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MODEL TRACKING FOR RISK PROBLEMS
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We assume that we have M candidate insurance models for describing a process. The
models considered consist of a risk process driven by right-constant, finite-state spaces,
jump processes. Based on observing the history of the risk process, we propose dynamics
whose solutions indicate the likelihoods of each candidate model.
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1. Introduction. Risk theory deals with stochastic models in insurance business,

see, for example, Grandell [2]. Usually, in such models claims are described by point

processes and the amounts claimed by policies holders are sequences of random vari-

ables. The profit, or the loss, of the company is the difference between premiums in-

come and the claims. In this paper, we assume that we have M competing models,

denoted by {H1, . . . ,HM}, describing the risk process, see Section 2. We are interested

in ranking the candidate models based on their likelihood of being most appropriate

for describing the risk process and some other processes driving the risk process.

This problem as well as others fall within the category of Model Tracking or Detection

problems as we are interested in tracking (or detecting) the most appropriate model

for describing the proposed risk model, see, for example, Poor [5] and Snyder [6].

In the next section, we present the model of the paper. The main result of the paper

is found in Section 3 where the likelihood that our model is best described by a certain

candidate model is derived. In Section 4, a filtering problem is discussed.

2. The model. Assume initially that all processes are defined on a probability space

(Ω,�,P).
Consider an insurance “risk process” R which at time t is the sum of an initial

capital R0, an integrated premiums process with integrand a nonnegative, bounded,

and measurable real-valued function P(·), a new premiums process, a lost premiums

process, and a claims process. We also assume that we have M candidate models

denoted by {H1, . . . ,HM} representing the dynamics of the risk process. Then, under

the hypothesis that model Hh is used, h= 1, . . . ,M , we have

Rht = R0+
∫ t

0
PHh(s)ds+

∫ t
0

∫
R+
Y 1
Hh

(
Z̃1
r−
)
ν1(dr ,dx)

−
∫ t

0

∫
R+
Y 2
Hh

(
Z̃2
r−
)
ν2(dr ,dx)−

∫ t
0

∫
R+
Y 3
Hh

(
Z̃3
r−
)
ν3(dr ,dx),

(2.1)

where Y iHh(·), i = 1,2,3, are bounded nonnegative functions and each νi, i = 1,2,3,
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is an integer-valued random measure which, under probability measure P , has pre-

dictable compensator (see Jacod [3]) ν̄i function of Zit .
Here Z̃it , i = 1,2,3, t ∈ R+, are finite-state spaces processes with right-constant

sample paths on the state spaces S̃i = {si1, . . . ,sini}; si will denote the (column) vector

(si1, . . . ,sini)
′.

Suppose 1≤ � ≤N, and for j ≠ �

πi�(x)=
ni∏
j=1

(
x−sj

)
, (2.2)

and φi�(x) = πi�(x)/πi�(s�); then φi�(sj) = δ�j and φi = (φi1, . . . ,φini) is a bijection

of the set S̃i = {si1, . . . ,sini} with the set Si = {ei1,ei2, . . . ,eini}; eij is the standard basis

(column) vector inRni with unity in the jth position and zero elsewhere. Consequently,

without loss of generality, we consider processes Zit on Si for i = 1,2,3. If Zit ∈ Si
denotes the state of this process at time t ≥ 0, then the corresponding value of Z̃it is

〈Zit ,si〉, where 〈 ,〉 denotes the inner product in Rni .
Let T ik(ω) be the kth jump time of Zi, δTik(ω)(dr) the unit mass at time T ik(ω) and

δZi
Tik(ω)

(eij) is the unit mass at Zi
Tik(ω)

(ω).

Since Zit is a jump process taking values in the vector space Rni we can write

Zit = Zi0+
∑

0<r≤t
∆Zir . (2.3)

Here

∆Zir = Zir −Zir−

=
ni∑
j=1

(
eij−Zir−

) ∞∑
k=1

δTik(ω)(dr)δZiTik(ω)

(
eij
)

∆=
ni∑
j=1

(
eij−Zir−

)
µZ

i
(
dr,eij

)
.

