CRITICAL POINT THEOREMS

H. BOUKHRISSE and M. MOUSSAOUI

Received 12 December 2000

Let *H* be a Hilbert space such that $H = V \oplus W$, where *V* and *W* are two closed subspaces of *H*. We generalize an abstract theorem due to Lazer et al. (1975) and a theorem given by Moussaoui (1990-1991) to the case where *V* and *W* are not necessarily finite dimensional. We give two mini-max theorems where the functional $\Phi : H \to \mathbb{R}$ is of class \mathscr{C}^2 and \mathscr{C}^1 , respectively.

2000 Mathematics Subject Classification: 58E05.

1. Introduction. Our purpose in this note is to generalize a mini-max theorem due to Lazer et al. [3]. Their theorem is as follows.

THEOREM 1.1. Let X and Y be two closed subspaces of a real Hilbert space H such that X is finite dimensional and $H = X \oplus Y$ (X and Y not necessarily orthogonal). Let $\Phi: H \to \mathbb{R}$ be a C^2 functional and let $\nabla \Phi$ and $D^2 \Phi$ denote the gradient and Hessian of Φ , respectively. Suppose that there exist two positive constants m_1 and m_2 such that

$$(D^{2}\Phi(u)h,h) \leq -m_{1} \|h\|^{2}, \qquad (D^{2}\Phi(u)k,k) \geq m_{2} \|k\|^{2}$$
(1.1)

for all $u \in H$, $h \in X$, and $k \in Y$. Then Φ has a unique critical point, that is, there exists a unique $v_0 \in H$ such that $\nabla \Phi(v_0) = 0$. Moreover, this critical point is characterized by the

$$\Phi(v_0) = \max_{x \in X} \min_{y \in Y} \Phi(x + y).$$
(1.2)

Bates and Ekeland in [1] generalized Theorem 1.1 to the case where *X* and *Y* are not necessarily finite dimensional. Via a reduction method, Manasevich considered the same case in [4], but he supposed weaker conditions on Hessian of Φ . On the other hand, Tersian [7] studied the case where *X* and *Y* are not necessarily finite dimensional, $\nabla \Phi : H \to H$ is everywhere defined and hemicontinuous on *H*, which means that

$$\lim_{t \to 0} \nabla \Phi(u + tv) = \nabla \Phi(u) \quad \forall u, v \in H.$$
(1.3)

Instead of the conditions on the Hessian of Φ , they supposed

(1) $(\nabla \Phi(h_1 + y) - \nabla \Phi(h_2 + y), h_1 - h_2) \le -m_1 ||h_1 - h_2||^2 h_1, h_2 \in X, y \in Y,$

(2) $(\nabla \Phi(x+k_1) - \nabla \Phi(x+k_2), k_1-k_2) \ge m_2 ||k_1-k_2||^2 k_1, k_2 \in Y, x \in X,$

where $H = X \oplus Y$, m_1 and m_2 are strictly positive.

Their result rests heavily upon two theorems on α -convex functionals and an existence theorem for a class of monotone operators due to Browder. By a completely

different method, the second author gave another version of Theorem 1.1 (see [5]) with convexity conditions that are weaker than those assumed above.

THEOREM 1.2. Let *H* be a Hilbert space such that $H = V \oplus W$ where *V* is a finitedimensional subspace of *H* and *W* its orthogonal. Let $\Phi : H \to \mathbb{R}$ be a functional such that

(i) Φ is of class \mathscr{C}^1 .

(ii) Φ is coercive on W.

(iii) For fixed $w \in W$, $v \mapsto \Phi(v + w)$ is concave on V.

(iv) For fixed $w \in W$, $\Phi(v + w) \rightarrow -\infty$ when $||v|| \rightarrow +\infty$, $v \in V$; and the convergence is uniform on bounded subsets of W.

(v) For all $v \in V$, Φ is weakly lower semicontinuous on W + v. Then Φ admits a critical point in H.

We consider the case where *X* and *Y* are not necessarily finite dimensional. Our proofs contain many steps used in [5] and our convexity conditions are weaker than those given by other authors. First, we prove a mini-max theorem where $\Phi : H \to \mathbb{R}$ is of class \mathscr{C}^2 . Next, we prove the existence theorem for a particular class of \mathscr{C}^1 functional $\Phi : H \to \mathbb{R}$.

