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1. Introduction. The goal of the present paper is to demonstrate a new approach to

the construction of asymptotic solutions to nonlinear evolutionary equations, which

we call the weak asymptotics method.

Usually, by saying that a function is an asymptotic (approximate) solution of a dif-

ferential equation, we mean that this function satisfies the equation with a small dis-

crepancy. The smallness of the discrepancy is understood as the smallness in some

uniform metric under the assumption that a small parameter tends to zero.

A function is called a weak asymptotic solution if, after the substitution of this

function into the equation, there is a discrepancy that is small in the weak sense as a

small parameter tends to zero. In this case the functionals are assumed to depend on

time as on a parameter.

For example, under this approach, the C∞-approximation of a generalized function

turns out to be its weak asymptotics and we can choose generalized functions to be

the initial conditions and use their approximations for constructing the solutions. In

this case, we obtain a small parameter, which is either the parameter of approximation

or the small parameter in the original equation. In the latter case, this original small

parameter is taken to be the parameter of approximation.

In fact, this approach is close to the ideas proposed by Colombeau and other authors

who constructed different algebras of generalized functions. The difference is that

in our approach the mollifier is chosen not from the consideration of the algebraic

construction but from the consideration of the original differential equation.

In some cases (shock waves), the solution is independent of the choice of the mol-

lifier, while in other cases (solitons, kinks) the solution depends on this choice.

If the original equation contains a small parameter, then we, in fact, deal with reg-

ularizations by small viscosity or small dispersion. In this case, to calculate a weak

asymptotics, we need to calculate the zero viscosity and zero dispersion limits. Hence

we arrive at the problem of constructing a definition of a weak solution which admits

this passage to the limit.
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It turned out that the approach developed here can be used for describing both the

propagation of nonlinear waves and, which is the most important, their interaction.

In what follows, we consider the main technical tools and some examples which allow

us to demonstrate the abilities of our approach.

2. Some weak asymptotic formulas

2.1. Let ω(z) ∈ S(R1), where S is the Schwartz space. We consider the function

(1/ε)ω((x−a)/ε) and calculate its weak asymptotics. Treating (1/ε)ω((x−a)/ε) as

a generalized function, for any function η(x)∈ C∞0 we have

〈
1
ε
ω
(
x−a
ε

)
,η(x)

�
= 1
ε

∫
ω
(
x−a
ε

)
η(x)dx =

∫
ω(z)η(a+εz)dz

=
∑
k≥0

Ωk
εk

k!
(−1)k

〈
δ(k)(x−a),η〉, ε > 0,

(2.1)

where the last relation is formal and means that the left-hand side can be represented

as the asymptotic series given on the right-hand side,

Ωk =
∫
ω(z)zkdz. (2.2)

We define by O�′(εα) an element of �′ such that

f(x,ε)=O�′(εα)⇐⇒
〈
f(x,ε),η(x)

〉=O(εα), (2.3)

where the lastO-estimate (which must hold for any function η(x)∈ C∞0 ) is understood

in the usual sense. Then for any N we can write

1
ε
ω
(
x−a
ε

)
=

N∑
k=0

Ωk
εk

k!
(−1)kδ(k)(x−a)+O�′

(
εN+1). (2.4)

2.2. Let ω1(z),ω2(z) ∈ S(R1). Consider the weak asymptotics of the product

ω1((x−a1)/ε)ω2((x−a2)/ε). We have〈
ω1

(
x−a1

ε

)
ω2

(
x−a2

ε

)
,η(x)

�
=
∫
ω1

(
x−a1

ε

)
ω2

(
x−a2

ε

)
η(x)dx

= εη(a1
)∫
ω1(z)ω2

(
z− ∆a

ε

)
dz+O(ε2)

= εη(a2
)∫
ω1

(
z+ ∆a

ε

)
ω2(z)dz+O

(
ε2),

∆a= a2−a1.

(2.5)

Finally, we obtain the following formula that is uniform and symmetric in a1,a2:

ω1

(
x−a1

ε

)
ω2

(
x−a2

ε

)
= 1

2

[
εδ
(
x−a1

)+εδ(x−a2
)]
B
(
∆a
ε

)
+O�′

(
ε2), (2.6)

where

B
(
∆a
ε

)
=
∫
ω1(z)ω2

(
z− ∆a

ε

)
dz =

∫
ω1

(
z+ ∆a

ε

)
ω2(z)dz. (2.7)



GENERALIZED SOLUTIONS DESCRIBING SINGULARITY INTERACTION 483

2.3. Now let ω1(z),ω2(z) ∈ C∞, dωi/dz ∈ S(R1), limz→−∞ωi = 0, limz→∞ωi = 1,

i= 1,2.

