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We define and investigate a family of complex-valued harmonic convex univalent func-
tions related to uniformly convex analytic functions. We obtain coefficient bounds, extreme
points, distortion theorems, convolution and convex combinations for this family.
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1. Introduction. A continuous complex-valued function f = u+ iv defined in a

simply connected complex domain �⊂ C is said to be harmonic in � if both u and v
are real harmonic in �. Consider the functions U and V analytic in � so that u=�U
and v =�V . Then the harmonic function f can be expressed by

f(z)= h(z)+g(z), z ∈�, (1.1)

where h = (U +V)/2 and g = (U −V)/2. We call h the analytic part and g the co-

analytic part of f . If the co-analytic part of f is identically zero then f reduces to the

analytic case.

The mapping z� f(z) is sense-preserving and locally one-to-one in � if and only

if the Jacobian of f is positive (see [1]), that is, if and only if

Jf (z)=
∣∣h′(z)∣∣2−∣∣g′(z)∣∣2 > 0, z ∈�. (1.2)

Let � denote the family of functions f = h+ḡ which are harmonic, sense-preserving,

and univalent in the open unit disk ∆= {z : |z|< 1} with h(0)= f(0)= fz(0)−1= 0.

Thus, we may write

h(z)= z+
∞∑
n=2

anzn, g(z)=
∞∑
n=1

bnzn,
∣∣b1

∣∣< 1. (1.3)

Also let � denote the subclass of � consisting of functions f = h+ ḡ so that the

functions h and g take the form

h(z)= z−
∞∑
n=2

∣∣an∣∣zn, g(z)=−
∞∑
n=1

∣∣bn∣∣zn, ∣∣b1

∣∣< 1. (1.4)

Recently, Kanas and Wisniowska [5] (see also Kanas and Srivastava [4]), studied the

class of k-uniformly convex analytic functions, denoted by k-���, 0≤ k <∞, so that

h∈ k-��� if and only if

�
{

1+(z−ζ)h
′′(z)
h′(z)

}
≥ 0, |ζ| ≤ k, z ∈∆. (1.5)
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For real φ we may let ζ =−kzeiφ. Then condition (1.5) can be written as

�
{

1+(1+keiφ)zh′′(z)
h′(z)

}
≥ 0. (1.6)

Now considering the harmonic functions f = h+ ḡ of the form (1.3) we define the

family ���(k,α), 0≤α< 1, so that f = h+ ḡ ∈���(k,α) if and only if

�
{

1+(1+keiφ)z2h′′(z)+2zg′(z)+z2g′′(z)
zh′(z)−zg′(z)

}
≥α, 0≤α< 1. (1.7)

Finally, we let ���(k,α)≡���(k,α)∩�.

Notice that if g ≡ 0 and α = 0 then the family ���(k,α) defined by (1.7) reduces

to the class k-��� of k-uniformly convex analytic functions defined by (1.5). If we,

further, let k = 1 in (1.5), we obtain the class of uniformly convex analytic functions

defined by Goodman [2]. A geometric characterization of the general family ���(k,α)
is an open question.

In Section 2, we introduce sufficient coefficient bounds for functions to be in

���(k,α) and show that these bounds are also necessary for functions in ���(k,α).
In Section 3, the inclusion relation between the classes k-��� and ���(k,α) is ex-

amined. Extreme points and distortion bounds for ���(k,α) are given in Section 4.

Finally, in Section 5, we show that the class ���(k,α) is closed under convolution

and convex combinations.

Here we state a result due to Jahangiri [3], which we will use throughout this paper.

Theorem 1.1. Let f = h+ ḡ with h and g of the form (1.3). If

∞∑
n=2

n(n−α)
1−α

∣∣an∣∣+
∞∑
n=1

n(n+α)
1−α

∣∣bn∣∣≤ 1, 0≤α< 1, (1.8)

then f is harmonic, sense-preserving, univalent in∆, and f is convex harmonic of order

α denoted by ��(α). Condition (1.8) is also necessary if f ∈��(α)≡��(α)∩�.

