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Let H be a Hilbert space such that H = V ⊕W , where V and W are two closed subspaces
of H. We generalize an abstract theorem due to Lazer et al. (1975) and a theorem given by
Moussaoui (1990-1991) to the case where V and W are not necessarily finite dimensional.
We give two mini-max theorems where the functional Φ : H → R is of class �2 and �1,
respectively.
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1. Introduction. Our purpose in this note is to generalize a mini-max theorem due

to Lazer et al. [3]. Their theorem is as follows.

Theorem 1.1. Let X and Y be two closed subspaces of a real Hilbert space H such

that X is finite dimensional and H = X⊕Y (X and Y not necessarily orthogonal). Let

Φ :H → R be a C2 functional and let ∇Φ and D2Φ denote the gradient and Hessian of

Φ, respectively. Suppose that there exist two positive constants m1 and m2 such that

(
D2Φ(u)h,h

)≤−m1‖h‖2,
(
D2Φ(u)k,k

)≥m2‖k‖2 (1.1)

for all u∈H, h∈X, and k∈ Y . Then Φ has a unique critical point, that is, there exists a

uniquev0 ∈H such that∇Φ(v0)=0. Moreover, this critical point is characterized by the

Φ
(
v0
)=max

x∈X
min
y∈Y

Φ(x+y). (1.2)

Bates and Ekeland in [1] generalized Theorem 1.1 to the case where X and Y are

not necessarily finite dimensional. Via a reduction method, Manasevich considered

the same case in [4], but he supposed weaker conditions on Hessian of Φ. On the

other hand, Tersian [7] studied the case where X and Y are not necessarily finite

dimensional, ∇Φ : H → H is everywhere defined and hemicontinuous on H, which

means that

lim
t→0

∇Φ(u+tv)=∇Φ(u) ∀u,v ∈H. (1.3)

Instead of the conditions on the Hessian of Φ, they supposed

(1) (∇Φ(h1+y)−∇Φ(h2+y),h1−h2)≤−m1‖h1−h2‖2 h1,h2 ∈X, y ∈ Y ,

(2) (∇Φ(x+k1)−∇Φ(x+k2),k1−k2)≥m2‖k1−k2‖2 k1,k2 ∈ Y , x ∈X,

where H =X⊕Y , m1 and m2 are strictly positive.

Their result rests heavily upon two theorems on α-convex functionals and an ex-

istence theorem for a class of monotone operators due to Browder. By a completely

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


430 H. BOUKHRISSE AND M. MOUSSAOUI

different method, the second author gave another version of Theorem 1.1 (see [5])

with convexity conditions that are weaker than those assumed above.

Theorem 1.2. Let H be a Hilbert space such that H = V ⊕W where V is a finite-

dimensional subspace of H and W its orthogonal. Let Φ : H → R be a functional such

that

(i) Φ is of class �1.

(ii) Φ is coercive on W .

(iii) For fixed w ∈W , v � Φ(v+w) is concave on V .

(iv) For fixed w ∈W , Φ(v+w)→−∞ when ‖v‖→+∞, v ∈ V ; and the convergence

is uniform on bounded subsets of W .

(v) For all v ∈ V , Φ is weakly lower semicontinuous on W +v .

Then Φ admits a critical point in H.

We consider the case where X and Y are not necessarily finite dimensional. Our

proofs contain many steps used in [5] and our convexity conditions are weaker than

those given by other authors. First, we prove a mini-max theorem where Φ :H →R is of

class �2. Next, we prove the existence theorem for a particular class of �1 functional

Φ :H →R.

2. First abstract result. The next two propositions are used in this work. For a

proof of Proposition 2.1, see [2], and for a proof of Proposition 2.2, see [6].