2. First abstract result. The next two propositions are used in this work. For a proof of Proposition 2.1, see [2], and for a proof of Proposition 2.2, see [6].

PROPOSITION 2.1. Let *X* be a reflexive Banach space and let $\Phi : X \to \mathbb{R}$ be a functional such that

(i) Φ is weakly lower semicontinuous on *X*,

(ii) Φ is coercive, that is, $\Phi(u) \to +\infty$ when $||u|| \to +\infty$,

then Φ is lower bounded and there exists $u_0 \in X$ such that

$$\Phi(u_0) = \inf_{v} \phi. \tag{2.1}$$

PROPOSITION 2.2. *Let H be a real Hilbert space and let L be a bounded linear operator on H. Suppose that*

$$(Lx, x) \ge a \|x\|^2, \tag{2.2}$$

for all $x \in H$ and a is a strictly positive real number. Then L is an isomorphism onto H and $||L^{-1}|| \le a^{-1}$.

THEOREM 2.3. Let *H* be a Hilbert space such that $H = V \oplus W$ where *V* and *W* are two closed and orthogonal subspaces of *H*. Let $\Phi : H \to \mathbb{R}$ be a functional such that

- (i) Φ is of class \mathscr{C}^2 .
- (ii) There exists a continuous nonincreasing function $\gamma : [0, +\infty) \rightarrow]0, \infty)$ such that

$$\left\langle D^2 \Phi(\boldsymbol{v} + \boldsymbol{w}) \boldsymbol{g}, \boldsymbol{g} \right\rangle \le -\gamma \left(\|\boldsymbol{v}\| \right) \|\boldsymbol{g}\|^2 \tag{2.3}$$

for all $v \in V$, $w \in W$, and $g \in V$.

- (iii) Φ is coercive on W.
- (iv) For all $w \in W$, $\Phi(v + w) \rightarrow -\infty$ when $||v|| \rightarrow +\infty$, $v \in V$.
- (v) Φ is weakly lower semicontinuous on W + v.

Then Φ admits at least a critical point $u \in H$. Moreover, this critical point of Φ is characterized by the equality

$$\Phi(u) = \min_{w \in W} \max_{v \in V} \Phi(v + w).$$
(2.4)

In the proof of Theorem 2.3, we will use the following three lemmas.

LEMMA 2.4. For all $w \in W$, there exists a unique $v \in V$ such that

$$\Phi(v+w) = \max_{g \in V} \Phi(g+w).$$
(2.5)

PROOF. From Theorem 2.3(ii), for *w* fixed in *W*, $v \mapsto \Phi(v + w)$ is continuous and strictly concave on *V*. Then, it is weakly upper semicontinuous on *V*. Moreover, from Theorem 2.3(iv), it is anticoercive on *V*. So that it admits a maximum on *V*. We affirm that this maximum is unique, otherwise we suppose that there exists two maximums v_1 and v_2 . Let $v_{\lambda} = \lambda v_1 + (1 - \lambda)v_2$ for $0 < \lambda < 1$, then

$$\Phi(v_{\lambda}+w) > \lambda \Phi(v_{1}+w) + (1-\lambda)\Phi(v_{2}+w) = \Phi(v_{1}+w) = \Phi(v_{2}+w).$$
(2.6)

For the rest of the note, we will adopt the notations

$$\bar{V}(w) = \left\{ v \in V : \Phi(v+w) = \max_{g \in V} \Phi(g+w) \right\},$$

$$S = \left\{ u = v + w, \ w \in W, \ v \in \bar{V}(w) \right\}.$$
(2.7)

LEMMA 2.5. There exists $u \in S$ such that

$$\Phi(u) = \inf_{\sigma} \Phi. \tag{2.8}$$

PROOF. There exists a sequence (u_n) of S such that $\Phi(u_n) \rightarrow \inf_S \Phi = a$. For all n, $u_n = v_n + w_n$ with $w_n \in W$, and $v_n \in \overline{V}(w_n)$.