Calculate the weak asymptotics of the derivative

d
dx
ω1

(
x−a1

ε

)
ω2

(
x−a2

ε

)
= 1
ε
ω̇1

(
x−a1

ε

)
ω2

(
x−a2

ε

)

+ 1
ε
ω1

(
x−a1

ε

)
ω̇2

(
x−a2

ε

)
.

(2.8)

Just as previously, we have

1
ε
ω̇1

(
x−a1

ε

)
ω2

(
x−a2

ε

)
+ 1
ε
ω1

(
x−a1

ε

)
ω̇2

(
x−a2

ε

)

= δ(x−a1
)
B1

(
∆a
ε

)
+δ(x−a2

)
B2

(
∆a
ε

)
+O�′(ε),

(2.9)

where

B1

(
∆a
ε

)
=
∫
ω̇1(z)ω2

(
z−∆a

ε

)
dz, B2

(
∆a
ε

)
=
∫
ω1

(
z+∆a

ε

)
ω̇2(z)dz. (2.10)

We have

B1(∞)= 0, B1(−∞)= 1, B1(z)+B2(z)≡ 1. (2.11)

Calculating the primitive, we obtain

ω1

(
x−a1

ε

)
ω2

(
x−a2

ε

)
= θ(x−a1

)
B1

(
∆a
ε

)
+θ(x−a2

)
B2

(
∆a
ε

)
+O�′(ε). (2.12)

2.4. Under the assumptions of item (b) and the condition that
∫
ωi(z)dz = 1, the

functions ωi((x − ai)/ε) are approximations (weak asymptotics) of the functions

εδ(x−ai),

ωi
(
x−ai
ε

)
= εδε,i

(
x−ai

)
. (2.13)

Hence we can rewrite (2.6) as

εδε,1
(
x−a1

)
εδε,2

(
x−a2

)= 1
2

[
εδ
(
x−a1

)+εδ(x−a2
)]
B
(
∆a
ε

)
+O�′

(
ε2). (2.14)

In a similar way, under the assumptions of Section 2.3, ωi((x−a1)/ε) = θε,i(x−ai)
are approximations of the Heaviside θ-function. Hence we can rewrite (2.12) as

θε,1
(
x−a1

)
θε,2

(
x−a2

)= θ(x−a1
)
B1

(
∆a
ε

)
+θ(x−a2

)
B2

(
∆a
ε

)
+O�′(ε). (2.15)

3. Nonlinear structures. We show how the above formulas can be used to describe

interaction of nonlinear structures.
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3.1. Interaction of shock waves for the Hopf equation. Consider the Cauchy

problem

L[u]=ut+
(
u2)

x = 0, u|t=0 =u0+u1θ
(−x+a1

)+u2θ
(−x+a2

)
, (3.1)

where ui are positive constants, a2 <a1. We approximate the initial condition accord-

ing to the formulas from Section 2.3 and seek the weak asymptotics of the solution

in the form

uε(x,t)=u0+u1θε,1
(−x+ϕ1(t,ε)

)+u2θε,2
(−x+ϕ2(t,ε)

)
,

ϕ1(0)= a1, ϕ2(0)= a2.
(3.2)

Calculating the weak asymptotics of the expression (uε)2 according to the formulas

from Section 2.3, we obtain

(
uε
)2 =u2

0+
(
u2

1+2u0u1
)
θ
(−x+ϕ1

)+u2
0+
(
u2

2+2u0u2
)
θ
(−x+ϕ2

)

+2u1u2

[
θ
(−x+ϕ1

)
B1

(
∆ϕ
ε

)
+θ(−x+ϕ2

)
B2

(
∆ϕ
ε

)]
+O�′(ε),

(3.3)

where

B1

(
∆ϕ
ε

)
=
∫
ω̇1(z)ω2

(
z+ ∆ϕ

ε

)
dz,

B2

(
∆ϕ
ε

)
=
∫
ω1

(
z− ∆ϕ

ε

)
ω̇2(z)dz, ∆ϕ =ϕ2−ϕ1,

(3.4)

and, in contrast to Section 2.3, we have B1(−∞) = 0, B1(∞) = 1, but as before, B1+
B2 ≡ 1.

