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1. Introduction. Let �p denote the class of functions of the form

f(z)= zp+
∞∑
n=1

an+pzn+p
(
p ∈N= {1,2, . . .}) (1.1)

which are analytic in the open unit disk �= {z : |z|< 1}. A function f ∈�p is said to

be p-valently starlike of order α in �, if it satisfies

Re

{
zf ′(z)
f(z)

}
>α (0≤α<p; z ∈�). (1.2)

We denote this class by �∗p(α). A function f ∈�p is said to be p-valently convex of

order α in �, if it satisfies

Re

{
1+ zf

′′(z)
f ′(z)

}
>α (0≤α<p; z ∈�). (1.3)

The class of p-valently convex functions of order α is denoted by �p(α). It follows

from (1.2) and (1.3) that

f ∈�p(α)⇐⇒ zf
′

p
∈�p(α). (1.4)

Further, a function f ∈�p is said to be p-valently close-to-convex of order β and type

α, if there exists a function g ∈�∗p(α) such that

Re

{
zf ′(z)
g(z)

}
> β (0≤α,β < p; z ∈�). (1.5)

It is well known (see [10]) that every p-valently close-to-convex function is p-valent

in �.

For arbitrary fixed real numbers A and B (−1 ≤ B < A ≤ 1), let �(A,B) denote the

class of functions of the form

φ(z)= 1+c1z+c2z2+··· (1.6)
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which are analytic in � and satisfies the condition

φ(z)≺ 1+Az
1+Bz (z ∈�), (1.7)

where the symbol ≺ stands for subordination. The class �(A,B) was introduced and

studied by Janowski [8].

We note that a function φ∈�(A,B), if and only if

∣∣∣∣φ(z)− 1−AB
1−B2

∣∣∣∣< A−B1−B2
(B ≠−1, z ∈�),

Re
{
φ(z)

}
>

1−A
2

(B =−1, z ∈�).
(1.8)

For a function f ∈ �, given by (1.1), the generalized Bernardi-Libera-Livingston

integral operator F [1] is defined by

F(z)= γ+p
zγ

∫ z
0
tγ−1f(t)dt

= zp+
∞∑
n=1

γ+p
γ+p+nan+pz

n+p (γ >−p; z ∈�).
(1.9)

It readily follows from (1.9) that

f ∈�p �⇒ F ∈�p. (1.10)

Let

φp(a,c;z)=
∞∑
n=0

(a)n
(c)n

zn+p (c ≠ 0,−1,−2, . . . ; z ∈�), (1.11)

and we define a linear operator Lp(a,c) on �p by

Lp(a,c)f (z)=φp(a,c;z)∗f(z) (z ∈�), (1.12)

where (x)n = Γ(n+x)/Γ(x) and the symbol ∗ is the Hadamard product or convolu-

tion. Clearly, Lp(a,c) maps �p into itself. Further, Lp(a,a) is the identity operator

and

Lp(a,c)= Lp(a,b)Lp(b,c)= Lp(b,c)Lp(a,b) (b,c ≠ 0,−1,−2, . . .). (1.13)

Thus, if a ≠ 0,−1,−2, . . . , then Lp(a,c) has an inverse Lp(c,a). We also observe that

for f ∈�p ,

Lp(p+1,p)f (z)= zf
′(z)
p

, Lp(µ+p,1)f (z)=Dµ+p−1f(z), (1.14)

where µ (µ > −p) is any real number. In case of p = 1 and µ ∈ N, Dµf(z) is the

Ruscheweyh derivative [14]. The operator Lp(a,c) was introduced and studied by

Saitoh and Nunokawa [15]. This operator is a generalization of the linear operator
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L(a,c) introduced by Carlson and Shaffer [3] in their systemic investigation of certain

classes of starlike, convex, and prestarlike hypergeometric functions.

In the present paper, we give some argument properties of certain class of analytic

functions in �p involving the linear operator Lp(a,c). An application of a certain

integral operator is also considered. The results obtained here, besides extending the

works of Bulboacă [2], Chichra [4], Cho et al. [5], Fukui et al. [6], Libera [9], Nunokawa

[13], and Sakaguchi [16], it yields a number of new results.