Claim

$$||w_n|| \le c. \tag{2.9}$$

Otherwise,

$$\Phi(u_n) = \Phi(v_n + w_n) \ge \Phi(w_n). \tag{2.10}$$

From Theorem 2.3(iii), $\Phi(w_n) \to +\infty$, hence $\Phi(u_n) \to +\infty$. This gives a contradiction. Moreover, from (2.9), there exists a subsequence also denoted w_n such that $w_n \to w$. Take v in V, by Theorem 2.3(v), we have

$$\Phi(v+w) \le \liminf_{n} \Phi(v+w_n) \le \liminf_{n} \Phi(v_n+w_n) = a.$$
(2.11)

This is true for all $v \in V$, in particular, for $v \in \overline{V}(w)$. Then u = v + w satisfies (2.8).

LEMMA 2.6. The application $\overline{V}: W \to V$ such that

$$\Phi(w + \bar{V}(w)) = \max_{g \in V} \Phi(g + w) \tag{2.12}$$

is of class C^1 .

PROOF OF THEOREM 2.3. For each $w \in W$, let $\Phi_w : V \to \mathbb{R}$ be defined by $\Phi_w(v) = \Phi(v + w)$. Then $\Phi_w \in C^2(V, \mathbb{R})$ and for $v' \in V$, we have

$$(\nabla \phi_w(v), v') = (\nabla \Phi(v+w), v'),$$

$$(D^2 \phi_w(v)v', v') = (D^2 \Phi(v+w)v', v').$$
(2.13)

By Lemma 2.4, we conclude that for all $w \in W$, there exists a unique v_w in V such that $\nabla \Phi_w(v_w) = 0$. To prove that $\tilde{V} \in C^1(W, V)$, we will use the implicit function theorem. To see this, let P denote the orthogonal projection of H onto V. Then

$$v = \overline{V}(w) \quad \text{iff } P \nabla \Phi(w + v) = 0. \tag{2.14}$$

Next, we define $E: W \times V \rightarrow V$ by

$$E(w,v) = P\nabla\Phi(w+v). \tag{2.15}$$

Then *E* is of class C^1 and given any pair $w_0 \in W$, $v_0 \in V$ such that $E(w_0, v_0) = 0$, it follows that $v_0 = \overline{V}(w_0)$.

If E_v denotes the partial derivative of *E* with respect to *v*, and if $v' \in V$, we have

$$E_{\nu}(w_0, \nu_0)\nu' = PD^2\Phi(w_0 + \nu_0)\nu'.$$
(2.16)

The mapping $E_{\nu}(w_0, v_0) : V \to V$ is linear and bounded we have from Theorem 2.3(ii)

$$(E_{\nu}(w_0, \nu_0)\nu', \nu') = (D^2\Phi(w_0 + \nu_0)\nu', \nu') \le -\gamma(||\nu_0||) ||\nu'||^2,$$
(2.17)

for all $v' \in V$. By Proposition 2.2, $E_v(w_0, v_0)$ is an isomorphism onto V. Then from the implicit function theorem [2], there exists a C^1 mapping f from a neighborhood Uof w_0 in W into V such that E(w, f(w)) = 0 for all $w \in U$. Moreover, from (2.14) and (2.15), $f(w) = \overline{V}(w)$ for all $w \in W$. Hence, since w_0 was arbitrarily chosen, it follows that f can be defined over all of W. Then we conclude that $\overline{V} \in C^1(W, V)$.

REMARK 2.7. The proof of Lemma 2.6 relies on the implicit function theorem. This theorem was used by Thews in [8] to prove the existence of a critical point for a particular class of functionals. It was also used by Manasevich in [4].

PROOF. Let $w \in W$ and $u \in S_w$. We will prove that if u satisfies (2.8), then u is a critical point of Φ . By Lemma 2.4, it is easy to see that $(\nabla \Phi(u), g) = 0$ for all $g \in V$, so it suffices to prove that

$$(\nabla \Phi(u), h) = 0 \quad \forall h \in W.$$
(2.18)

Recall that $u \in S$ can be written u = w + v where $w \in W$ and $v \in \overline{V}(w)$. Take $h \in W$ and let $w_t = w + th$ for $|t| \le 1$. For each t such that $0 < |t| \le 1$, there exists a unique $v_t \in V(w_t)$. By Lemma 2.6, we conclude that v_{t_n} converge to a certain v_0 and that $v_0 \in \overline{V}(w)$. Then, by Lemma 2.4, $v_0 = v$. For t > 0, we have

$$\frac{\Phi(w_t + v_t) - \Phi(v_t + w)}{t} \ge \frac{\Phi(w_t + v_t) - \Phi(v_0 + w)}{t} \ge 0.$$
(2.19)

Then,

$$(\nabla \Phi(v_t + w + \lambda_t th), h) \ge 0 \quad \text{for } 0 < \lambda_t < 1.$$
(2.20)

At the limit, we obtain

$$(\nabla \Phi(u), h) = 0 \quad \forall h \in W.$$
(2.21)

Hence, *u* is a critical point of Φ .