We substitute the approximation ofuε(x,t) into the Hopf equation and require that

the relation L[uε]=O�′(ε)must be satisfied (this is the definition of the weak asymp-

totics solution in this case). Moreover, the function L[uε] must be weakly piecewise

continuous with respect to t for each fixed ε. We obtain

L
[
uε
]= 2∑

k=1

[
uk
dϕk
dt

−2u0uk−u2
k−2u1u2Bk

(
∆ϕ
ε

)]
δ
(−x+ϕk)+O�′(ε). (3.5)

Hence, in view of the definition of the weak solution, we have

dϕk
dt

= 2u0+uk+2u3−kBk
(
∆ϕ
ε

)
, k= 1,2. (3.6)

For ∆ϕ< 0 (before the interaction) we have B1(∆ϕ/ε)= 0 and B2(∆ϕ/ε)= 1 up to

O(εN) and (3.6) describe the propagation of noninteracting shock waves. We write

ϕ10 =
(
2u0+u1

)
t+a1, ϕ20 =

(
2
(
u0+u1

)+u2
)
t+a2, (3.7)

thenψ0(t)=ϕ20−ϕ10 is the distance between the fronts of noninteracting waves. At

time t∗,ψ0(t∗)= 0, the fronts merge. To construct a formula that is uniform in t and

represents a weak asymptotic solution, we seek the phasesϕk(t,ε) of shock waves in

the form

ϕk(t,ε)=ϕk0(t)+ψ0φk1(τ), (3.8)
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where τ =ψ0(t)/ε and it is assumed that

φk1(τ)
∣∣
τ→−∞ = 0,

φk1

dτ

∣∣∣∣|τ|→∞ = o
(
τ−1). (3.9)

Calculating the limit values of φk1(∞) = φ+k1, we obtain formulas that describe the

coordinates of the fronts of shock waves ϕ+
k (t) after the interaction. Substituting

expressions (3.8) into (3.6), we obtain

dϕk0

dt
+ dψ0

dt
d
dτ
[
τϕk1(τ)

]= 2u0+u1+2u3−kBk
(
∆ϕ
ε

)
, k= 1,2. (3.10)

We calculate the difference of these equation

dρ
dτ

= F(ρ), ρ = ∆ϕ
ε
, F(ρ)= 2B2(ρ)−1. (3.11)

The boundary condition for this equation has the form ρ/τ|τ→−∞ → 1. The equation

F(ρ)= 0 has a single root ρ0 and B2(ρ0)= B1(ρ0)= 1/2, which implies that after the

interaction (ψ0 > 0, τ =ψ0/ε→∞) the wave fronts move with the same velocity

dϕ+
k

dt
= 2u0+u1+u2, k= 1,2. (3.12)

From (3.6) for the functions φk1 we obtain

φk1 = (−1)k−1 2u3−k(
u1+u2

)
τ

∫ τ
0

[
B2(ρ)−1

]
dτ′. (3.13)

The weak limit u0(x,t) of the weak asymptotic solution uε(x,t) satisfies the classical

definition of the generalized solution (in the form of integral identity) and the stability

condition.

3.2. Interaction of weak discontinuities. Generation and decay of shock waves.

We again consider the Hopf equation and pose the following initial condition:

u|t=0 =u0
0+u0

1

(
a1−x

)
+−u0

1

(
a2−x

)
+, (3.14)

where a1 >a2, z+ = zθ(z), u0
i = const> 0 (see Figure 3.1).

We seek the weak asymptotic solution in the form

uε(x,t)=u0+u1
(
ϕ1(t,ε)−x

)
θε,1

(−x+ϕ1(t,ε)
)

−u2
(
ϕ2(t,ε)−x

)
θε,2

(−x+ϕ2(t,ε)
)
.

(3.15)

In this case, the equations for the functions ui =ui(t,ε) andϕi =ϕi(t,ε) are derived

by using a somewhat different technique than that used for studying shock waves.