Proposition 2.1. LetX be a reflexive Banach space and letΦ :X →R be a functional

such that

(i) Φ is weakly lower semicontinuous on X,

(ii) Φ is coercive, that is, Φ(u)→+∞ when ‖u‖→+∞,

then Φ is lower bounded and there exists u0 ∈X such that

Φ
(
u0
)= inf

X
φ. (2.1)

Proposition 2.2. Let H be a real Hilbert space and let L be a bounded linear oper-

ator on H. Suppose that

(Lx,x)≥ a‖x‖2, (2.2)

for all x ∈H and a is a strictly positive real number. Then L is an isomorphism onto H
and ‖L−1‖ ≤ a−1.

Theorem 2.3. Let H be a Hilbert space such that H = V ⊕W where V and W are

two closed and orthogonal subspaces of H. Let Φ :H →R be a functional such that

(i) Φ is of class �2.

(ii) There exists a continuous nonincreasing function γ : [0,+∞)→]0,∞) such that
〈
D2Φ(v+w)g,g〉≤−γ(‖v‖)‖g‖2 (2.3)

for all v ∈ V , w ∈W , and g ∈ V .

(iii) Φ is coercive on W .

(iv) For all w ∈W , Φ(v+w)→−∞ when ‖v‖→+∞, v ∈ V .

(v) Φ is weakly lower semicontinuous on W +v .
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Then Φ admits at least a critical point u ∈ H. Moreover, this critical point of Φ is

characterized by the equality

Φ(u)= min
w∈W

max
v∈V

Φ(v+w). (2.4)

In the proof of Theorem 2.3, we will use the following three lemmas.

Lemma 2.4. For all w ∈W , there exists a unique v ∈ V such that

Φ(v+w)=max
g∈V

Φ(g+w). (2.5)

Proof. From Theorem 2.3(ii), for w fixed in W , v � Φ(v+w) is continuous and

strictly concave on V . Then, it is weakly upper semicontinuous on V . Moreover, from

Theorem 2.3(iv), it is anticoercive on V . So that it admits a maximum on V . We affirm

that this maximum is unique, otherwise we suppose that there exists two maximums

v1 and v2. Let vλ = λv1+(1−λ)v2 for 0< λ< 1, then

Φ
(
vλ+w

)
> λΦ

(
v1+w

)+(1−λ)Φ(v2+w
)= Φ(v1+w

)= Φ(v2+w
)
. (2.6)

For the rest of the note, we will adopt the notations

V̄ (w)=
{
v ∈ V : Φ(v+w)=max

g∈V
Φ(g+w)

}
,

S = {u= v+w, w ∈W, v ∈ V̄ (w)}.
(2.7)

Lemma 2.5. There exists u∈ S such that

Φ(u)= inf
S
Φ. (2.8)

Proof. There exists a sequence (un) of S such that Φ(un)→ infS Φ = a. For all n,

un = vn+wn with wn ∈W , and vn ∈ V̄ (wn).
Claim

∥∥wn∥∥≤ c. (2.9)

Otherwise,

Φ
(
un
)= Φ(vn+wn)≥ Φ(wn). (2.10)

From Theorem 2.3(iii), Φ(wn)→ +∞, hence Φ(un)→ +∞. This gives a contradiction.

Moreover, from (2.9), there exists a subsequence also denoted wn such that wn ⇀w.

Take v in V , by Theorem 2.3(v), we have

Φ
(
v+w)≤ liminf

n
Φ
(
v+wn

)≤ liminf
n

Φ
(
vn+wn

)= a. (2.11)

This is true for all v ∈V , in particular, for v ∈ V̄ (w). Then u=v+w satisfies (2.8).

Lemma 2.6. The application V̄ :W → V such that

Φ
(
w+ V̄ (w))=max

g∈V
Φ(g+w) (2.12)

is of class C1.
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Proof of Theorem 2.3. For each w ∈W , let Φw : V → R be defined by Φw(v) =
Φ(v+w). Then Φw ∈ C2(V ,R) and for v′ ∈ V , we have

(∇φw(v),v′)= (∇Φ(v+w),v′),(
D2Φw(v)v′,v′

)= (D2Φ(v+w)v′,v′). (2.13)

By Lemma 2.4, we conclude that for allw ∈W , there exists a unique vw in V such that

∇Φw(vw)= 0. To prove that V̄ ∈ C1(W,V), we will use the implicit function theorem.

