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ON A CLASS OF DIOPHANTINE EQUATIONS

SAFWAN AKBIK

Received 10 June 2001

Cohn (1971) has shown that the only solution in positive integers of the equation Y(Y +
1)(Y +2)(Y +3) = 2X(X+1)(X+2)(X+3) is X = 4, Y = 5. Using this result, Jeyaratnam
(1975) has shown that the equation Y(Y+m)(Y+2m)(Y+3m)= 2X(X+m)(X+2m)(X+
3m) has only four pairs of nontrivial solutions in integers given by X = 4m or −7m,
Y = 5m or −8m provided that m is of a specified type. In this paper, we show that if
m = (m1,m2) has a specific form then the nontrivial solutions of the equation Y(Y +
m1)(Y +m2)(Y +m1+m2)= 2X(X+m1)(X+m2)(X+m1+m2) are m times the primi-
tive solutions of a similar equation with smallerm’s. Then we specifically find all solutions
in integers of the equation in the special case m2 = 3m1.

2000 Mathematics Subject Classification: 11D25, 11D45, 11D09, 11D41.

We generalize the equations of Cohn [1] and Jeyaratnam [2] by considering the

Diophantine equation

Y
(
Y +m1

)(
Y +m2

)(
Y +m1+m2

)= 2X
(
X+m1

)(
X+m2

)(
X+m1+m2

)
. (1)

The trivial solutions of (1) are the sixteen pairs obtained by equating both sides of

the equation to zero. A nontrivial solution with (X,Y ,m1,m2)= 1 is called a primitive

solution.

Theorem 1. If every prime p dividing m= (m1,m2) is such that

p ≡ 2,3,5(mod8) or p ≡ 1(mod8) with 2(p−1)/4 ≡−1(modp), (2)

then every nontrivial solution of (1) is m times a primitive solution of

Y
(
Y +m1

m

)(
Y +m2

m

)(
Y +m1+m2

m

)
= 2X

(
X+m1

m

)(
X+m2

m

)(
X+m1+m2

m

)
. (3)

Theorem 2. If every prime p dividing N is of the form (2), then every nontrivial

solution of

Y(Y +N)(Y +cN)(Y +(1+c)N)= 2X(X+N)(X+cN)(X+(1+c)N) (4)

is N times a nontrivial solution of

Y(Y +1)(Y +c)(Y +1+c)= 2X(X+1)(X+c)(X+1+c), (5)

where c is a positive integer.
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Theorem 3. The equation

Y(Y +1)(Y +3)(Y +4)= 2X(X+1)(X+3)(X+4) (6)

has only four pairs of nontrivial solutions in integers given by X = 14 or −18, Y = 17

or −21.

Theorem 4. If every prime p dividing N is of the form (2), then the equation

Y(Y +N)(Y +3N)(Y +4N)= 2X(X+N)(X+3N)(X+4N) (7)

has only four pairs of nontrivial solutions in integers given by X = 14N or −18N,

Y = 17N or −21N.

Note that Theorem 2 follows immediately by applying Theorem 1 withm1=N,m2=
cN, and m=(N,cN)=N. Also Theorem 4 follows easily by combining Theorem 2, in

the case c = 3, with Theorem 3.

Lemma 5. Every solution of (1) that is not primitive is K = (X,Y ,m1,m2) times a

primitive solution of

Y
(
Y +m1

K

)(
Y +m2

K

)(
Y +m1+m2

K

)
= 2X

(
X+m1

K

)(
X+m2

K

)(
X+m1+m2

K

)
. (8)

Proof. Suppose that X, Y is a solution of (1). By dividing both sides of that equa-

tion by K4 we find

Y
K

(
Y
K
+m1

K

)(
Y
K
+m2

K

)(
Y
K
+m1+m2

K

)

= 2· X
K

(
X
K
+m1

K

)(
X
K
+m2

K

)(
X
K
+m1+m2

K

)
.

(9)

Thus X/K, Y/K is a solution of (8). The lemma follows since (X/K,Y/K,m1/K,
m2/K)= 1.