(2.4)

We assume that each Zit has almost surely finitely many jumps in any finite interval

so that the random measure µZi is σ -finite. Let µ̃Zi(dr ,eij) be the predictable com-

pensator of µZi so that (2.5) leads to

Zit = Zi0+
ni∑
j=1

∫ t
0

(
eij−Zir−

)
µ̃Z

i
(
dr,eij

)
+Wt, (2.5)

where

Wt
∆=

ni∑
j=1

∫ t
0

(
eij−Zir−

)(
µZ

i
(
dr,eij

)
− µ̃Zi

(
dr,eij

))
. (2.6)

Now µ̃Zi factors into its Lévy system

µ̃Z
i
(
dr,eij

)
= β

(
eij,Z

i
r−,r

)
dF
(
Zir−,r

)
, (2.7)
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where dF(Zir−,r ) represents the conditional probability that the next jump occurs at

time r given the previous history of the process.

Assume that the nonnegative measure dF(Zir−,r ) is absolutely continuous with

respect to Lebesgue measure so that

dF
(
Zir−,r

)= f (Zir−,r)dr (2.8)

for some nonnegative function f(·).
On the set [Zir− ≠ e

i
j] we have, from (2.8) and (2.9), that

µ̃Z
i
(
dr,eij

)
= β

(
eij,Z

i
r−,r

)
f
(
Zir−,r

)
dr ∆= ai

jZir−
(r ,ω)dr . (2.9)

For 1≤ j ≤ni put

aijj(r ,ω)=−
∑
k≠j
aijk(r ,ω). (2.10)

Define the matrix Ai(r ,ω)= {aijk(r ,ω)}. Then we have the representation

Zit = Zi0+
∫ t

0
Ai(r ,ω)Zirdr +Wi

t . (2.11)

We assume here that the Zi’s have no common jumps, that is, with ∆Ziu = Ziu−Ziu−
and for i≠ j ∑

0<u≤t
∆Ziu∆Z

j
u = 0, ∀t > 0 a.s. (2.12)

Let

�t = σ
{
Ru,0≤u≤ t

}
(2.13)

denote the complete filtration generated by the risk process and let

�t = σ
{
Rs,Zis ;1≤ i≤ 3;s ≤ t} (2.14)

be the complete filtration generated by the risk process R and the processes Zi, i =
1,2,3.

Now, given the filtration �, and, a set of competing hypotheses {H1, . . . ,HM}, where

Hh = {PHh(·); Y iHh, i = 1,2,3}, we want to determine the dynamics to compute the

posterior probabilities

P
(
Hh |�t

)
, 1≤ h≤M. (2.15)

Consider a simple random variableα, whereα∈{f1, . . . ,fM} and fh=(0, . . . ,1, . . . ,0)′
∈ RM . The “1” here is in position h. We suppose α is an indicator function such that

α = fh, that is, 〈α,fh〉 = 1 if and only if hypothesis Hh holds. Then (2.15) may be

rewritten as

P
(
Hh |�t

)= E[〈α,fh〉 |�t
]
, (2.16)

where the expectation is taken under probability measure P .

In Section 3, we propose dynamics to (2.15) whose solution is a solution of some

stochastic differential equation. Section 4 is concerned with a filtering problem.
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3. M-ary detection filters. Suppose P̄ is a reference probability, under which νi,
i = 1,2,3, have deterministic compensators Hi(dx)dt independent of Zi, i = 1,2,3.