2. Main results. To establish our main results, we need the following lemmas.

Lemma 2.1 [11]. Let h(z) be convex (univalent) in � and let ψ(z) be analytic in �

with Re{ψ(z)} ≥ 0. If φ(z) is analytic in � and φ(0)=ψ(0), then

φ(z)+ψ(z)zφ′(z)≺ h(z) (z ∈�) (2.1)

implies

φ(z)≺ h(z) (z ∈�). (2.2)

Lemma 2.2 [12]. Let φ(z) be analytic in �, φ(0) = 1, φ(z) ≠ 0 in � and suppose

that there exists a point z0 ∈� such that

∣∣argφ(z)
∣∣< π

2
η

(|z|< ∣∣z0

∣∣),
∣∣argφ

(
z0
)∣∣= π

2
η,

(2.3)

where η > 0. Then

z0φ′
(
z0
)

φ
(
z0
) = ikη, (2.4)

where

k≥ 1
2

(
d+ 1

d

)
when argφ

(
z0
)= π

2
η,

k≤−1
2

(
d+ 1

d

)
when argφ

(
z0
)=−π

2
η,

(2.5)

where

φ
(
z0
)1/η =±id (d > 0). (2.6)

We now derive the following theorem.

Theorem 2.3. Let a> 0, −1≤ B <A≤ 1, f ∈�p , and suppose that g ∈�p satisfies

Lp(a+1,c)g(z)
Lp(a,c)g(z)

≺ 1+Az
1+Bz (z ∈�). (2.7)

If ∣∣∣∣∣arg

{
(1−λ)Lp(a,c)f (z)

Lp(a,c)g(z)
+λLp(a+1,c)f (z)
Lp(a+1,c)g(z)

−β
}∣∣∣∣∣

<
π
2
δ (λ≥ 0; 0≤ β < 1; 0< δ≤ 1; z ∈�),

(2.8)
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then ∣∣∣∣∣arg

{
Lp(a,c)f (z)
Lp(a,c)g(z)

−β
}∣∣∣∣∣< π2 η (z ∈�), (2.9)

where η (0< η≤ 1) is the solution of the equation

δ=



η+ 2

π
tan−1

{
ληsin(π/2)

(
1−t(A,B))

a(1+A)/(1+B)+ληcos(π/2)
(
1−t(A,B))

}
, for B ≠−1,

η, for B =−1,
(2.10)

when

t(A,B)= 2
π

sin−1
(
A−B

1−AB
)
. (2.11)

Proof. Let

Lp(a,c)f (z)
Lp(a,c)g(z)

= β+(1−β)φ(z). (2.12)

Then φ(z) is analytic in � with φ(0) = 1. On differentiating both sides of (2.12) and

using the identity

z
(
Lp(a,c)f (z)

)′ = aLp(a+1,c)f (z)−(a−p)Lp(a,c)f (z) (2.13)

in the resulting equation, we deduce that

(1−λ)Lp(a,c)f (z)
Lp(a,c)g(z)

+λLp(a+1,c)f (z)
Lp(a+1,c)g(z)

−β= (1−β)
{
φ(z)+ λzφ

′(z)
ar(z)

}
, (2.14)

where

r(z)= Lp(a+1,c)g(z)
Lp(a,c)g(z)

. (2.15)

If we let

r(z)= ρe(πθ/2)i, (2.16)

then from (2.7) followed by (1.8), it follows that

1−A
1−B < ρ <

1+A
1+B ,

−t(A,B) < θ < t(A,B) for B ≠−1,
(2.17)

when t(A,B) is given by (2.11), and

1−A
2

< ρ <∞,
−1< θ < 1 for B =−1.

(2.18)
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Leth(z) be the function which maps onto the angular domain {w : |arg{w}|<(π/2)δ}
with h(0)= 1. Applying Lemma 2.1 for this h(z) with ψ(z)= λ/(ar(z)), we see that

Reφ(z) > 0 in � and hence φ(z)≠ 0 in �.

If there exists a point z0 ∈ � such that conditions (2.3) are satisfied, then by

Lemma 2.2 we obtain (2.4) under restrictions (2.5) and (2.6).