Lemma 6. Equation (1) cannot have a primitive solution if the greatest common

divisor m= (m1,m2) is divisible by a prime p of the form (2).

Proof. By completing the squares in (1) we find

[(
2Y +m1+m2

)2−m2
1−m2

2

2

]2

−2

[(
2X+m1+m2

)2−m2
1−m2

2

2

]2

=−m2
1m

2
2. (10)

Letting

y = 2Y +m1+m2, (11)

x = 2X+m1+m2, (12)

A= y
2−m2

1−m2
2

2
= 2Y 2+2Y

(
m1+m2

)+m1m2,

B = x
2−m2

1−m2
2

2
= 2X2+2X

(
m1+m2

)+m1m2,

(13)
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we obtain the equations

y2 = 2A+m2
1+m2

2, x2 = 2B+m2
1+m2

2, (14)

A2−2B2 =−m2
1m

2
2. (15)

If 2 |m, then

A2−2B2 =−m2
1m

2
2 �⇒A,B ≡ 0(mod4) �⇒

by (13)
2X2,2Y 2 ≡ 0(mod4)

�⇒X,Y ≡ 0(mod2) �⇒ 2 | (X,Y ,m1,m2
)
≠ 1.

(16)

Let p |m such that p ≡ 3,5(mod8). Assume that p �A, then by (15), p � B. Also by

(15), 1 = (2B2/p) = (2/p) = −1, a contradiction. Thus p | A and hence p | B. By (13),

p |X and Y . Therefore (X,Y ,m1,m2)≠ 1.

Suppose that p |m such that p ≡ 1(mod8) and 2(p−1)/4 ≡−1(modp). If p �A, then

p � B. Since (2/p) = 1, (13) implies that A and B are quadratic residues modp. Thus

B(p−1)/2 ≡A(p−1)/2 ≡ 1(modp). From (15) we find that

2B2 ≡A2(modp) �⇒ 2(p−1)/4B(p−1)/2 ≡A(p−1)2 �⇒ 2(p−1)/4 ≡ 1(modp), (17)

a contradiction. Therefore p | A,B. By (13), p | X,Y and hence (X,Y ,m1,m2)≠ 1 and

the lemmas follows.

Proof of Theorem 1. By Lemmas 5 and 6 and the fact that (m1/K,m2/K) can

only have prime divisors of the form (2), a nontrivial solution of (2) is a multiple of a

primitive solution of (3) with (m1/K,m2/K)=1. This happens when K=(m1,m2)=m
and the theorem follows.

For Theorem 3 we now prove the following lemma.

Lemma 7. The only solution in positive integers of (6) is X = 14, Y = 17.

Proof. Note that (6) can be obtained from (1) by letting m1=1 and m2 = 3. Then

(11), (12), (13), (14), and (15) become

y = 2Y +4, x = 2X+4, (18)

A= 2Y 2+8Y +3, B = 2X2+8X+3, (19)

y2 = 2A+10, x2 = 2B+10, (20)

A2−2B2 =−9. (21)

All solutions in positive integers of (21) are given by

A= Vn, B =Un, (22)

where

Vn+
√

2Un =
(
3+3

√
2
)(

3+2
√

2
)n = 3

(
1+

√
2
)2n+1, n= 0,1,2, . . . . (23)
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Thus

Vn = 3
(
1+√2

)2n+1+3
(
1−√2

)2n+1

2
,

Un = 3
(
1+√2

)2n+1−3
(
1−√2

)2n+1

−2
√

2
.

(24)

Let α= 1+√2 and β= 1−√2, then

α+β= 2, α−β=−2
√

2, αβ=−1,

Vn = 3

(
α2n+1+β2n+1

α+β

)
, Un = 3

(
α2n+1−β2n+1

α−β

)
.

