presence of suction eliminated the possibility of flow

being two-dimensional in the central core for large K: It is interesting to

observe the behavior of u and v for increase in the suction parameter S for fixed

H, G and K. From Figure 3 it follows that while the magnitude of u increases

rapidly with increase in S there is a steady fall of v, although the maximum velo-

city of either of them tilt towards the upper plate similar to the H increasing

case. For fixed values of H, G and S, both u and v decrease as K increases and

for large K, a reversed flow develops near the lower plate as shown in Figure 4.
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C
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Figure 5 indicates the behavior of the dimensionless mass flow rates compared

to H. The mass flow rate Qx along the x-axis rapidly increases with increase in

H for a fixed K as well as increases with increase in K for a fixed H. On the

other hand,Qy, for moderate values of K retains the same nature but almost remains

uniform for large K.

The non-dimensional shear stresses and at the upper and lower plates
x y

are plotted in Figures 6-9 for various values of the governing flow parameters S,

H,G and K. It is to be noted that the reversed flow occurs whenever the shear

stress on the upper and the lower plates are of the same sign. No such separation

in the flow arises if the shear stress on the upper plate is opposite to that of

the lower plate. Figure 6 shows that remains positive and decreases with in-
x

crease in H for a fixed G, although increases for increase in G for a fixed H.

At the lower plate, it is negative and almost uniform for G 0. But as G in-

creases it remains negative for large values of H (say greater than 4) but becomes

positive as H approches to zero. This shows that for G z 0 and H 0, reversed

velocities appear in the vicinity of the lower plate. However, this region of

reversed velocities which grows with increase in G can be made to shrink by choos-

ing sufficiently large H. The shear stress behaves similar to with occur-
y x

ence of the reversed velocities near the lower plate for small H. Figures 8-9

indicate the behavior of r and r with respect to the variation of S and K. We
x y

also observe that for K i no reversed flow appears with reference to either u

or v for all values of S. When K is large for sufficiently small S, we find its

growth near the lower plate. For a fixed S, and r at both the plates go on
x y

decreasing for an increase in K. Also the shear stresses increase with S for a

fixed K.

The non-dimensional temperature profiles are plotted in Figures 10-12 for

different sets of parameters. In all these cases the profiles are almost similar

except that the concavity increases with either increase in S or G. For increase

in either S,G and H it can be noted that the profiles become more and more sharp

contributing to the increase in the maximum temperature attained.
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