At first, suppose that p(z0)1/η = id (d > 0). For the case B ≠−1, we obtain

arg

{
(1−λ)Lp(a,c)f

(
z0
)

Lp(a,c)g
(
z0
) +λLp(a+1,c)f

(
z0
)

Lp(a+1,c)g
(
z0
) −β

}

= argφ
(
z0
)+arg

{
1+ λ
ar
(
z0
) z0φ′

(
z0
)

φ
(
z0
)
}

= π
2
η+arg

{
1+iηkλe

−(πθ/2)i

ρa

}

= π
2
η+tan−1

{
ληksin(π/2)(1−θ)

ρa+ληkcos(π/2)(1−θ)

}

≥ π
2
η+tan−1

{
ληsin(π/2)

(
1−t(A,B))

a(1+A)/(1+B)+ληcos(π/2)
(
1−t(A,B))

}

≥ π
2
δ,

(2.19)

where δ and t(A,B) are given by (2.10) and (2.11), respectively. Similarly, for the case

B =−1, we have

arg

{
(1−λ)Lp(a,c)f

(
z0
)

Lp(a,c)g
(
z0
) +λLp(a+1,c)f

(
z0
)

Lp(a+1,c)g
(
z0
) −β

}
≥ π

2
η. (2.20)

This is a contradiction to the assumption of our theorem.

Next, suppose that φ(z0)1/η =−id (d > 0). For the case B ≠−1, applying the same

method as above, we have

arg

{
(1−λ)Lp(a,c)f

(
z0
)

Lp(a,c)g
(
z0
) +λLp(a+1,c)f

(
z0
)

Lp(a+1,c)g
(
z0
) −β

}

≤−π
2
η−tan−1

{
ληsin(π/2)

(
1−t(A,B))

a(1+A)/(1+B)+ληcos(π/2)
(
1−t(A,B))

}

≤−π
2
δ,

(2.21)

where δ and t(A,B) are given by (2.10) and (2.11), respectively and for the case B =−1,

we have

arg

(
(1−λ)Lp(a,c)f

(
z0
)

Lp(a,c)g
(
z0
) +λLp(a+1,c)f

(
z0
)

Lp(a+1,c)g
(
z0
) −β

)
≤−π

2
η (2.22)

which contradicts the assumption. Therefore we complete the proof of the theorem.
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Remark 2.4. For a = c = p, A = 1, B = −1, and λ = 1, Theorem 2.3 is the recent

result obtained by Nunokawa [13].

Taking a = µ+p (µ > −p), c = 1, A = 1, and B = 0 in Theorem 2.3, we have the

following corollary.

Corollary 2.5. If f ∈�p satisfies

∣∣∣∣∣arg

{
(1−λ)D

µ+p−1f(z)
Dµ+p−1g(z)

+λD
µ+pf(z)
Dµ+pg(z)

−β
}∣∣∣∣∣

<
π
2
δ (λ≥ 0; 0< δ≤ 1; 0≤ β < 1; z ∈�)

(2.23)

for some g ∈�p satisfying the condition

∣∣∣∣ Dµ+pg(z)Dµ+p−1g(z)
−1

∣∣∣∣<α (0<α≤ 1; z ∈�), (2.24)

then

∣∣∣∣∣arg

{
Dµ+p−1f(z)
Dµ+p−1g(z)

}∣∣∣∣∣< π2 η (z ∈�), (2.25)

where η (0< η≤ 1) is the solution of the equation

δ= η+ 2
π

tan−1

{
ληsin

(
π/2−sin−1α

)
(µ+p)(1+α)+ληcos

(
π/2−sin−1α

)
}
. (2.26)

Letting B→A (A< 1) and g(z)= zp in Theorem 2.3, we get the following corollary.

Corollary 2.6. If f ∈�p satisfies

∣∣∣∣∣arg

{
(1−λ)Lp(a,c)f (z)

zp
+λLp(a+1,c)f (z)

zp
−β

}∣∣∣∣∣
<
π
2
δ (a > 0; λ≥ 0; 0≤ β < 1; 0< δ≤ 1; z ∈�),

(2.27)

then

∣∣∣∣∣arg

{
Lp(a,c)f (z)

zp
−β

}∣∣∣∣∣< π2 η (z ∈�), (2.28)

where η (0< η≤ 1) is the solution of the equation

δ= η+ 2
π

tan−1
{
λη
a

}
. (2.29)

Corollary 2.7. Under the hypothesis of Corollary 2.6, we have

∣∣arg
{
H′(z)−β}∣∣< π

2
η (z ∈�), (2.30)
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where the function H(z) is defined in � by

H(z)=
∫ z

0

Lp(a,c)f (t)
tp

dt (2.31)

and η (0< η≤ 1) is the solution of (2.29).