To see this, let P denote the orthogonal projection of H onto V . Then

v = V̄ (w) iff P∇Φ(w+v)= 0. (2.14)

Next, we define E :W ×V → V by

E(w,v)= P∇Φ(w+v). (2.15)

Then E is of class C1 and given any pair w0 ∈ W , v0 ∈ V such that E(w0,v0) = 0, it

follows that v0 = V̄ (w0).
If Ev denotes the partial derivative of E with respect to v , and if v′ ∈ V , we have

Ev
(
w0,v0

)
v′ = PD2Φ

(
w0+v0

)
v′. (2.16)

The mapping Ev(w0,v0) : V → V is linear and bounded we have from Theorem 2.3(ii)

(
Ev
(
w0,v0

)
v′,v′

)= (D2Φ
(
w0+v0

)
v′,v′

)≤−γ(∥∥v0

∥∥)‖v′‖2, (2.17)

for all v′ ∈ V . By Proposition 2.2, Ev(w0,v0) is an isomorphism onto V . Then from

the implicit function theorem [2], there exists a C1 mapping f from a neighborhood U
of w0 in W into V such that E(w,f(w))= 0 for all w ∈U . Moreover, from (2.14) and

(2.15), f(w)= V̄ (w) for all w ∈W . Hence, since w0 was arbitrarily chosen, it follows

that f can be defined over all of W . Then we conclude that V̄ ∈ C1(W,V).

Remark 2.7. The proof of Lemma 2.6 relies on the implicit function theorem. This

theorem was used by Thews in [8] to prove the existence of a critical point for a

particular class of functionals. It was also used by Manasevich in [4].

Proof. Let w ∈ W and u ∈ Sw . We will prove that if u satisfies (2.8), then u is a

critical point of Φ. By Lemma 2.4, it is easy to see that (∇Φ(u),g)= 0 for all g ∈ V , so

it suffices to prove that

(∇Φ(u),h)= 0 ∀h∈W. (2.18)

Recall that u ∈ S can be written u =w+v where w ∈W and v ∈ V̄ (w). Take h ∈W
and let wt =w+th for |t| ≤ 1. For each t such that 0< |t| ≤ 1, there exists a unique

vt ∈ V(wt). By Lemma 2.6, we conclude that vtn converge to a certain v0 and that

v0 ∈ V̄ (w). Then, by Lemma 2.4, v0 = v . For t > 0, we have

Φ
(
wt+vt

)−Φ(vt+w)
t

≥ Φ
(
wt+vt

)−Φ(v0+w
)

t
≥ 0. (2.19)
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Then,

(∇Φ(vt+w+λtth),h)≥ 0 for 0< λt < 1. (2.20)

At the limit, we obtain

(∇Φ(u),h)= 0 ∀h∈W. (2.21)

Hence, u is a critical point of Φ.

3. Second abstract result. Let H be a Hilbert space such that H = V ⊕W where V
and W are two closed and orthogonal subspaces of H. Let Φ :H →R be such that

Φ = q+ψ,
q(v+w)= q(v)+q(w) ∀(v,w)∈ V ×W

ψ is weakly continuous on H.
(3.1)

Theorem 3.1. Let H be a Hilbert space such that H = V ⊕W where V and W are

two closed and orthogonal subspaces of H. Let Φ :H →R be a functional verifying (3.1)

such that

(i) q and ψ are of class �1.

(ii) ∇Φ is weakly continuous on H.

(iii) Φ is coercive on W .

(iv) For a fixed w ∈W , v � Φ(v+w) is concave on V .