(25)

From (20) and (22), we must have

y2 = 2Vn+10, (26)

x2 = 2Un+10. (27)

Using (25), we can easily find that

V−n =−Vn−1, (28)

U−n =Un−1, (29)

Un+2 = 6Un+1−Un, (30)

Vn+2 = 6Vn+1−Vn. (31)

Let

ηr = α
r +βr
α+β , ξr = α

r −βr
α−β , (32)

then we easily find that

Vn = 3η2n+1, Un = 3ξ2n+1, (33)

ξ2r = 2ξrηr , (34)

η2r = 2η2
r +(−1)r+1 = 4ξ2

r +(−1)r , (35)

ηm+n = ηmηn+2ξmξn, (36)

ξm+n = ξmηn+ξnηm. (37)

Using relations (33), (34), (35), (36), and (37), we get

Vn+r ≡ (−1)r+1Vn
(
modηr

)
, (38)

Vn+2r ≡ Vn
(
modηr

)
, (39)

Un+r ≡ (−1)r+1Un
(
modηr

)
, (40)

Un+2r ≡Un
(
modηr

)
, (41)

η3r = ηr
[
4η2

r +3(−1)r+1
]
, (42)

ξ3r = ξr
[
4η2

r +(−1)r+1
]
. (43)
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Let

θt = ξ2t , φt = η2t , (44)

then we get

θt+1 = 2θtφt, (45)

φt+1 = 2φ2
t −1= 4θ2

t +1=φ2
t +2θ2

t , (46)

φ2
t = 2θ2

t +1. (47)

Using (42), (43), and (44), we find that for k= 2t we have

η6k =φt+1
[
4φ2

t+1−3
]
, (48)

ξ6k = θt+1
[
4φ2

t+1−1
]
. (49)

We will need some of the entries in Tables 1 and 2.

Table 1

n Un Vn
1 15 21

3 507 717

4 2955 4179

11 675176043 954843117

8 3410067 4822563

23 1037608383669414483 1467399848617311837

24 6047624848242867123 8552633080529593443

Table 2

k ηk
2 3

3 7

4 17

6 32 ·11

8 577

12 17·1153

24 97·577·13729

48 193·9188923201·665857

Now we consider the following cases.

(a) Equation (26) is impossible if n ≡ 1(mod3). Let n = 1+3r where r ≥ 0, then

using (38) we get

Vn ≡±V1
(
modη3

)
,

Vn ≡±21≡ 0(mod7).
(50)

Hence 2Vn+10≡ 10≡ 3(mod7). Since (3/7)=−1, (26) is impossible.
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(b) Equation (27) is impossible if n≡ 1,2(mod4). Using (40), we get

Un ≡±U1,±U2
(
modη4

)
,

Un ≡±15,±87≡±2(mod17).
(51)

Hence 2Un + 10 ≡ ±4+ 10 ≡ 6,−3(mod17). Since (6/17) = (−3/17) = −1, (27) is

impossible.

(c) Equation (26) is impossible if n≡ 8(mod12). Using (39) and (28) we get

Vn ≡ V−4 =−V3
(
modη6

)
,

Vn ≡−717≡−2(mod11) since 11 | η6.
(52)

Hence 2Vn+10≡ 6(mod11). Since (6/11)=−1, (26) is impossible.

(d) Equation (26) is impossible if n≡ 11(mod16). Using (39) and (28) we get

Vn ≡ V−5 =−V4
(
modη8

)
,

Vn ≡−4179≡−140(mod577).
(53)

Hence 2Vn+10≡−270(mod577). Since (−270/577)=−1, (26) is impossible.

(e) Equation (26) is impossible if n≡ 11,12(mod24). Using (38) and (28) we get

Vn ≡±V11,±V−12 =±V11,∓V11
(
modη24

)
,

Vn ≡±954843117≡±46(mod97) since 97 | η24.
(54)

Hence 2Vn + 10 ≡ ±102+ 10 ≡ 5,15(mod97). Since (5/97) = (15/97) = −1, (26) is

impossible.