Remark 2.8. Taking a = c = p, λ = 1, and β = 0 in Corollary 2.6, a = c = p and

β= 0 in Corollary 2.7, we get the corresponding results obtained by Cho et al. [5].

Setting A= 1−(2α/p) (0≤ α < p), B =−1, and δ= 1 in Theorem 2.3, we have the

following corollary.

Corollary 2.9. Let a> 0, f ∈�p , and g ∈�∗p(α). If

Re

{
(1−λ)Lp(a,c)f (z)

Lp(a,c)g(z)
+λLp(a+1,c)f (z)
Lp(a+1,c)g(z)

}
> β (λ≥ 0; 0≤ β < 1; z ∈�), (2.32)

then

Re

{
Lp(a,c)f (z)
Lp(a,c)g(z)

}
> β (z ∈�). (2.33)

Remark 2.10. For a= c = p = 1 and α= 0, Corollary 2.9 is the result by Bulboacă

[2]. If we puta= c = p = 1, β= 0, and g(z)= z in Corollary 2.9, then we have the result

due to Chichra [4]. Further, taking a= c = p, λ= 1, and α= β= 0 in Corollary 2.9, we

get the corresponding results of Libera [9] and Sakaguchi [16].

Theorem 2.11. If f ∈�p satisfies∣∣∣∣∣arg

{
Lp(a,c)f (z)

zp
−β

}∣∣∣∣∣< π2 δ (0≤ β < 1; 0< δ≤ 1; z ∈�), (2.34)

then ∣∣∣∣∣arg

{
(γ+p)∫ z0 tγ−1Lp(a,c)f (t)dt

zγ+p
−β

}∣∣∣∣∣< π2 η (0< γ+p; z ∈�), (2.35)

where η (0< η≤ 1) is the solution of the equation

δ= η+ 2
π

tan−1

{
η

γ+p

}
. (2.36)

Proof. Consider the function φ(z) defined in � by

(γ+p)∫ z0 tγ−1Lp(a,c)f (t)dt
zγ+p

= β+(1−β)φ(z). (2.37)

Then φ(z) is analytic in � with φ(0) = 1. Differentiating both sides of (2.37) and

simplifying, we get

Lp(a,c)f (z)
zp

−β= (1−β)
{
φ(z)+ zφ

′(z)
γ+p

}
. (2.38)

Now, by using Lemma 2.1 and a similar method in the proof of Theorem 2.3, we get

(2.35).
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Taking a= p+1, c = p, β= ρ/p, and δ= 1 in Theorem 2.11, we have the following

corollary.

Corollary 2.12. If f ∈�p satisfies

Re
{
f ′(z)
zp−1

}
> ρ (0≤ ρ < p; z ∈�), (2.39)

then ∣∣∣∣∣arg

{
(γ+p)∫ z0 tγ−1f ′(t)dt

zγ+p
−ρ

}∣∣∣∣∣< π2 η (z ∈�), (2.40)

where η (0< η≤ 1) is the solution of the equation

η+ 2
π

tan−1
{
η

γ+p
}
= 1. (2.41)

Theorem 2.13. If f ∈�p satisfies

∣∣∣∣∣arg

{
Lp(a+1,c)f (z)
Lp(a,c)f (z)

− a−p−γ
a

}∣∣∣∣∣< π2 δ (a > 0; p+γ > 0; 0< δ≤ 1; z ∈�),

(2.42)

then ∣∣∣∣∣arg

{
zγLp(a,c)f (z)∫ z

0 tγ−1Lp(a,c)f (t)dt

}∣∣∣∣∣< π2 η (z ∈�), (2.43)

where η (0< η≤ 1) is the solution of (2.36).

Proof. Our proof of Theorem 2.13 is much akin to that of Theorem 2.3. Indeed,

in place of (2.37), we define the function φ(z) by

φ(z)= zγLp(a,c)f (z)
(γ+p)∫ z0 tγ−1Lp(a,c)f (t)dt

(z ∈�), (2.44)

and apply Lemma 2.1 (with ψ(z)= 1/(γ+p)) as before. We choose to skip the details

involved.