Substituting the approximation of uε(x,t) into the equation and taking into account

the definition, we obtain(
u1
(
ϕ1−x

)
+
)
t−
(
u2
(
ϕ2−x

)
+
)
t+
(
u2

1

(
ϕ1−x

)2
+
)
x
+
(
u2

2

(
ϕ2−x

)2
+
)
x

+2
[
u0u1

(
ϕ1−x

)
+
]
x−2

[
u0u2

(
ϕ2−x

)
+
]
x

−2
[
u1u2

(
ϕ1−x

)(
ϕ2−x

)
θ
(
ϕ1−x

)]
xB1

(
∆ϕ
ε

)

−2
[
u1u2

(
ϕ1−x

)(
ϕ2−x

)
θ
(
ϕ2−x

)]
xB2

(
∆ϕ
ε

)
= 0, ∆ϕ =ϕ2−ϕ1.

(3.16)
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ξ

0 xa2 a1

u0

U0

Figure 3.1

Consider the domain ϕ2 <x ≤ϕ1. We obtain

u1t
(
ϕ1−x

)+u1ϕ1t+2
[
u0u1

(
ϕ1−x

)]
x

−
[
u2

1

(
ϕ1−x

)2
]
x
+2u1u2

(
ϕ1−x

)
B1+2u1u2

(
ϕ2−x

)
B2 = 0.

(3.17)

We set x =ϕ1. Since we have ∂ui/∂x ≡ 0 in our example, we obtain

u1ϕ1t−2u0u1+2u1u2∆ϕB1 = 0. (3.18)

Substituting (3.18) into (3.17), we arrive at the following equation for the function u1:

u1t−2u2
1+4u1u2B1 = 0. (3.19)

In a similar way, considering the domain −∞ < x ≤ ϕ2, we obtain the other two

equations

ϕ2t−2u0+2u1∆ϕB2

(
∆ϕ
ε

)
= 0,

u2t+2u2
2−4u1u2B2

(
∆ϕ
ε

)
= 0, ∆ϕ =ϕ2−ϕ1.

(3.20)

Let ∆ϕ < 0, then, up to O(εN), we have B1(∆ϕ/ε) = 0, B2(∆ϕ/ε) = 1 and obtain

the following system of equations describing the evolution of the broken line until it

turns over: (
ϕ10

)′
t−2u0 = 0,

(
ϕ20

)′
t−2u0+2u10

(
ϕ20−ϕ10

)= 0,(
ϕ10

)′
t−2

(
u10

)2 = 0,
(
u20

)′
t+2u2

20−4u10u20 = 0.
(3.21)

Solutions of this system have the form

u10(t)=u20(t)= u0
1

1−2tu0
1

,

ϕ10 = a1+2u0t, ϕ20 = a2+2
[
u0

1

(
a1−a2

)+u0
]
t.

(3.22)

We write ψ0 =ϕ20(t)−ϕ10(t). At time t = t∗ such that ψ0(t∗) = 0 the weak dis-

continuities merge and a shock wave is generated.
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To construct formulas that are uniform in t and describe the confluence of weak

discontinuities and the generation of a shock wave, we seek the solution of (3.21) in

the form

ϕk(t,ε)=ϕk0(t)+ψ0φk1(τ), τ = ψ0

ε
, (3.23)

where the functions φk1(τ) satisfy the same conditions as in Section 3.1.

We seek the functions uε(t,ε) in the form

uk(t,ε)= ψ0(0)u0
1

ψ0+εgk(τ) . (3.24)

Here we assume that the functions gk(τ) behave in the same way as the functions

φk1(τ) and take into account the relation

u10

u0
1

= 1

1−2tu0
1

= ψ0(0)
ψ0(t)

, (3.25)

follows from the equation ψ0t + 2u10ψ0 = 0. After simple calculations we see that

the function g = g1 = g2 satisfies the equation ġ+2(1−B2(ρ)) = 0 and the function

ρ = ρ(τ)=∆ϕ/ε is a solution of the boundary problem

ρ̇ = 1−2B1(ρ),
ρ
τ

∣∣∣∣
τ→−∞

�→ 1. (3.26)

As before, the equation ρ̇ = 1−2B1(ρ) has a single root ρ = ρ0 such that B1(ρ0) =
B2(ρ0)= 1/2 and ρ→ ρ0 as τ →∞. This allows us to calculate the solution for∆ψ0 > 0

(i.e., after the interaction) or as τ →∞.