In order to recover the “real world” probability measure P under which the model dy-

namics introduced in Section 2 hold, define the Radon-Nikodym derivativeΛ such that

dP
dP̄

∣∣∣∣
�t
=Λt , (3.1)

where (see Jacod and Shiryaev [4])

Λt = 1+
3∑
i=1

∫ t
0

∫
R+
Λs−

(
ν̃i
(
s,Zis−,x

)−1
)[
νi(dr ,dx)−H(dx)dt]. (3.2)

However, in this section, we will be working under the “reference probability” P̄ . By

an abstract version of Bayes’ rule (see [1])

P
(
α= fh |�t

)= E[〈α,fh〉 |�t
]= Ē

[
Λt
〈
α,fh

〉 |�t
]

Ē
[
Λt |�t

] . (3.3)

Theorem 3.1. Let

qht
∆= Ē[〈α,fh〉Λt |�t

]
. (3.4)

The unnormalized probability qht is given by the equation

qht =qh0+
3∑
i=1

∫ t
0

∫
R+

( 3∑
J=1

E
[〈
Ziu−,e

i
j

〉
|�u−

]
ν̃i
(
u,eij,x

)−1

)
qhu−

[
νi(du,dx)−H(dx)du].

(3.5)

Here E[〈Ziu−,eij〉 | �u−] is evaluated under the probability measure P , given that the

hypothesis Hh holds.

Proof. Using (3.2), we have

〈
α,fh

〉
Λt =

〈
α,fh

〉+ 3∑
i=1

∫ t
0

∫
R+

〈
α,fh

〉
Λs−

(
ν̃i
(
s,Zis−,x

)−1
)[
νi(ds,dx)−H(dx)ds],

(3.6)

with optional projection on the σ -field �t

Ē
[
Λt
〈
α,fh

〉 |�t
]

= 〈α,fh〉+ Ē
[ 3∑
i=1

∫ t
0

∫
R+

〈
α,fh

〉
Λs−

(
ν̃i
(
s,Zis−,x

)−1
)[
νi(ds,dx)−H(dx)ds] |�t

]
.

(3.7)

Using (3.4) and [7, Chapter 7, Lemma 3.2] to exchange stochastic integration and con-

ditional expectation under P̄ , we have

qht =qh0+
3∑
i=1

∫ t
0

∫
R+
Ē
[〈
α,fh

〉
Λs−

(
ν̃i
(
s,Zis−,x

)−1
) |�s−

][
νi(ds,dx)−H(dx)dt]. (3.8)
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Now

Ē
[〈
α,fh

〉
Λs−

(
ν̃i
(
s,Zis−,x

)−1
) |�s−

]
Ē
[
Λs− |�s−

] = E[〈α,fh〉(ν̃i(s,Zis−,x)−1
) |�s−

]
, (3.9)

or

Ē
[〈
α,fh

〉
Λs−

(
ν̃i
(
s,Zis−,x

)−1
) |�s−

]
= E[〈α,fh〉(ν̃i(s,Zis−,x)−1

) |�s−
]
Ē
[
Λs− |�s−

]
,

(3.10)

which, using elementary rules for conditional probabilities and Bayes rule, is

= E[(ν̃i(s,Zis−,x)−1
) |α= fh,�s−

]
E
[〈
α,fh

〉 |�s−
]
Ē
[
Λt |�s−

]

= E[(ν̃i(s,Zis−,x)−1
) |α= fh,�s−

] Ē[〈α,fh〉Λs− |�s−
]

Ē
[
Λs− |�s−

] Ē
[
Λs− |�s−

]
= E[(ν̃i(s,Zis−,x)−1

) |α= fh,�s−
]
qhs− (using (3.4))

=
(
E
[
ν̃i
(
s,Zis−,x

) |α= fh,�s−
]−1

)
qhs−.

(3.11)

Using the notation Zit =
∑3
J=1〈Zit ,eij〉eij gives (3.5).

Note that the normalized form of (3.5) is given by

pht =
qht∑M
l=1q

l
t
. (3.12)

As an example: suppose that the set of candidate models consists of two models, that

is, α ∈ {(1,0),(0,1)} and p1
t = P(α = (1.0) | �t) = E[〈α,(1,0)〉 | �t] and p2

t = P(α =
(0,1) |�t)= E[〈α,(0,1)〉 |�t]. Define the log-likelihood or test statistic process,

lt = ln

(
p1
t

p2
t

)
= ln

(
q1
t

q2
t

)
. (3.13)

Large values of l are in favor of model 1 whereas, small values of l are in favor of

model 2.