Setting a= c = p and δ= 1 in Theorem 2.13, we obtain the following corollary.

Corollary 2.14. If f ∈�p satisfies

Re

{
zf ′(z)
f(z)

}
>−γ (γ+p > 0; z ∈�), (2.45)

then ∣∣∣∣∣arg

{
zγf(z)∫ z

0 tγ−1f(t)dt

}∣∣∣∣∣< π2 η (z ∈�), (2.46)

where η (0< η≤ 1) is the solution of (2.41).

Replacing f(z) by zf ′(z)/p in Corollary 2.14, we deduce the following corollary.
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Corollary 2.15. If f ∈�p satisfies

Re

{
1+ zf

′′(z)
f ′(z)

}
>−γ (γ+p > 0; z ∈�), (2.47)

then
∣∣∣∣∣arg

{
zf ′(z)

f(z)−(γ/zγ)∫ z0 tγ−1f(t)dt

}∣∣∣∣∣< π2 η (z ∈�), (2.48)

where η (0< η≤ 1) is the solution of (2.41).

By setting γ = 0 in Corollary 2.15, we have the following corollary.

Corollary 2.16. If f ∈�p(0), then

∣∣∣∣∣arg

{
zf ′(z)
f(z)

}∣∣∣∣∣< π2 η (z ∈�), (2.49)

where η (0< η≤ 1) is the solution of the equation:

η+ 2
π

tan−1
{
η
p

}
= 1. (2.50)

Similarly, we have the following theorem.

Theorem 2.17. If f ∈�p satisfies

∣∣∣∣∣arg

{
Lp(a+1,c)f (z)
Lp(a,c)f (z)

−β
}∣∣∣∣∣< π2 δ (a > 0; 0≤ β < 1; 0< δ≤ 1; z ∈�), (2.51)

then
∣∣∣∣∣arg

{
Lp(a,c)f (z)

zp

}∣∣∣∣∣< π2 η (z ∈�), (2.52)

where η (0< η≤ 1) is the solution of the equation

δ= 2
π

tan−1
{

η
(1−β)a

}
. (2.53)

Theorem 2.18. Let f ∈�p and suppose that

B <A≤ B+ p(1−B)
a

(a > 0; −1≤ B <A≤ 1). (2.54)

If

∣∣∣∣∣arg

{
(1−λ)Lp(a+1,c)f (z)

Lp(a,c)g(z)
+λ

(
Lp(a+1,c)f (z)

)′(
Lp(a,c)g(z)

)′ −β
}∣∣∣∣∣

<
π
2
δ (λ≥ 0; 0≤ β < 1; 0< δ≤ 1; z ∈�),

(2.55)
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for some g ∈�p satisfying

Lp(a+1,c)g(z)
Lp(a,c)g(z)

≺ 1+Az
1+Bz (z ∈�), (2.56)

then

∣∣∣∣∣arg

{
Lp(a+1,c)f (z)
Lp(a,c)g(z)

−β
}∣∣∣∣∣< π2 η (z ∈�), (2.57)

where η (0< η≤ 1) is the solution of the equation

δ=



η+ 2

π
tan−1

{
ληsin(π/2)

(
1−t(A,B))(

p(1+B)+a(A−B))/(1+B)+ληcos(π/2)
(
1−t(A,B))

}
, for B≠−1,

η, for B=−1,
(2.58)

when

t(A,B)= 2
π

sin−1

(
a(A−B)

p
(
1−B2

)−aB(A−B)
)
. (2.59)

Proof. Let

Lp(a+1,c)f (z)
Lp(a,c)g(z)

= β+(1−β)φ(z), r(z)= Lp(a+1,c)g(z)
Lp(a,c)g(z)

, (2.60)

we have

(1−λ)Lp(a+1,c)f (z)
Lp(a,c)g(z)

+λ
(
Lp(a+1,c)f (z)

)′(
Lp(a+1,c)g(z)

)′ −β= (1−β)
{
φ(z)+ λzφ′(z)

ar(z)+p−a

}
.

(2.61)

The remaining part of the proof of Theorem 2.18 is similar to that of Theorem 2.3. So

we omit the details.

Put a = c = p, λ = 1, A = α/p, and B = 0 in Theorem 2.18, we have the following

corollary.