We introduce the function G(τ)= τ+g(τ). Obviously, Ġ = ρ̇, G/τ|τ→−∞ →+1, and

we choose

G =−
∫∞
−∞

(
1−2B1(ρ)

)
dτ′ +ρ0. (3.27)

On the other hand, we can express the functions ui via the function G

ui = ψ0(0)u0
1

εG
τ→∞
�������������������������������������������������������������������������������������������������������������������→ ψ0(0)u0

1

ερ0
. (3.28)

We calculate the limit (ϕk)+t as τ →∞ of the velocities of the weak discontinuities

(
ϕ2
)+
t = 2u0− 2ψ0(0)u0

1

ερ0

1
2
ερ0 = 2u0+

(
a1−a2

)
u0

1,

(
ϕ1
)+
t = 2u0− 2ψ0(0)u0

1

ερ0

1
2
ερ0 = 2u0+

(
a1−a2

)
u0

1,
(3.29)

which coincides with the velocity of the shock wave

U(x,t)=u0+
(
a1−a2

)
u0

1θ
(−x+ϕ+(t)

)
, (3.30)

whereϕ+ = (ϕ+
2 )t = (ϕ−

1 )t . By using the explicit formula for the solution uε(x,t), we

can easily show that

w− lim
ε→0
uε(x,t)=U(x,t), t > t∗. (3.31)



488 V. G. DANILOV

To this end, we rewrite the above-constructed solution uε(x,t) in the form

uε(x,t)=u0+u1
(
ϕ1−ϕ2

)
θε,1

(
ϕ1−x

)
+u1

(
x−ϕ2

)[
θε,2

(
ϕ2−x

)−θε,1(ϕ1−x
)]
.

(3.32)

Consider the second term. We have

u1
(
ϕ1−ϕ2

)= ψ0(0)u0
1ρ

G
=ψ0(0)u0

1 =
(
a1−a2

)
u0

1
def= U0. (3.33)

Since ϕ1|t>t∗ �ϕ+, the first two terms pass into the shock wave U(x,t) for t > t∗.

Consider the last term

u1
(
x−ϕ2

)[
θε,2

(
ϕ2−x

)−θε,1(ϕ1−x
)]

=u1
(
ϕ1−ϕ2

)[θε,2(ϕ2−x
)−θε,1(ϕ1−x

)
ϕ1−ϕ2

](
x−ϕ2

)
.

(3.34)

As was already shown, the coefficient of the expression in front of braces is a con-

stant. The expression in square brackets is an approximation of the δ-function at the

pointϕ2. Hence the entire expression in braces is small (in a uniform metric) as ε→ 0.

We study the problem in which a shock wave is generated by a special (piecewise

linear) initial condition. The case of a general smooth initial functions can be treated

similarly. Here we need to consider a family of linear interpolations of this initial

condition and to use the above technique on segments of the broken line.

To study this problem in more detail, we note that we have considered only one

possibility of evolution of the broken line, namely, formation of a step. Another mech-

anism of evolution is as follows: segments of the broken line are added to the step

that has already been formed. This is the confluence of a weak discontinuity and a

shock wave.

Now we again consider the Hopf equation in order to study this mechanism. The

initial condition corresponding to this type of interaction has the form

u|t=0 =u0
0θ
(
a0

1−x
)+u0

1

(
a1−x

)
θ
(
a1−x

)−u0
1

(
a2−x

)
θ
(
a2−x

)
, (3.35)

where u0
0, u0

1 are positive constants and a1 >a2 (see Figure 3.2).

Just as before, we construct the approximation of the solution in the form

uε(x,t)=u0θε,1
(
ϕ1−x

)+u1
(
ϕ1−x

)
θε,1

(
ϕ1−x

)−u1
(
ϕ2−x

)
θε,2

(
ϕ2−x

)
, (3.36)

where ui =ui(t,ε),ϕi =ϕi(t,ε). Substituting this expression into the Hopf equation,

we obtain the system of equations (cf. (3.18), (3.19), and (3.20))

ϕ1t−u0+2u1ψB1 = 0, u1t−2u2
1+4u2

1B1 = 0,

ϕ2t−2u0B2+2u1ψB2 = 0, u0t−u0u1
(
1−2B1

)= 0,
(3.37)

where Bi = Bi(∆ϕ/ε) are the functions derived above, ∆ϕ = ϕ2 −ϕ1. Before the

interaction, we have ϕ2 < ϕ1, ∆ϕ/ε ∼ −∞, and B1 = 0, B2 = 1 with arbitrary accu-

racy in ε. Denoting by ϕ10, u10, ϕ20, u00 the solution of system (3.37) with B1 = 0,

B2 = 1, we obtain the following system of equations for these functions:

ϕ10t =u00, u10t = 2u2
10, u00t =u00u10,

ϕ20t = 2
(
u00−u10ψ0

)
, ψ0 =ϕ20−ϕ10.