4. The filtering problem. Equation (3.5) contains E[〈Ziu−,eij〉 |�u−]. The following

result gives the dynamics of the unnormalized version of this filter. Here we assume

that the random matrix A is adapted to the filtration �. Again we work under the

“reference probability” P̄ , under which νi, i= 1,2,3, have deterministic compensators

Hi(dx)dt independent of Zi, i= 1,2,3.

Theorem 4.1. Let

σt(�,m,n)
∆= Ē

[〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m
〉〈
Z3
t ,e3

n
〉
Λt |�t

]
. (4.1)



522 L. AGGOUN AND L. BENKHEROUF

The unnormalized probability process σt(�,m,n) satisfies the stochastic integral equa-

tion

σt(�,m,n)= σ0(�,m,n)

+
3∑
i=1

∫ t
0

∫
R+
σu−(�,m,n)

(
ν̃i
(
u,eij,x

)
−1

)[
νi(dr ,dx)−H(dx)dt]

+
∑
k1

∫ t
0
a1
�k1
(u,ω)σu

(
k1,m,n

)
du

+
∑
k2

∫ t
0
a2
mk2

(u,ω)σu
(
�,k2,n

)
du

+
∑
k3

∫ t
0
a3
nk3
(u,ω)σu

(
�,m,k3

)
du.

(4.2)

Proof. Note that (2.11) gives

〈
Z1
t ,e

1
�

〉
=
〈
Z1

0 ,e
1
�

〉
+
∫ t

0

〈
A1(u,ω)Z1

u,e
1
�

〉
du+

〈
W 1
t ,e

1
�

〉

=
〈
Z1

0 ,e
1
�

〉
+
∑
k1

∫ t
0
a1
�k1
(u,ω)

〈
Z1
u−,e

1
k1

〉
du+

〈
W 1
t ,e

1
�

〉
.

(4.3)

Since the processes Z1
t and Z2

t share no common jumps,

〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m

〉
=
〈
Z1

0 ,e
1
�

〉〈
Z2

0 ,e
2
m

〉
+
∫ t

0

〈
Z1
u−,e

1
�

〉〈
dZ2

u,e2
m

〉

+
∫ t

0

〈
Z2
u−,e2

m

〉〈
dZ1

u,e
1
�

〉

=
〈
Z1

0 ,e
1
�

〉〈
Z2

0 ,e
2
m

〉
+
∑
k2

∫ t
0
a2
mk2

(u,ω)
〈
Z1
u,e

1
�

〉〈
Z2
u−,e

2
k2

〉
du

+
∑
k1

∫ t
0
a1
�k1
(u,ω)

〈
Z2
u,e2

m

〉〈
Z1
u−,e

1
k1

〉
du

+
∫ t

0

〈
Z2
u−,e2

m

〉〈
dV 1

u,e
1
�

〉
+
∫ t

0

〈
Z1
u−,e

1
�

〉〈
dW 2

u,e2
m

〉
,

〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m

〉〈
Z3
t ,e3

n

〉
=
〈
Z1

0 ,e
1
�

〉〈
Z2

0 ,e
2
m

〉〈
Z3

0 ,e
3
n

〉

+
∫ t

0

〈
Z1
u−,e

1
�

〉〈
Z2
u−,e2

m

〉〈
dZ3

u,e3
n

〉

+
∫ t

0

〈
Z3
u−,e3

n

〉
d
(〈
Z1
u,e

1
�

〉〈
Z2
u,e2

m

〉)

=
〈
Z1

0 ,e
1
�

〉〈
Z2

0 ,e
2
m

〉〈
Z3

0 ,e
3
n

〉

+
∑
k3

∫ t
0
a3
nk3
(u,ω)