2. Coefficient bounds. First we state and prove a sufficient coefficient bound for

the class ���(k,α).

Theorem 2.1. Let f = h+ ḡ be of the form (1.3). If 0≤ k <∞, 0≤α< 1, and

∞∑
n=2

n(n+nk−k−α)
1−α

∣∣an∣∣+
∞∑
n=1

n(n+nk+k+α)
1−α

∣∣bn∣∣≤ 1, (2.1)

then f is harmonic, sense-preserving, univalent in ∆, and f ∈���(k,α).

Proof. Since n−α ≤ n+nk−k−α and n+α ≤ n+nk+k+α for 0 ≤ k < ∞,

it follows from Theorem 1.1 that f ∈ ��(α) and hence f is sense-preserving and

convex univalent in ∆. Now, we only need to show that if (2.1) holds then

�
{
zh′(z)+(1+keiφ)z2h′′(z)+(1+2keiφ

)
zg′(z)+(1+keiφ)z2g′′(z)

zh′(z)−zg′(z)

}
=�A(z)

B(z)
≥α.
(2.2)
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Using the fact that �(w)≥α if and only if |1−α+w| ≥ |1+α−w| it suffices to show

that

∣∣A(z)+(1−α)B(z)∣∣−∣∣A(z)−(1+α)B(z)∣∣≥ 0, (2.3)

where A(z)= zh′(z)+(1+keiφ)z2h′′(z)+(1+2keiφ)zg′(z)+(1+keiφ)z2g′′(z) and

B(z)= zh′(z)−zg′(z). Substituting for A(z) and B(z) in (2.3), we obtain

∣∣A(z)+(1−α)B(z)∣∣−∣∣A(z)−(1+α)B(z)∣∣
=
∣∣∣∣∣(2−α)z+

∞∑
n=2

n
[
n+1−α+k(n−1)eiφ

]
anzn

+
∞∑
n=1

n
[
n−1+α+k(n+1)eiφ

]
b̄nz̄n

∣∣∣∣∣
−
∣∣∣∣∣−αz+

∞∑
n=2

n
[
n−1−α+k(n−1)eiφ

]
anzn

+
∞∑
n=1

n
[
n+1+α+k(n+1)eiφ

]
b̄nz̄n

∣∣∣∣∣
≥ (2−α)|z|−

∞∑
n=2

n
[
n(k+1)+1−k−α]∣∣an∣∣|z|n

−
∞∑
n=1

n
[
n(k+1)−1+k+α]∣∣bn∣∣|z|n

−α|z|−
∞∑
n=2

n
[
n(k+1)−1−k−α]∣∣an∣∣|z|n

−
∞∑
n=1

n
[
n(k+1)+1+k+α]∣∣bn∣∣|z|n

≥ 2(1−α)|z|
{

1−
∞∑
n=2

n
[
n(k+1)−k−α]

1−α
∣∣an∣∣

−
∞∑
n=1

n
[
n(k+1)+k+α]

1−α
∣∣bn∣∣

}
≥0, by (2.1).

(2.4)

The harmonic functions

f(z)= z+
∞∑
n=2

1−α
n(nk+n−k−α)xnz

n+
∞∑
n=1

1−α
n(nk+n+k+α)ȳnz̄

n, (2.5)

where
∑∞
n=2 |xn|+

∑∞
n=1 |yn| = 1, show that the coefficient bound given in Theorem 2.1

is sharp.

The functions of the form (2.5) are in ���(k,α) because

∞∑
n=2

n(n+nk−k−α)
1−α

∣∣an∣∣+
∞∑
n=1

n(n+nk+k+α)
1−α

∣∣bn∣∣=
∞∑
n=2

∣∣xn∣∣+
∞∑
n=1

∣∣yn∣∣=1. (2.6)
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Next we show that the bound (2.1) is also necessary for functions in ���(k,α).