(3.38)
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ξ

0 xa2 a1

u0
0

U

Figure 3.2

It is easy to find the solution of this system

u10 = u0
1

1−2u0
1t
, u00 = u0

0(
1−2u0

1t
)1/2 ,

ϕ20 = a2+2Ut, ϕ10 = a1+
∫ t

0
u00dt,

ψ0 = 1

u0
1

[(
ψ0

0u
0
1−u0

0

)(
1−2u1

0t
)−u0

0

√
1−2u1

0t
]
,

U =u0
0+u0

1

(
a1−a2

)
.

(3.39)

One can easily see that the function ψ0(t) vanishes at the two points t1 = 1/2u1
0

and t∗ such that
√

1−2u1
0t∗ =

u0
0

U
. (3.40)

Obviously, t∗ < t1 and the free singularities supports x =ϕ10 and x =ϕ20 merge at

t = t∗. In this case we have

u00
(
t∗
)=u∗00 ≡U, u10

(
t∗
)= U2(

u0
0

)2u
0
1 <∞. (3.41)

Thus in this example the mechanism of formation of a new shock wave consists not

in turning over the inclined segment of the broken line, as in the preceding example,

but in the disappearance of this inclined segment due to increasing vertical segment.

Subtracting the first equation from the third equation in (3.37), we obtain the fol-

lowing equation for the function ψ:

ψt =
(
u0−2ψu1

)(
1−2B1

(
∆ϕ
ε

))
(3.42)

or, denoting ρ =∆ϕ/ε = (ψ0+ψ0ψ1(τ))/ε, τ =ψ0/ε,

ψ′0ρ̇ =
[
u0−2ψu1

](
1−2B1(ρ)

)
,
ρ
τ

∣∣∣∣
τ→−∞

�→ 1. (3.43)
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Note that we can use the formula for ψ0 (and for the functions u00 and u10) only for

t ∈ [0, t∗+δ], where δ > 0 is any number such that δ < t1−t∗.

To obtain formulas that are global in t, we need to choose a number δ and continue

the functions u00, u10, and ψ0 smoothly to the time t ≥ t∗ +δ so that the sign is

preserved. Calculating the coefficient of u0−2ψu1, one can easily see that ρ > 0 for

t < t∗. Hence there exists a solution ρ→ ρ0, where ρ0 is a root of the equation

B1(ρ)= 1
2
. (3.44)

Consider the system of equations for the functions u0 and u1. By the change u0 =
u0

0

√
u1/u0

1, this system can be reduced to the single equation for u1:

u1t−2u2
1

(
1−2B1

)= 0. (3.45)

Its solution has the form

u1(t,ε)= u0
1

1−2u0
1

∫ t
0

[
1−2B1

(
ρ(τ)

)]
dt′
. (3.46)

Clearly, we have u1(t∗,ε) ≤ u10(t∗) (since
∫ t∗
0 (1−2B1)dt′ ≤ t∗). On the other hand,

we have t > t∗ for ρ → ρ0. Therefore, ψ1(τ)→ −1 as τ →∞ and hence (∆ϕ)→ 0 as

τ →∞ (i.e., for t > t∗, ε→ 0). This implies that for t > t∗ we have

u1(t,ε)=u10
(
t∗
)+o(1), ε �→ 0. (3.47)

We represent the above-constructed solution in the form

uε(x,t)=Uθε,1
(
ϕ1−x

)+(u0−U
)[
θε,1

(
ϕ1−x

)−θε,2(ϕ2−x
)](
ϕ2−x

)
+[θε,1(ϕ1−x

)−θε,2(ϕ2−x
)](
ϕ2−x

)
u1.

(3.48)

Obviously, for t > t∗, ε→ 0, the first term approximates the shock wave

u=Uθ(a1+Ut−x
)

(3.49)

and in this case the second term vanishes sinceu0−U → 0 and the third term vanishes

sinceϕ1−ϕ2 =∆ϕ→ 0. Recall thatψ0t =u00−2ψ0u10 for t < t∗. In view of (3.42), we

can continue the function ψ0t for t > t∗ in the form ψ0t =U . In this case the function

u0−2ψu1 is continuous uniformly in ε for t = t∗ and we can show that the function

ρ is a solution of the boundary value problem

ρ̇ = (1−2B1(ρ)
)
,
ρ
τ

∣∣∣∣
τ→−∞

�→ 1. (3.50)

The system of equations determining the weak asymptotic solution in this case also

splits into separate equations.