〈
Z1
u,e

1
�

〉〈
Z2
u,e2

m

〉〈
Z3
u,e

3
k3

〉
du

+
∑
k1

∫ t
0
a1
�k1
(u,ω)

〈
Z3
u,e3

n

〉〈
Z2
u,e2

m

〉〈
Z1
u,e

1
k1

〉
du



MODEL TRACKING FOR RISK PROBLEMS 523

+
∑
k2

∫ t
0
a2
mk2

(u,ω)
〈
Z3
u,e3

n

〉〈
Z2
u,e2

m

〉〈
Z1
u,e

1
k1

〉
du

+
∫ t

0

〈
Z3
u−,e3

n

〉〈
Z2
u−,e2

m

〉〈
dW 1

u,e
1
�

〉

+
∫ t

0

〈
Z3
u−,e3

n

〉〈
Z1
u−,e

1
�

〉〈
dW 2

u,e2
m

〉

+
∫ t

0

〈
Z1
u−,e

1
�

〉〈
Z2
u−,e2

m

〉〈
dW 3

u,e3
n

〉
.

(4.4)

Using (3.2) and recalling that the processes Z1
t , Z2

t , Z3
t , andΛt share no common jumps

under P̄

d
(
Λt
〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m

〉〈
Z3
t ,e3

n

〉)
=
〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m

〉〈
Z3
t ,e3

n

〉
dΛt

+Λtd
(〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m

〉〈
Z3
t ,e3

n

〉)
,

(4.5)

so

Λt
〈
Z1
t ,e

1
�

〉〈
Z2
t ,e2

m

〉〈
Z3
t ,e3

n

〉

=
〈
Z1

0 ,e
1
�

〉〈
Z2

0 ,e
2
m

〉〈
Z3

0 ,e
3
n

〉

+
3∑
i=1

∫ t
0

∫
R+
Λu−

〈
Z1
u−,e

1
�

〉〈
Z2
u−,e2

m

〉〈
Z3
u−,e3

n

〉

×
(∑

j

〈
Ziu−,e

i
j

〉
ν̃i
(
u,eij,x

)
−1

)[
νi(du,dx)−H(dx)du]

+
∑
k3

∫ t
0
a3
nk3
(u,ω)Λu

〈
Z1
u,e

1
�

〉〈
Z2
u,e2

m

〉〈
Z3
u,e

3
k3

〉
du

+
∑
k1

∫ t
0
a1
�k1
(u,ω)Λu

〈
Z3
u,e3

n

〉〈
Z2
u,e2

m

〉〈
Z1
u,e

1
k1

〉
du

+
∑
k2

∫ t
0
a2
mk2

(u,ω)Λu
〈
Z3
u,e3

n

〉〈
Z2
u,e

2
k1

〉〈
Z1
u,e

1
�

〉
du

+martingales.

(4.6)

Simplifying the integrand in the stochastic integral in (4.6) gives

3∑
i=1

∫ t
0

∫
R+
Λu−

〈
Z1
u−,e

1
�

〉〈
Z2
u−,e2

m

〉〈
Z3
u−,e3

n

〉

×

∑

j

〈
Ziu−,e

i
j

〉
ν̃i
(
u,eij,x

)−1


[νi(du,dx)−H(dx)du]

=
3∑
i=1

∫ t
0

∫
R+
Λu−

〈
Z1
u−,e

1
�

〉〈
Z2
u−,e2

m

〉〈
Z3
u−,e3

n

〉

×(ν̃i(u,eij,x)−1
)[
νi(du,dx)−H(dx)du].

(4.7)
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Conditioning each side of (4.6) on �t , under the measure P̄ , and using again [7, Chapter

7, Lemma 3.2] to exchange stochastic integration and conditional expectation estab-

lishes the result.

In this paper, a risk model described by M candidate models was discussed. Detec-

tion filters were derived using measure change techniques.
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