(v) For a fixedw ∈W ,Φ(v+w)→−∞when ‖v‖→+∞, v ∈ V ; and the convergence

is uniform on the bounded sets of W .

(vi) For a fixed v ∈ V , Φ is weakly lower semicontinuous on W +v .

Then Φ admits a critical point u ∈ H. Moreover, this critical point is characterized

by the equality

Φ(u)= min
w∈W

max
v∈V

Φ(v+w). (3.2)

For the proof of Theorem 3.1, we use some results of Lemmas 2.4 and 2.5 and we

need also the following lemmas.

Lemma 3.2. For each w ∈W , V̄ (w) is convex.

Proof. Take v1,v2 ∈ V̄ (w) and vλ = λv1+(1−λ)v2 with λ ∈ [0,1]. So that from

Theorem 3.1(iv), we have Φ(vλ+w) ≥ λΦ(v1+w)+ (1−λ)Φ(v2+w) = Φ(v1+w) =
Φ(v2+w). Then

Φ
(
vλ+w

)= Φ(v1+w
)= Φ(v2+w

)
. (3.3)

So vλ ∈ V̄ (w).

Lemma 3.3. Let L(w)= {∇Φ(v+w) : v ∈ V̄ (w)}. For each w ∈W ,

(i) L(w) is convex.

(ii) L(w) is closed.
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Proof. (i) Let h∈W and v1,v2 ∈ V̄ (w). From Theorem 3.1(iv) and Lemma 3.2, we

have for all t > 0,

Φ
(
vλ+w+th

)−Φ(vλ+w)≥ λ(Φ(v1+th+w
)−Φ(v1+w

))
+(1−λ)(Φ(v2+th+w

)−Φ(v2+w
))
.

(3.4)

Divide by t and let t tend to 0, then

(∇Φ(vλ+w),h)≥ λ(∇Φ(v1+w
)
,h
)+(1−λ)(∇Φ(v2+w

)
,h
)
. (3.5)

Since this is true for all h∈W , we conclude that

∇Φ(vλ+w)= λ∇Φ(v1+w
)+(1−λ)∇Φ(v2+w

)
. (3.6)

(ii) For w ∈W , let Sw = {v+w : v ∈ V̄ (w)}.
First, we show that Sw is closed. Let vn+w ∈ Sw such that vn+w → v0+w. Φ(vn+

w)→ Φ(v0+w) and Φ(vn+w)=maxg∈V Φ(g+w). Then v0+w ∈ Sw .

Next, we affirm that Sw is bounded. If not, there exists vn of V̄ (w) such that

‖vn‖ → +∞, and we conclude from Theorem 3.1(v) that Φ(vn+w)→−∞. This gives

a contradiction.

Consequently, Sw is closed and bounded. Since Sw is convex, we conclude that Sw is

weakly compact. From Theorem 3.1(ii), it follows that L(w) is weakly compact. Then

L(w) is weakly closed. Thus L(w) is closed.

Proof of Theorem 3.1. Let w ∈W and u ∈ Sw . If u satisfies (2.8), we will show

that L(w) contains 0 and there exists v ∈ V̄ (w) such that

∇Φ(v+w)= 0. (3.7)

By contradiction, suppose that L(w) does not contain 0. Since it is convex and closed

in the Hilbert space, there exists h1 ∈ L(w) such that

0≠
∥∥h1

∥∥= inf
{‖h‖ : h∈ L(w)}. (3.8)

Let h∈ L(w), h1+λ(h−h1)∈ L(w) for λ∈ [0,1], thus

(
h1+λ

(
h−h1

)
,h1+λ

(
h−h1

))≥ ∥∥h1

∥∥2. (3.9)

Hence

∥∥h1

∥∥2+2λ
(
h−h1,h1

)+λ2
∥∥h−h1

∥∥2 ≥ ∥∥h1

∥∥2, (3.10)

so

2
(
h−h1,h1

)+λ∥∥h−h1

∥∥2 ≥ 0. (3.11)