Theorem 2.2. Let f = h+ ḡ with h and g of the form (1.4). Then f ∈���(k,α) if

and only if

∞∑
n=2

n(n+nk−k−α)
1−α

∣∣an∣∣+
∞∑
n=1

n(n+nk+k+α)
1−α

∣∣bn∣∣≤ 1. (2.7)

Proof. In view of Theorem 2.1, we only need to show that f ∉���(k,α) if condi-

tion (2.7) does not hold. We note that a necessary and sufficient condition for f = h+ḡ
given by (1.4) to be in ���(k,α) is that the coefficient condition (1.7) to be satisfied.

Equivalently, we must have

� (1−α)zh
′(z)+(1+keiφ)z2h′′(z)+(1+α+2keiφ

)
zg′(z)+(1+keiφ)z2g′′(z)

zh′(z)−zg′(z) ≥ 0.

(2.8)

Upon choosing the values of z on the positive real axis where 0≤ z = r < 1, the above

inequality reduces to

1−α−{∑∞
n=2n(nk+n−k−α)

∣∣an∣∣+∑∞
n=1n(nk+n+k+α)

∣∣bn∣∣}rn−1

1−∑∞
n=2n

∣∣an∣∣rn−1+∑∞
n=1n

∣∣bn∣∣rn−1
≥ 0. (2.9)

If condition (2.7) does not hold then the numerator in (2.9) is negative for r suffi-

ciently close to 1. Thus there exists z0 = r0 in (0,1) for which the quotient (2.9) is

negative. This contradicts the required condition for f ∈���(k,α) and so the proof

is complete.

3. Inclusion relations. As mentioned earlier in the proof of Theorem 2.1, the func-

tions in ���(k,α) are convex harmonic in ∆. In the following example we show that

this inclusion is proper.

Example 3.1. Consider the harmonic functions

fn(z)= z− 1
2
z̄− 1

2n2
z̄n, z ∈∆, n= 2,3, . . . . (3.1)

For an ≡ 0 and bn =−1/2n2, we observe that

∞∑
n=2

n2
∣∣an∣∣+

∞∑
n=1

n2
∣∣bn∣∣= 1

2
+n2

(
1

2n2

)
= 1

2
+ 1

2
= 1. (3.2)

Therefore, by Theorem 1.1, fn ∈��(0).
On the other hand,

2k+1+α
1−α

∣∣∣∣− 1
2

∣∣∣∣+ n(nk+n+k+α)1−α
∣∣∣∣− 1

2n

∣∣∣∣= 2k+1+α
2(1−α) +

nk+n+k+α
2n(1−α) > 1. (3.3)

Thus, by Theorem 2.2, f ∉���(k,α).

More generally, we can prove the following theorem.

Theorem 3.2. Let 0 ≤ k < ∞, 0 ≤ α < 1, and 0 ≤ β < 1. If k > β/(1−β) then the

proper inclusion relation ���(k,α)⊂��(β).
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Proof. Let f ∈���(k,α), then, by Theorem 2.2,

∞∑
n=2

n(nk+n−k−α)
1−α

∣∣an∣∣+
∞∑
n=1

n(nk+n+k+α)
1−α

∣∣bn∣∣≤ 1. (3.4)

Since (n− β)/(1− β) < (nk+n− k−α)/(1−α) and (n+ β)/(1− β) < (nk+n+
k+ α)/(1−α), by Theorem 1.1, we conclude that f ∈��(β).

To show that the inclusion is proper, consider the harmonic functions

fn(z)= z− 1−β
2(1+β) z̄−

1−β
2n(n+β) z̄

n, z ∈∆, n= 2,3, . . . . (3.5)

By Theorem 1.1, fn ∈��(β), because

∞∑
n=2

n(n−β)
1−β

∣∣an∣∣+
∞∑
n=1

n(n+β)
1−β

∣∣bn∣∣= 1+β
1−β

1−β
2(1+β)+

n(n+β)
1−β

1−β
2n(n+β) =1. (3.6)

On the contrary, by Theorem 2.2, fn ∉���(k,α), because

∞∑
n=1

n(nk+n+k+α)
1−α

∣∣bn∣∣= 1+α+2k
1−α

1−β
2(1+β) +

n
(
n+α+(n+1)k

)
1−α

1−β
2n(n+β)

= 1−β
2(1−α)

{
1+α+2k

1+β + n+α+(n+1)k
n+β

}

>
1−β

2(1−α)
{

1+α+2β/(1−β)
1+β + n+α+(n+1)β/(1−β)

n+β
}

= 1
2(1−α)

{
2+ α(1−β)(n+1+2β)

(1+β)(n+β)
}
≥ 1.