3. Second abstract result. Let *H* be a Hilbert space such that $H = V \oplus W$ where *V* and *W* are two closed and orthogonal subspaces of *H*. Let $\Phi : H \to \mathbb{R}$ be such that

$$\Phi = q + \psi,$$

$$q(v + w) = q(v) + q(w) \quad \forall (v, w) \in V \times W$$

$$\psi \text{ is weakly continuous on } H.$$
(3.1)

THEOREM 3.1. Let *H* be a Hilbert space such that $H = V \oplus W$ where *V* and *W* are two closed and orthogonal subspaces of *H*. Let $\Phi : H \to \mathbb{R}$ be a functional verifying (3.1) such that

(i) *q* and ψ are of class \mathscr{C}^1 .

- (ii) $\nabla \Phi$ is weakly continuous on *H*.
- (iii) Φ is coercive on W.

(iv) For a fixed $w \in W$, $v \mapsto \Phi(v + w)$ is concave on V.

(v) For a fixed $w \in W$, $\Phi(v+w) \to -\infty$ when $||v|| \to +\infty$, $v \in V$; and the convergence is uniform on the bounded sets of W.

(vi) For a fixed $v \in V$, Φ is weakly lower semicontinuous on W + v.

Then Φ admits a critical point $u \in H$. Moreover, this critical point is characterized by the equality

$$\Phi(u) = \min_{w \in W} \max_{v \in V} \Phi(v + w).$$
(3.2)

For the proof of Theorem 3.1, we use some results of Lemmas 2.4 and 2.5 and we need also the following lemmas.

LEMMA 3.2. For each $w \in W$, $\overline{V}(w)$ is convex.

PROOF. Take $v_1, v_2 \in \overline{V}(w)$ and $v_{\lambda} = \lambda v_1 + (1 - \lambda)v_2$ with $\lambda \in [0, 1]$. So that from Theorem 3.1(iv), we have $\Phi(v_{\lambda} + w) \ge \lambda \Phi(v_1 + w) + (1 - \lambda)\Phi(v_2 + w) = \Phi(v_1 + w) = \Phi(v_2 + w)$. Then

$$\Phi(v_{\lambda} + w) = \Phi(v_1 + w) = \Phi(v_2 + w).$$
(3.3)

So $v_{\lambda} \in \overline{V}(w)$.

LEMMA 3.3. Let $L(w) = \{\nabla \Phi(v+w) : v \in \overline{V}(w)\}$. For each $w \in W$,

(i) L(w) is convex.

(ii) L(w) is closed.

PROOF. (i) Let $h \in W$ and $v_1, v_2 \in \overline{V}(w)$. From Theorem 3.1(iv) and Lemma 3.2, we have for all t > 0,

$$\Phi(v_{\lambda} + w + th) - \Phi(v_{\lambda} + w) \ge \lambda(\Phi(v_{1} + th + w) - \Phi(v_{1} + w)) + (1 - \lambda)(\Phi(v_{2} + th + w) - \Phi(v_{2} + w)).$$
(3.4)

Divide by *t* and let *t* tend to 0, then

$$(\nabla\Phi(v_{\lambda}+w),h) \ge \lambda(\nabla\Phi(v_{1}+w),h) + (1-\lambda)(\nabla\Phi(v_{2}+w),h).$$
(3.5)

Since this is true for all $h \in W$, we conclude that

$$\nabla\Phi(v_{\lambda}+w) = \lambda\nabla\Phi(v_{1}+w) + (1-\lambda)\nabla\Phi(v_{2}+w).$$
(3.6)

(ii) For $w \in W$, let $S_w = \{v + w : v \in \overline{V}(w)\}$.