When λ tends to 0. We obtain (h−h1,h1)≥ 0. So that (h,h1)≥ ‖h1‖2 > 0. Equivalently,

(∇Φ(v+w),h1
)
> 0 ∀v ∈ V̄ (w). (3.12)
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Denote wt = w + th1 for |t| ≤ 1. We note that wt ∈ W . By Lemma 2.4, for each 0 <
|t| ≤ 1, there exists vt ∈ V(wt). Since ‖wt‖ ≤ ‖w‖+‖h1‖, Theorem 3.1(v) implies that

there exists a constant A> 0 such that

Φ
(
v+wt

)
< inf

W
Φ ≤ Φ(wt), (3.13)

for v ∈ V , ‖v‖ ≥A, and |t| ≤ 1. (Since Φ is coercive and weakly lower semicontinuous

in the reflexive space W , it reaches its minimum.) It follows that

∥∥vt∥∥≤A. (3.14)

Otherwise, we would have

Φ
(
vt+wt

)
< Φ

(
wt
)
, (3.15)

which contradicts the fact that vt ∈ V̄ (wt). We conclude then as V is reflexive that

there exists a subsequence tn→ 0 and tn < 0 such that vtn ⇀ v0 ∈ V .

Claim

v0 ∈ V̄ (w). (3.16)

We have vtn ⇀ v0 and wtn →w, so

vtn+wtn ⇀ v0+w. (3.17)

Since ψ is weakly upper semicontinuous on H, we have

ψ
(
v0+w

)≥ limsup
n→∞

ψ
(
vtn+wtn

)
. (3.18)

By Lemma 2.4, Φ is weakly upper semicontinuous on V and we know that ψ is weakly

lower semicontinuous on V , so q = Φ−ψ is weakly upper semicontinuous on V . Then

q
(
v0
)≥ limsup

n→∞
q
(
vtn
)
. (3.19)

Moreover, the continuity of q implies that

q(w)= lim
n→∞q(wtn)= limsup

n→∞
q(wtn). (3.20)

Then

q
(
v0+w

)= q(v0
)+q(w)

≥ limsup
n→∞

q
(
vtn
)+ limsup

n→∞
q
(
wtn

)

≥ limsup
n→∞

(
q
(
vtn
)+q(wtn))

≥ limsup
n→∞

q
(
vtn+wtn

)
.

(3.21)

On the other hand, vtn ∈ V(wtn) implies that

Φ
(
vtn+wtn

)≥ Φ(v+wtn) ∀v ∈ V. (3.22)
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We then obtain

q
(
v0+w

)+ψ(v0+w
)≥ limsup

n→∞
q
(
vtn+wtn

)+ limsup
n→∞

ψ
(
vtn+wtn

)

≥ limsup
n→∞

(
q
(
vtn+wtn

)+ψ(vtn+wtn))

≥ limsup
n→∞

(
q
(
v+wtn

)+ψ(v+wtn)) ∀v ∈ V
≥ q(v+w)+ψ(v+w) ∀v ∈ V.

(3.23)

Thus

Φ
(
v0+w

)≥ Φ(v+w) ∀v ∈ V. (3.24)

Equivalently, v0 ∈ V̄ (w).
Therefore, we have

−Φ
(
wtn+vtn

)−Φ(vtn+w)
tn

≥−Φ
(
wtn+vtn

)−Φ(v0+w
)

tn
≥ 0, (3.25)

and so

(∇Φ(vtn+w+εntnh1
)
,h1

)≤ 0 for 0< εn < 1. (3.26)

When tn tend to 0, by (ii), we deduce finally that

(∇Φ(v0+w
)
,h1

)≤ 0. (3.27)

Which contradicts (3.8). Then there exists v1 ∈ V̄ (w) such that ∇Φ(v1+w)= 0 and

Φ
(
v1+w

)= min
w∈W

max
v∈V

Φ(v+w). (3.28)

Remark 3.4. In the proof of Theorem 3.1, (3.1) allows us to show that v0 ∈ V̄ (w).
Or, we remark that we do not need to introduce ψ and q if Φ(v+w)= Φ(v)+Φ(w).
Indeed, wtn →w and vtn ⇀ v0 imply that

limsupΦ
(
vtn+wtn

)= limsup
(
Φ
(
vtn
)+Φ(wtn))

≤ limsupΦ
(
vtn
)+ limsupΦ

(
wtn

)
.