(3.7)

4. Extreme points and distortion bounds. Using definition (1.7), and according

to the arguments given in [3], we obtain the following extreme points of the closed

convex hulls of ���(k,α) denoted by clco���(k,α).

Theorem 4.1. Let f be the form of (1.4). Then f ∈ clco���(k,α) if and only

if f(z) = ∑∞
n=1(Xnhn + Yngn) where h1(z) = z, hn(z) = z − ((1−α)/n(n+nk−

k−α))zn(n = 2,3, . . .), gn(z) = z− ((1− α)/n(n+nk+ k+α))z̄n(n = 1,2,3, . . .),∑∞
n=1(Xn+Yn)= 1, Xn ≥ 0 and Yn ≥ 0. In particular, the extreme points of ���(k,α)

are {hn} and {gn}.
Similarly, follows the distortion bounds for functions in ���(k,α).

Theorem 4.2. If f ∈���(k,α) then

∣∣f(z)∣∣≤ (1+∣∣b1

∣∣)r + 1
2

(
1−α

2+k−α −
1+2k+α
2+k−α

∣∣b1

∣∣)r 2, |z| = r < 1,

∣∣f(z)∣∣≥ (1−∣∣b1

∣∣)r − 1
2

(
1−α

2+k−α −
1+2k+α
2+k−α

∣∣b1

∣∣)r 2, |z| = r < 1.
(4.1)
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If we let r → 1 in the left-hand inequality of Theorem 4.2 and collect the like terms,

we obtain the following theorem.

Theorem 4.3. If f ∈���(k,α) then {w : |w|< (3+2k−α)/2(2+k−α)−3(1− α)/
2(2+k−α)|b1|} ⊂ f(∆).

5. Convolutions and convex combinations. For harmonic functions f(z) = z−∑∞
n=2 |an|zn−

∑∞
n=1 |bn|z̄n and F(z) = z−∑∞

n=2 |An
∣∣zn−∑∞

n=1 |Bn|z̄n, we define the

convolution of f and F as

(f ∗F)(z)= f(z)∗F(z)= z−
∞∑
n=2

∣∣an∣∣∣∣An∣∣zn−
∞∑
n=1

∣∣bn∣∣∣∣Bn∣∣z̄n. (5.1)

In the following theorem we examine the convolution properties of the class ���(k,α).

Theorem 5.1. For 0≤α≤ β < 1, let f ∈���(k,β) and F ∈���(k,α) then

f ∗F ∈���(k,β)⊂���(k,α). (5.2)

Proof. Express the convolution of f and F as that given by (5.1) and note that

|An| ≤ 1 and |Bn| ≤ 1. Now the theorem follows upon the application of the required

condition (2.7).

The convex combination properties of the class ���(k,α) is given in the following

theorem.

Theorem 5.2. The class ���(k,α) is closed under convex combinations.

Proof. For i = 1,2, . . . , suppose that fi ∈ ���(k,α) where fi is given by fi(z) =
z−∑∞

n=2 |ain |zn−
∑∞
n=1 |bin |z̄n. For

∑∞
i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combinations

of fi may be written as

∞∑
i=1

tifi(z)= z−
∞∑
n=2

( ∞∑
i=1

ti
∣∣ain∣∣

)
zn−

∞∑
n=1

( ∞∑
i=1

ti
∣∣bin∣∣

)
z̄n. (5.3)

Now, the theorem follows by (2.7) upon noting that
∑∞
i=1 ti = 1.
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