Now we briefly consider the problem of decay of nonstable shock waves.

One can easily see that by setting vT,ε(x,t) = uε(x,T − t), T > t∗, we obtain a

T -dependent family of weak asymptotic solutions of the equation vt−(v2)x = 0.
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For t = 0 the solutions of this family are shock waves (unstable for this new equa-

tion). The weak limit of these solutions for 0 ≤ t < T − t∗ is a shock wave, and for

t > T − t∗ is a broken line consisting of two moving weak discontinuities into which

the unstable shock wave splits at time t∗(T)= T −t∗ (which is not unique).

3.3. Interaction of shock waves in the multidimensional case. Consider the two-

dimensional nonlinear equation arising in the reservoir problem

L[u]= ∂u
∂t
+A1

∂u2

∂x1
+A2

∂u2

∂x2
= 0. (3.51)

The above approach can be easily generalized to the case of an arbitrary dimension

if the codimension of the front of the nonlinear wave is 1. We assume that A1 = A2

are positive constants.

We choose the initial conditions as

u|t=0 =u0+u1θ
(
t+ψ1(x)

)+u2θ
(
t+ψ1(x)

)
, (3.52)

where x = (x1,x2), ui are positive constants, andψi(x) are the desired functions. We

write Γ 0
i = {x,ψi(x)= 0}.

Clearly, the curves Γ 0
i are given initial positions of the fronts of two shock waves

whose sum is just the initial condition. In addition, we assume that the curves Γ 0
i are

transversal to the vector field 〈 �A,∇〉, �A = (A1,A2) and Γ 0
2 is the cross-section of the

(trivial) fibration over Γ 0
1 whose fibers are straight lines parallel to the vector �A. In

addition, we assume that the motion from the points of Γ 0
2 to the points of Γ 0

1 is in the

direction of the vector �A. In this case the fact that u1,u2 are positive constants is a

sufficient condition of stability.

If the functionsψi(x) are known, then the curves (level surfaces) Γ ti {x,t+ψi(x)=0}
determine the fronts of shock waves at time t.

Acting as before (see Section 3.1), we substitute the approximation

uε(x,t)=u0+u1θε,1
(
t+ψ1(x,ε)

)+u2θε,2
(
t+ψ2(x,ε)

)
(3.53)

into (3.51) and calculate the weak asymptotics of L[uε]. We obtain

L
[
uε
]= δΓ t1

[
1+〈 �A,∇ψ1

〉(
u1+2u0+2u2B1

(
∆ψ
ε

))]

+δΓ t2
[

1+〈 �A,∇ψ2
〉(

2u0+u2+2u1B2

(
∆ψ
ε

))]
+O�′(ε),

∆ψ=ψ2−ψ1.

(3.54)

Here the functions B1 and B2 are the same as in Section 3.1. Formulas for the weak

asymptotics in the multidimensional case are carried out in the same way as in the

one-dimensional case.

Roughly speaking, the (two-dimensional) integral becomes an iterated integral over

the surface Γ ti and over the normal to this surface. The asymptotics of the integral

along the normal is calculated in the same way as in the one-dimensional case, see [2].
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It follows from our assumptions that the inequality ∆ψ < 0 holds for sufficiently

small positive t. Hence, we have ∆ψ/ε ∼ −∞ and for small t we obtain the following

equations describing the system of noninteracting fronts:

1+〈 �A,∇ψ1
〉(
u1+2u0

)= 0, 1+〈 �A,∇ψ2
〉(
u2+2u1+2u0

)= 0. (3.55)

Clearly, these equations determine the (limit) functionsψk0 if the curves Γ 0
i on which

they vanish are given.

Dividing these equations by |∇ψi| and taking into account the fact that, in view of

our formulas, the waves travel in the direction of decreasing functionsψk0(x), we can

rewrite the last system as

V(1)n1
= 〈 �A, �n1

〉(
u1+2u0

)
, V (2)n2

= 〈 �A, �n2
〉(
u2+2u1+2u0

)
, (3.56)

where ni is the normal (at a point) to Γ ti , V(i)ni is the normal velocity of this point.