(3.29)

By Lemma 2.4, Φ is weakly upper semicontinuous on V , thus

limsupΦ
(
vtn+wtn

)≤ Φ(v0
)+Φ(w)= Φ(v0+w

)
. (3.30)

On the other hand, vtn ∈ V̄ (wtn) implies that

Φ
(
vtn+wtn

)≥ Φ(v+wtn) ∀v ∈ V. (3.31)

So

limsupΦ
(
vtn+wtn

)≥ Φ(v+w) ∀v ∈ V. (3.32)

Then

Φ
(
v0+w

)≥ Φ(v+w) ∀v ∈ V, (3.33)

that is, v0 ∈ V̄ (w).
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Remark 3.5. We can also prove Theorem 3.1 for any functional Φ :H →R without

introducing ψ and q if Φ is weakly upper semicontinuous on H.

Another version of Theorem 3.1. Let A be a convex set. The function f :A→R
is quasiconcave if for all x1,x2 in A, and for all λ in ]0,1[, then

f
(
λx1+(1−λ)x2

)≥min
(
f
(
x1
)
,f
(
x2
))
. (3.34)

The function f is quasiconvex if (−f) is quasiconcave, and it is strictly quasiconcave

if the inequality above is strict.

It is clear that any strictly concave function is strictly quasiconcave.

Proposition 3.6. Let E be a reflexive Banach space. If Φ : E → R is quasiconcave

and upper semicontinuous, then Φ is weakly upper semicontinuous.

Theorem 3.7. Let E be a reflexive Banach space such that E = V⊕W where V andW
are two closed subspaces of E not necessarily orthogonal. Let Φ :H →R be a functional

satisfying (3.1) such that

(i) q and ψ are of class �1.

(ii) ∇Φ is weakly continuous.

(iii) Φ is coercive on W .

(iv) For all w ∈W , v � Φ(v+w) is strictly quasiconcave on V .

(v) For all w ∈W , Φ(v+w)→−∞ when ‖v‖→+∞, v ∈ V ; and the convergence is

uniform on bounded subsets of W .

(vi) For all v ∈ V , Φ is lower weakly semicontinuous on W +v .

Then Φ admits a critical point u ∈ H. Moreover, this critical point is characterized

by the equality

Φ(u)= min
w∈W

max
v∈V

Φ(v+w). (3.35)

In the proof of this theorem, we need Lemmas 2.4 and 2.5. We note that by

Proposition 3.6, the result of Lemma 2.4 is still true in this case.

Proof. We will prove that u ∈ S obtained in Lemma 2.5 is a critical point of Φ.

We have 〈Φ′(u),v〉 for all v ∈ V , so it is sufficient to show that 〈Φ′(u),h〉 = 0 for all

h ∈ W . Recall that u ∈ S can be written as u = v +w where w ∈ W and v ∈ V̄ (w).
Let h ∈ W and wt = w+ th for |t| ≤ 1. For all t such that 0 < |t| ≤ 1, there exists a

unique vt ∈ V̄ (wt). In the same way as in the proof of Theorem 3.1, we can extract a

subsequence vtn such that vtn ⇀ v0 and v0 ∈ V̄ (w). By Lemma 2.4, we deduce that

v0 = v . Hence for t > 0, we have

〈
Φ′(u),h

〉= 0 ∀h∈W. (3.36)

Then, u is a critical point of Φ.
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