First, we show that S_w is closed. Let $v_n + w \in S_w$ such that $v_n + w \to v_0 + w$. $\Phi(v_n + w) \to \Phi(v_0 + w)$ and $\Phi(v_n + w) = \max_{g \in V} \Phi(g + w)$. Then $v_0 + w \in S_w$.

Next, we affirm that S_w is bounded. If not, there exists v_n of $\bar{V}(w)$ such that $||v_n|| \to +\infty$, and we conclude from Theorem 3.1(v) that $\Phi(v_n + w) \to -\infty$. This gives a contradiction.

Consequently, S_w is closed and bounded. Since S_w is convex, we conclude that S_w is weakly compact. From Theorem 3.1(ii), it follows that L(w) is weakly compact. Then L(w) is weakly closed. Thus L(w) is closed.

PROOF OF THEOREM 3.1. Let $w \in W$ and $u \in S_w$. If u satisfies (2.8), we will show that L(w) contains 0 and there exists $v \in V(w)$ such that

$$\nabla \Phi(\nu + w) = 0. \tag{3.7}$$

By contradiction, suppose that L(w) does not contain 0. Since it is convex and closed in the Hilbert space, there exists $h_1 \in L(w)$ such that

$$0 \neq ||h_1|| = \inf \{||h|| : h \in L(w)\}.$$
(3.8)

Let $h \in L(w)$, $h_1 + \lambda(h - h_1) \in L(w)$ for $\lambda \in [0, 1]$, thus

$$(h_1 + \lambda(h - h_1), h_1 + \lambda(h - h_1)) \ge ||h_1||^2.$$
(3.9)

Hence

$$||h_1||^2 + 2\lambda(h - h_1, h_1) + \lambda^2 ||h - h_1||^2 \ge ||h_1||^2,$$
 (3.10)

so

$$2(h-h_1,h_1) + \lambda ||h-h_1||^2 \ge 0.$$
(3.11)

When λ tends to 0. We obtain $(h - h_1, h_1) \ge 0$. So that $(h, h_1) \ge ||h_1||^2 > 0$. Equivalently,

$$\left(\nabla\Phi(\nu+w),h_1\right)>0\quad\forall\nu\in\bar{V}(w).$$
(3.12)

Denote $w_t = w + th_1$ for $|t| \le 1$. We note that $w_t \in W$. By Lemma 2.4, for each $0 < |t| \le 1$, there exists $v_t \in V(w_t)$. Since $||w_t|| \le ||w|| + ||h_1||$, Theorem 3.1(v) implies that there exists a constant A > 0 such that

$$\Phi(v+w_t) < \inf_{W} \Phi \le \Phi(w_t), \tag{3.13}$$

for $v \in V$, $||v|| \ge A$, and $|t| \le 1$. (Since Φ is coercive and weakly lower semicontinuous in the reflexive space *W*, it reaches its minimum.) It follows that

$$\|v_t\| \le A. \tag{3.14}$$

Otherwise, we would have

$$\Phi(v_t + w_t) < \Phi(w_t), \tag{3.15}$$

which contradicts the fact that $v_t \in \overline{V}(w_t)$. We conclude then as *V* is reflexive that there exists a subsequence $t_n \to 0$ and $t_n < 0$ such that $v_{t_n} \to v_0 \in V$.

Claim

$$\nu_0 \in \bar{V}(w). \tag{3.16}$$

We have $v_{t_n} \rightarrow v_0$ and $w_{t_n} \rightarrow w$, so

$$v_{t_n} + w_{t_n} \rightharpoonup v_0 + w. \tag{3.17}$$

Since ψ is weakly upper semicontinuous on *H*, we have

$$\psi(v_0 + w) \ge \limsup_{n \to \infty} \psi(v_{t_n} + w_{t_n}).$$
(3.18)

By Lemma 2.4, Φ is weakly upper semicontinuous on *V* and we know that ψ is weakly lower semicontinuous on *V*, so $q = \Phi - \psi$ is weakly upper semicontinuous on *V*. Then

$$q(v_0) \ge \limsup_{n \to \infty} q(v_{t_n}). \tag{3.19}$$

Moreover, the continuity of *q* implies that

$$q(w) = \lim_{n \to \infty} q(w_{t_n}) = \limsup_{n \to \infty} q(w_{t_n}).$$
(3.20)