Corollary 2.19. If f ∈�p satisfies

∣∣∣∣∣arg

{(
zf ′(z)

)′
g′(z)

−β
}∣∣∣∣∣< π2 δ (0≤ β < p; 0< δ≤ 1; z ∈�), (2.62)

for some g ∈�p satisfying the condition

∣∣∣∣zg′(z)g(z)
−p

∣∣∣∣<α (0<α≤ p; z ∈�), (2.63)
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then

∣∣∣∣∣arg

{
zf ′(z)
g(z)

−β
}∣∣∣∣∣< π2 η (z ∈�), (2.64)

where η (0< η≤ 1) is the solution of the equation

δ= η+ 2
π

tan−1

{
ηsin

(
π/2−sin−1(α/p)

)
p+α+ηcos

(
π/2−sin−1(α/p)

)
}
. (2.65)

Lemma 2.20. Let

α= ξ+ ξ
γ+p+aξ

(
0≤ (a−1)/a < ξ <α< 1

)
(2.66)

and the function G(z) be defined by

G(z)= γ+p
zγ

∫ z
0
tγ−1g(t)dt

(
g ∈�p

)
(2.67)

for γ > (aξ2+(p+1−a)ξ−p)/(1−ξ). If g ∈�p satisfies

∣∣∣∣Lp(a+1,c)g(z)
Lp(a,c)g(z)

−1
∣∣∣∣<α (z ∈�), (2.68)

then

∣∣∣∣Lp(a+1,c)G(z)
Lp(a,c)G(z)

−1
∣∣∣∣< ξ (z ∈�). (2.69)

Proof. Defining the function w(z) by

Lp(a+1,c)G(z)
Lp(a,c)G(z)

= 1+ξw(z), (2.70)

we see that w(z) is analytic in � with w(0)= 0. Now, using the identities

z
(
Lp(a,c)G(z)

)′ = aLp(a+1,c)G(z)−(a−p)Lp(a,c)G(z), (2.71)

z
(
Lp(a,c)G(z)

)′ = (γ+p)Lp(a,c)g(z)−γLp(a,c)G(z) (2.72)

in (2.70), we get

Lp(a,c)G(z)
Lp(a,c)g(z)

= γ+p
γ+p+aξw(z) . (2.73)

Making use of the logarithmic differentiation of both sides of (2.73) and using identity

(2.71) for both g(z) and f(z) in the resulting equation, we deduce that

∣∣∣∣Lp(a+1,c)g(z)
Lp(a,c)g(z)

−1
∣∣∣∣= ξ

∣∣∣∣w(z)+ zw′(z)
γ+p+aξw(z)

∣∣∣∣. (2.74)
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We assume that there exists a point z0 ∈� such that max|z|<|z0| |w(z)| = |w(z0)| = 1.

Then by Jack’s lemma [7], we have z0w′(z0) = kw(z0) (k ≥ 1). Let w(z0) = eiθ , and

apply this result to w(z) at z0 ∈�, we get

∣∣∣∣∣Lp(a+1,c)g
(
z0
)

Lp(a,c)g
(
z0
) −1

∣∣∣∣∣= ξ
∣∣∣∣∣1+ k

γ+p+aξeiθ
∣∣∣∣∣

= ξ
[
(γ+p+k)2+2aξ(γ+p+k)cosθ+(aξ)2
(γ+p)2+2aξ(γ+p)cosθ+(aξ)2

]1/2

.

(2.75)

Since the right side of (2.75) is decreasing for 0≤ θ < 2π and γ > {aξ2+(p+1−a)ξ−
p}/(1−ξ), we obtain

∣∣∣∣∣Lp(a+1,c)g
(
z0
)

Lp(a,c)g
(
z0
) −1

∣∣∣∣∣≤ ξ(γ+p+1+aξ)
γ+p+aξ , (2.76)

which contradicts our hypothesis and hence we get

∣∣w(z)∣∣= 1
ξ

∣∣∣∣Lp(a+1,c)G(z)
Lp(a,c)G(z)

−1
∣∣∣∣< 1 (z ∈�). (2.77)

This completes the proof of Lemma 2.20.

Remark 2.21. We note that for a= c = p = 1, Lemma 2.20 yields the correspond-

ing result obtained by Fukui et al. [6].