Clearly, the velocities of the points of the curve Γ t2 are larger than the velocities of

the points of the curve Γ t2 along the trajectories of the field 〈 �A,∇〉, but the distance

between the curves Γ ti along the trajectory depends, in general, on the point.

Therefore, since the shape of these curves is rather arbitrary, there may be no com-

plete confluence of these curves at their contact. A new shock wave with summary

amplitude u1+u2 is generated at the points of contact. This shock wave travels with

its new velocity, and the solution may be of a rather complicated structure. To describe

this wave uniformly in time, we seek the solution of the system

1+〈 �A,∇ψ1
〉(
u1+2u0+2u2B1

(
∆ψ
ε

))
= 0,

1+〈 �A,∇ψ2
〉(
u2+2u0+2u1B2

(
∆ψ
ε

))
= 0

(3.57)

in the form

ψk(x,ε)=ψk0(x)+φ0(x)ψk1

(
φ0

ε

)
, (3.58)

where φ0 =ψ20(x)−ψ10(x). Note that, in view of our assumptions on the geometry,

instead of the coordinates (x1,x2), we can introduce the coordinates (s,ξ), where s
are the coordinates on Γ 0

2 and ξ is a parameter on the trajectories of the vector field

〈 �A,∇〉.
Hence we, in fact, “calculate the distance” between the curves Γ+i (i.e., the differences

∆ψ, φ0) along the trajectories of the field 〈 �A,∇〉.
Preserving, instead of d/dξ, the notation 〈 �A,∇〉, substituting (3.57) into (3.55), and

taking into account (3.58), we obtain

2
〈 �A,∇ψ10

〉
u2B1+

〈 �A,∇φ0
〉 d
dτ
(
τψ11

)[
U0+2u2

(
B1− 1

2

)]
= 0,

−2u1
〈 �A,∇ψ20

〉+2
〈 �A,∇ψ20

〉
u1B2+

〈 �A,∇φ0
〉 d
dτ
(
τψ21

)[
U0+2u1

(
B2−1

2

)]
=0.

(3.59)

Here U0 =u1+u2+2u0, τ =φ0/ε.
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The further is similar to that in the one-dimensional case. Its first stage is to obtain

an equation for the function ρ =∆ψ/ε = (φ0/ε)(1+ψ21(τ)−ψ11(τ))
def= τ(1+φ1(τ)).

Next, we calculate the limits of the functions Bk(ρ) as τ → ∞ (after the interaction)

and find equations for the limit functions ψ+k as well as equations for ψk1(τ).
Subtracting the first equation in (3.59) from the second one and carrying out several

calculations, we obtain the desired equation for ρ

ρ̇=1−1−B2(ρ)
u1+u2

[
2u2U2

U0−2u2
(
B2−1/2

) + 2u1U1

U1+2u1
(
B2−1/2

)], ρ
τ

∣∣∣∣
τ→−∞

�→ 1. (3.60)

One can show that the right-hand side of this equation (that differs, as one can see,

from that in the similar equation in the one-dimensional case) also has a single root

ρ0 and B2(ρ0)= 1/2 (and hence B1(ρ0)= 1/2).

Hence it follows from (3.55) that, for the same values of s for which a point of the

curve Γ+1 “outruns” the curve Γ+1 , we have

1+〈 �A,∇ψ+k 〉(u1+u2+2u0
)= 0, k= 1,2. (3.61)

This implies that ψ+1 = ψ+2 and for a given s, after the confluence of the curves,

a wave with summary amplitude u1 +u2 travels in the direction of �A. Thus, for a

fixed s, the dynamics of interaction in the direction of �A is similar to that in the one-

dimensional case.

Here we do not write out the equations for ψk1. They can be obtained in the same

way as the similar equations in the one-dimensional case.

4. Conclusion. The problem of shock wave interaction in the one-dimensional case

is presented in [3, 4, 5] not only for the Hopf equations but also for equations with

sufficiently general nonlinearity. The formulas from Section 2 are derived there in

more detail.

Similarly, in the multidimensional case one can easily generalize our construction

to the case of more general nonlinearities, variable coefficients and amplitudes.

For reasons of space, here we do not consider the problem of constructing defi-

nitions of weak solutions. This problem is discussed in [1, 2, 4]. In particular, in [4]

a definition of a weak solution is constructed for KdV type equations admitting the

zero dispersion limit for soliton type solutions.
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