Then

$$q(v_{0}+w) = q(v_{0}) + q(w)$$

$$\geq \limsup_{n \to \infty} q(v_{t_{n}}) + \limsup_{n \to \infty} q(w_{t_{n}})$$

$$\geq \limsup_{n \to \infty} (q(v_{t_{n}}) + q(w_{t_{n}}))$$

$$\geq \limsup_{n \to \infty} q(v_{t_{n}} + w_{t_{n}}).$$
(3.21)

On the other hand, $v_{t_n} \in V(w_{t_n})$ implies that

$$\Phi(v_{t_n} + w_{t_n}) \ge \Phi(v + w_{t_n}) \quad \forall v \in V.$$
(3.22)

We then obtain

$$q(v_{0}+w) + \psi(v_{0}+w) \geq \limsup_{n \to \infty} q(v_{t_{n}}+w_{t_{n}}) + \limsup_{n \to \infty} \psi(v_{t_{n}}+w_{t_{n}})$$

$$\geq \limsup_{n \to \infty} (q(v_{t_{n}}+w_{t_{n}}) + \psi(v_{t_{n}}+w_{t_{n}}))$$

$$\geq \limsup_{n \to \infty} (q(v+w_{t_{n}}) + \psi(v+w_{t_{n}})) \quad \forall v \in V$$

$$\geq q(v+w) + \psi(v+w) \quad \forall v \in V.$$
(3.23)

Thus

$$\Phi(v_0 + w) \ge \Phi(v + w) \quad \forall v \in V.$$
(3.24)

Equivalently, $v_0 \in \overline{V}(w)$.

Therefore, we have

$$-\frac{\Phi(w_{t_n}+v_{t_n})-\Phi(v_{t_n}+w)}{t_n} \ge -\frac{\Phi(w_{t_n}+v_{t_n})-\Phi(v_0+w)}{t_n} \ge 0, \quad (3.25)$$

and so

$$\left(\nabla\Phi(v_{t_n} + w + \varepsilon_n t_n h_1), h_1\right) \le 0 \quad \text{for } 0 < \varepsilon_n < 1.$$
(3.26)

When t_n tend to 0, by (ii), we deduce finally that

$$\left(\nabla\Phi(v_0+w),h_1\right) \le 0. \tag{3.27}$$

Which contradicts (3.8). Then there exists $v_1 \in \overline{V}(w)$ such that $\nabla \Phi(v_1 + w) = 0$ and

$$\Phi(v_1 + w) = \min_{w \in W} \max_{v \in V} \Phi(v + w).$$
(3.28)

REMARK 3.4. In the proof of Theorem 3.1, (3.1) allows us to show that $v_0 \in \overline{V}(w)$. Or, we remark that we do not need to introduce ψ and q if $\Phi(v + w) = \Phi(v) + \Phi(w)$. Indeed, $w_{t_n} \to w$ and $v_{t_n} \to v_0$ imply that

$$\limsup \Phi(v_{t_n} + w_{t_n}) = \limsup (\Phi(v_{t_n}) + \Phi(w_{t_n}))$$

$$\leq \limsup \Phi(v_{t_n}) + \limsup \Phi(w_{t_n}).$$
(3.29)

By Lemma 2.4, Φ is weakly upper semicontinuous on *V*, thus

$$\limsup \Phi(v_{t_n} + w_{t_n}) \le \Phi(v_0) + \Phi(w) = \Phi(v_0 + w).$$
(3.30)

On the other hand, $v_{t_n} \in \overline{V}(w_{t_n})$ implies that

$$\Phi(v_{t_n} + w_{t_n}) \ge \Phi(v + w_{t_n}) \quad \forall v \in V.$$
(3.31)

So

$$\limsup \Phi(v_{t_n} + w_{t_n}) \ge \Phi(v + w) \quad \forall v \in V.$$
(3.32)

Then

$$\Phi(v_0 + w) \ge \Phi(v + w) \quad \forall v \in V, \tag{3.33}$$

that is, $v_0 \in \overline{V}(w)$.

REMARK 3.5. We can also prove Theorem 3.1 for any functional Φ : $H \to \mathbb{R}$ without introducing ψ and q if Φ is weakly upper semicontinuous on H.