(f) Equation (26) is impossible if n≡ 15(mod24). Using (38) and (28) we get

Vn ≡±V−9 =∓V8
(
modη24

)
,

Vn ≡∓4822563≡±504289(mod1331713) since 1331713 | η24.
(55)

Hence 2Vn + 10 ≡ 323145,1008588(mod1331713). Since (323145/1331713) =
(1008588/1331713)=−1, (26) is impossible.

(g) Equation (26) is impossible if n≡ 23,24(mod48). Using (38) and (28) we get

Vn ≡±V23,±V−24 =±V23,∓V23
(
modη48

)
. (56)

Since V23 = 1467399848617311837 and τ = 9188923201 | η48, we have 2Vn+10 ≡
11299978,−11299958(modτ). Since (11299978/τ) = (−11299958/τ) = −1, (26) is

impossible.

(h) Equation (27) is impossible if n ≡ 3(mod48), n ≠ 3. That is, n = 3+ 3 · 2t ·
r , where t ≥ 4 and r is an odd positive integer. Using (40) we get Un ≡ −U3 =
−507(modη3·2t ). Hence

2Un+10≡−1004
(
modη3·2t

)
. (57)

From (48) we get η3·2t = η6·2t−1 =φt[4φ2
t −3]. Using this in (57) we simultaneously get

2Un+10=−1004
(
modφt

)
,

2Un+10=−1004
(
mod4φ2

t −3
)
.

(58)
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Sinceφt+1 = 2φ2
t −1 andφ3 = 577 we can easily show, by induction, the following for

t ≥ 3

φt ≡ 1(mod8), (59)

φt ≡ 81,69,−17,75,−46,−36(mod251), (60)

when

t ≡ 0,1,2,3,4,5(mod6), (61)

respectively. By (59) we get

(−1004
φt

)
=
(−1
φt

)(
4
φt

)(
251
φt

)
= (1)(1)

(
φt
251

)
=
(
φt
251

)
. (62)

Similarly (−1004/(4φ2
t −3))= ((4φ2

t −3)/251). Using (60) we find that (φt/251)=−1

if t ≡ 2,5(mod6) and ((4φ2
t −3)/251) = −1 if t ≡ 0,1,3,4(mod6). Therefore (27) is

always impossible in this case.

Note that for n = 3 we have U3 = 507 and V3 = 717. Now (22) and (19) imply that

X = 14, Y = 17, a nontrivial solution of (6).

(i) Equation (27) is impossible if n≡ δ(mod48) and n> 0, where δ= 0,−1. That is

n = δ+3k(2r +1) = δ+6kr +3k, where k = 2t , t ≥ 4, and r ≥ 0. Using (40) and (33)

we get

Un ≡±U3k+δ =±3ξ6k+2δ+1
(
modη6k

)
. (63)

The upper and the lower signs depend on whether r is even or odd. Using (37), we get

ξ6k+2δ+1 = ξ6kη2δ+1+ξ2δ+1η6k, (64)

where η2δ+1 = 1,−1 for δ = 0,−1 and ξ2δ+1 = 1 for δ = 0,1. Now (64) becomes

ξ6k+2δ+1 = ±ξ6k +η6k, where the upper and lower signs depend on whether δ = 0

or δ= 1, respectively. Using this in (63) we get

Un ≡±3ξ6k
(
modη6k

)
. (65)

For δ = 0, the upper sign holds if r is even and the lower sign holds if r is odd. For

δ = −1, upper sign holds if r is odd and the lower sign holds if r is even. Using (48)

and (49) in (65) we get

Un ≡±3θt+1

[
4φ2

t+1−1
]
=±3θt+1

[
4φ2

t+1−3+2
](

modφt+1

[
4φ2

t+1−3
])
. (66)

Therefore we simultaneously get Un ≡ ±6θt+1(mod4φ2
t+1−3) and Un ≡ ∓3θt+1

(modφt+1). Thus

2Un+10≡ 10±12θt+1
(
mod4φ2

t+1−3
)
,

2Un+10≡ 10∓6θt+1
(
modφt+1

)
.