Theorem 2.22. Let α be as given in (2.66) and γ∗ > max{(aξ2 + (p+ 1−a)ξ −
p)/(1−ξ), aξ−p}. If f ∈�p satisfies

∣∣∣∣∣arg

{
Lp(a+1,c)f (z)
Lp(a,c)g(z)

−β
}∣∣∣∣∣< π2 δ (0≤ β < 1; 0< δ≤ 1; z ∈�), (2.78)

for some f ∈�p satisfying condition (2.68), then

∣∣∣∣∣arg

{
Lp(a+1,c)F(z)
Lp(a,c)G(z)

−β
}∣∣∣∣∣< π2 η (z ∈�), (2.79)

where the function F(z) and G(z) are defined for γ∗ by (1.9) and (2.67), respectively

and η (0< η≤ 1) is the solution of the equation

δ= η+ 2
π

tan−1

{
ηsin

(
π/2−sin−1 (aξ/(γ∗+p)))

γ∗+p+aξ+ηcos
(
π/2−sin−1 (aξ/(γ∗+p)))

}
. (2.80)

Proof. Consider the function φ(z) defined in � by

Lp(a+1,c)F(z)
Lp(a,c)G(z)

= β+(1−β)φ(z). (2.81)
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Then φ(z) is analytic in � with φ(0)= 1. Taking logarithmic differentiation on both

sides of (2.81) and using identity (2.71) in the resulting equation, we get

z
(
Lp(a+1,c)F(z)

)′
Lp(a+1,c)F(z)

= p−a+aLp(a+1,c)G(z)
Lp(a,c)G(z)

+(1−β) zφ′(z)
β+(1−β)φ(z) . (2.82)

From the definition of F(z), we have

(
γ∗+p)Lp(a,c)f (z)= a(Lp(a+1,c)F(z)

)′ +γ∗Lp(a+1,c)F(z). (2.83)

Again, from (2.71) and (2.72), it follows that

(
γ∗+p)Lp(a+1,c)g(z)= zLp(a+1,c)G(z)+(p+γ∗−a)Lp(a,c)G(z). (2.84)

Thus, by using (2.83) and (2.84) followed by (2.82), we obtain

Lp(a+1,c)f (z)
Lp(a,c)g(z)

−β= (1−β)
{
φ(z)+ zφ′(z)

ar(z)+γ∗+p−a

}
, (2.85)

where r(z)= Lp(a+1,c)G(z)/Lp(a,c)G(z). By using Lemma 2.20, we have

r(z)≺ 1+ξz (z ∈�), (2.86)

where ξ is given by (2.66). Letting

ar(z)+γ∗+p−a= ρeiπθ/2 (2.87)

and using the techniques of Theorem 2.3, the remaining part of the proof of Theorem

2.22 follows.

Remark 2.23. We easily find the following:

γ >




aξ−p, if
a−1
a

< ξ <
2a−1

2a
,

2(a−p)−1
2

, if ξ = 2a−1
2a

,

aξ2+(p+1−a)ξ−p
1−ξ , if

2a−1
2a

< ξ < 1.

(2.88)

Taking a= c = p in Theorem 2.22, we get the following corollary.

Corollary 2.24. Let

α= ξ+ ξ
γ∗+p(1+ξ)

(
(p−1)/p < ξ <α< 1

)
, (2.89)
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where γ∗ >max{(pξ2+ξ−p)/(1−ξ),p(ξ−1)}. If f ∈�p satisfies

∣∣∣∣∣arg

{
zf ′(z)
g(z)

−β
}∣∣∣∣∣< π2 δ (0≤ β < p; 0< δ≤ 1; z ∈�) (2.90)

for some g ∈�p satisfying the condition

∣∣∣∣zg′(z)g(z)
−p

∣∣∣∣<pα (z ∈�), (2.91)

then ∣∣∣∣∣arg

{
zF ′(z)
G(z)

−β
}∣∣∣∣∣< π2 (z ∈�), (2.92)

where η (0< η≤ 1) is the solution of the equation

δ= η+ 2
π

tan−1

{
ηsin

(
π/2−sin−1 (pξ/(γ∗+p)))

γ∗+p(1+ξ)+ηcos
(
π/2−sin−1 (pξ/(γ∗+p)))

}
. (2.93)
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