ANOTHER VERSION OF THEOREM 3.1. Let *A* be a convex set. The function $f : A \to \mathbb{R}$ is quasiconcave if for all x_1, x_2 in *A*, and for all λ in]0,1[, then

$$f(\lambda x_1 + (1 - \lambda) x_2) \ge \min(f(x_1), f(x_2)).$$
(3.34)

The function f is quasiconvex if (-f) is quasiconcave, and it is strictly quasiconcave if the inequality above is strict.

It is clear that any strictly concave function is strictly quasiconcave.

PROPOSITION 3.6. Let *E* be a reflexive Banach space. If $\Phi : E \to \mathbb{R}$ is quasiconcave and upper semicontinuous, then Φ is weakly upper semicontinuous.

THEOREM 3.7. Let *E* be a reflexive Banach space such that $E = V \oplus W$ where *V* and *W* are two closed subspaces of *E* not necessarily orthogonal. Let $\Phi : H \to \mathbb{R}$ be a functional satisfying (3.1) such that

- (i) q and ψ are of class \mathscr{C}^1 .
- (ii) $\nabla \Phi$ is weakly continuous.
- (iii) Φ is coercive on W.

(iv) For all $w \in W$, $v \mapsto \Phi(v + w)$ is strictly quasiconcave on *V*.

(v) For all $w \in W$, $\Phi(v + w) \to -\infty$ when $||v|| \to +\infty$, $v \in V$; and the convergence is uniform on bounded subsets of W.

(vi) For all $v \in V$, Φ is lower weakly semicontinuous on W + v.

Then Φ admits a critical point $u \in H$. Moreover, this critical point is characterized by the equality

$$\Phi(u) = \min_{w \in W} \max_{v \in V} \Phi(v + w).$$
(3.35)

In the proof of this theorem, we need Lemmas 2.4 and 2.5. We note that by **Proposition 3.6**, the result of Lemma 2.4 is still true in this case.

PROOF. We will prove that $u \in S$ obtained in Lemma 2.5 is a critical point of Φ . We have $\langle \Phi'(u), v \rangle$ for all $v \in V$, so it is sufficient to show that $\langle \Phi'(u), h \rangle = 0$ for all $h \in W$. Recall that $u \in S$ can be written as u = v + w where $w \in W$ and $v \in \bar{V}(w)$. Let $h \in W$ and $w_t = w + th$ for $|t| \leq 1$. For all t such that $0 < |t| \leq 1$, there exists a unique $v_t \in \bar{V}(w_t)$. In the same way as in the proof of Theorem 3.1, we can extract a subsequence v_{tn} such that $v_{tn} \rightarrow v_0$ and $v_0 \in \bar{V}(w)$. By Lemma 2.4, we deduce that $v_0 = v$. Hence for t > 0, we have

$$\langle \Phi'(u), h \rangle = 0 \quad \forall h \in W.$$
 (3.36)

Then, *u* is a critical point of Φ .

REFERENCES

 P. W. Bates and I. Ekeland, *A saddle-point theorem*, Differential Equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla., 1979), Academic Press, New York, 1980, pp. 123–126.

- [2] M. S. Berger, Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, vol. 74, Academic Press, New York, 1977.
- [3] A. C. Lazer, E. M. Landesman, and D. R. Meyers, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), no. 3, 594-614.
- [4] R. F. Manasevich, A min max theorem, J. Math. Anal. Appl. 90 (1982), 64-71.
- [5] A. M. Moussaoui, Questions d'existence dans les problèmes semi-lineaires elliptiques, Ph.D. thesis, Université libre de Bruxelles, 1990-1991.
- [6] J. T. Schwartz, *Nonlinear Functional Analysis*, Gordon and Breach Science Publishers, New York, 1969.
- [7] S. A. Tersian, A minimax theorem and applications to nonresonance problems for semilinear equations, Nonlinear Anal. **10** (1986), no. 7, 651–668.
- [8] K. Thews, A reduction method for some nonlinear Dirichlet problems, Nonlinear Anal. 3 (1979), 795-813.

H. BOUKHRISSE: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY MOHAMMED I, OUJDA, MOROCCO

E-mail address: boukhrisse@operamail.com

M. MOUSSAOUI: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY MOHAMMED I, OUJDA, MOROCCO