(67)

In what follows we need the fact that

θt ≡ 0(mod8), for t ≥ 3, (68)



552 SAFWAN AKBIK

which follows by induction using (45) and θ3 = 408. Now we show that

(
10±12θt+1

4φ2
t+1−3

)
=
(

5±6θt+1

59

)
, (69)

(
10∓6θt+1

φt+1

)
=±

(
10θt±3φt

59

)
. (70)

For (69) we have

(
10±12θt+1

4φ2
t+1−3

)
=
(

2

4φ2
t+1−3

)(
5±6θt+1

4φ2
t+1−3

)

=
(

5±6θt+1

4φ2
t+1−3

)
, using (59)

=
(

5±6θt+1

8θ2
t+1+1

)
, using (47)

=
(

8θ2
t+1+1

5±6θt+1

)
, since θt ≡ 0(mod4)

=
(

36
(
8θ2

t+1+1
)

5±6θt+1

)
=
(

236
5±6θt+1

)

=
(

59
5±6θt+1

)
, since 36θ2

t+1 ≡ 25
(
mod5±6θt+1

)
.

(71)

Equation (69) follows since θt ≡ 0(mod4). For (70) we have

(
10∓6θt+1

φt+1

)
=
(

5∓3θt+1

φt+1

)

=
(

5
(
φ2
t −2θ2

t
)∓3θt+1

φ2
t +2θ2

t

)
, using (46) and (47)

=
(
−20θ2

t ∓6θtφt
φ2
t +2θ2

t

)
, since φ2

t ≡−2θ2
t
(
modφ2

t +2θ2
t
)

=
(

−1

φ2
t +2θ2

t

)(
2

φ2
t +2θ2

t

)(
θt

φ2
t +2θ2

t

)(
10θt±3φt
φ2
t +2θ2

t

)

= (1)(1)(1)
(

10θt±3φt
φ2
t +2θ2

t

)

=
(
φ2
t +2θ2

t
10θt±3φt

)
=
(

9φ2
t +18θ2

t
10θt±3φt

)

=
(

118θ2
t

10θt±3φt

)
, since 9φ2

t ≡ 100θ2
t
(
mod10θt±3φt

)

=
(

2
10θt±3φt

)(
59

10θt±3φt

)
=−

(
59

10θt±3φt

)
.

(72)

Equation (70) follows using (59) and (68).
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Since θ3 = 408, φ3 = 577, φt+1 = 2φ2
t − 1, and θt+1 = 2θtφt , we can inductively

show the following:

θt ≡ 12,5,−12,−5(mod59) if t ≡ 0,1,2,3(mod4),

φt ≡−17,−13(mod59) if t ≡ 0,1,(mod2), respectively.
(73)

Using (73) and taking the upper signs in (69) and (70), we get

(
5+6θt+1

59

)
=−1 if t ≡ 2,3(mod4),

(
10θt+3φt

59

)
=−1 if t ≡ 0,1,2(mod4).

(74)

Thus this case is always impossible. Using the lower signs in (69) and (70) we get

(
5−6θt+1

59

)
=−1 if t ≡ 0,1(mod4),

−
(

10θt−3φt
59

)
=−1 if t ≡ 0,2,3(mod4),

(75)

and this case is also impossible. Therefore (27) is always impossible.

The only remaining case is n = 0. Then U0 = V0 = 0 and so X = Y = 0, a trivial

solution and Lemma 7 is proved.

Proof of Theorem 3. First note that if the pair (X,Y) is a solution of (6), so are

(−X−4,Y ), (X,−Y −4), and (−X−4,−Y −4). Note also that −X−4 <−4 if and only

if X > 0 and −Y −4 < −4 if and only if Y > 0. Since (14,17) is the only solution in

positive integers of (6), (−18,17), (14,−21), (−18,−21) are the only solutions where

each of X and Y is either positive or less than −4. The only remaining possibilities for

more solutions are where X or Y ∈ {−4,−3,−2,−1,0} where there are no nontrivial

solutions and the proof is completed.

Finally note that (6) has 16 trivial solutions and 4 nontrivial solutions of a total of

only 20 solutions.
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