# CRITICAL POINT THEOREMS 

H. BOUKHRISSE and M. MOUSSAOUI

Received 12 December 2000

Let $H$ be a Hilbert space such that $H=V \oplus W$, where $V$ and $W$ are two closed subspaces of $H$. We generalize an abstract theorem due to Lazer et al. (1975) and a theorem given by Moussaoui (1990-1991) to the case where $V$ and $W$ are not necessarily finite dimensional. We give two mini-max theorems where the functional $\Phi: H \rightarrow \mathbb{R}$ is of class $\mathscr{C}^{2}$ and $\mathscr{C}^{1}$, respectively.

2000 Mathematics Subject Classification: 58E05.

1. Introduction. Our purpose in this note is to generalize a mini-max theorem due to Lazer et al. [3]. Their theorem is as follows.

THEOREM 1.1. Let $X$ and $Y$ be two closed subspaces of a real Hilbert space $H$ such that $X$ is finite dimensional and $H=X \oplus Y$ ( $X$ and $Y$ not necessarily orthogonal). Let $\Phi: H \rightarrow \mathbb{R}$ be a $C^{2}$ functional and let $\nabla \Phi$ and $D^{2} \Phi$ denote the gradient and Hessian of $\Phi$, respectively. Suppose that there exist two positive constants $m_{1}$ and $m_{2}$ such that

$$
\begin{equation*}
\left(D^{2} \Phi(u) h, h\right) \leq-m_{1}\|h\|^{2}, \quad\left(D^{2} \Phi(u) k, k\right) \geq m_{2}\|k\|^{2} \tag{1.1}
\end{equation*}
$$

for all $u \in H, h \in X$, and $k \in Y$. Then $\Phi$ has a unique critical point, that is, there exists a unique $v_{0} \in H$ such that $\nabla \Phi\left(v_{0}\right)=0$. Moreover, this critical point is characterized by the

$$
\begin{equation*}
\Phi\left(v_{0}\right)=\max _{x \in X} \min _{y \in Y} \Phi(x+y) \tag{1.2}
\end{equation*}
$$

Bates and Ekeland in [1] generalized Theorem 1.1 to the case where $X$ and $Y$ are not necessarily finite dimensional. Via a reduction method, Manasevich considered the same case in [4], but he supposed weaker conditions on Hessian of $\Phi$. On the other hand, Tersian [7] studied the case where $X$ and $Y$ are not necessarily finite dimensional, $\nabla \Phi: H \rightarrow H$ is everywhere defined and hemicontinuous on $H$, which means that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \nabla \Phi(u+t v)=\nabla \Phi(u) \quad \forall u, v \in H \tag{1.3}
\end{equation*}
$$

Instead of the conditions on the Hessian of $\Phi$, they supposed
(1) $\left(\nabla \Phi\left(h_{1}+y\right)-\nabla \Phi\left(h_{2}+y\right), h_{1}-h_{2}\right) \leq-m_{1}\left\|h_{1}-h_{2}\right\|^{2} h_{1}, h_{2} \in X, y \in Y$,
(2) $\left(\nabla \Phi\left(x+k_{1}\right)-\nabla \Phi\left(x+k_{2}\right), k_{1}-k_{2}\right) \geq m_{2}\left\|k_{1}-k_{2}\right\|^{2} k_{1}, k_{2} \in Y, x \in X$,
where $H=X \oplus Y, m_{1}$ and $m_{2}$ are strictly positive.
Their result rests heavily upon two theorems on $\alpha$-convex functionals and an existence theorem for a class of monotone operators due to Browder. By a completely
different method, the second author gave another version of Theorem 1.1 (see [5]) with convexity conditions that are weaker than those assumed above.

Theorem 1.2. Let $H$ be a Hilbert space such that $H=V \oplus W$ where $V$ is a finitedimensional subspace of $H$ and $W$ its orthogonal. Let $\Phi: H \rightarrow \mathbb{R}$ be a functional such that
(i) $\Phi$ is of class $\mathscr{C}^{1}$.
(ii) $\Phi$ is coercive on $W$.
(iii) For fixed $w \in W, v \mapsto \Phi(v+w)$ is concave on $V$.
(iv) For fixed $w \in W, \Phi(v+w) \rightarrow-\infty$ when $\|v\| \rightarrow+\infty, v \in V$; and the convergence is uniform on bounded subsets of $W$.
(v) For all $v \in V, \Phi$ is weakly lower semicontinuous on $W+v$.

Then $\Phi$ admits a critical point in $H$.
We consider the case where $X$ and $Y$ are not necessarily finite dimensional. Our proofs contain many steps used in [5] and our convexity conditions are weaker than those given by other authors. First, we prove a mini-max theorem where $\Phi: H \rightarrow \mathbb{R}$ is of class $\mathscr{C}^{2}$. Next, we prove the existence theorem for a particular class of $\mathscr{C}^{1}$ functional $\Phi: H \rightarrow \mathbb{R}$.
2. First abstract result. The next two propositions are used in this work. For a proof of Proposition 2.1, see [2], and for a proof of Proposition 2.2, see [6].

Proposition 2.1. Let $X$ be a reflexive Banach space and let $\Phi: X \rightarrow \mathbb{R}$ be a functional such that
(i) $\Phi$ is weakly lower semicontinuous on $X$,
(ii) $\Phi$ is coercive, that is, $\Phi(u) \rightarrow+\infty$ when $\|u\| \rightarrow+\infty$,
then $\Phi$ is lower bounded and there exists $u_{0} \in X$ such that

$$
\begin{equation*}
\Phi\left(u_{0}\right)=\inf _{X} \phi . \tag{2.1}
\end{equation*}
$$

Proposition 2.2. Let $H$ be a real Hilbert space and let $L$ be a bounded linear operator on H. Suppose that

$$
\begin{equation*}
(L x, x) \geq a\|x\|^{2} \tag{2.2}
\end{equation*}
$$

for all $x \in H$ and $a$ is a strictly positive real number. Then $L$ is an isomorphism onto $H$ and $\left\|L^{-1}\right\| \leq a^{-1}$.

Theorem 2.3. Let $H$ be a Hilbert space such that $H=V \oplus W$ where $V$ and $W$ are two closed and orthogonal subspaces of $H$. Let $\Phi: H \rightarrow \mathbb{R}$ be a functional such that
(i) $\Phi$ is of class $\mathscr{b}^{2}$.
(ii) There exists a continuous nonincreasing function $\gamma:[0,+\infty) \rightarrow] 0, \infty)$ such that

$$
\begin{equation*}
\left\langle D^{2} \Phi(v+w) g, g\right\rangle \leq-\gamma(\|v\|)\|g\|^{2} \tag{2.3}
\end{equation*}
$$

for all $v \in V, w \in W$, and $g \in V$.
(iii) $\Phi$ is coercive on $W$.
(iv) For all $w \in W, \Phi(v+w) \rightarrow-\infty$ when $\|v\| \rightarrow+\infty, v \in V$.
(v) $\Phi$ is weakly lower semicontinuous on $W+v$.

Then $\Phi$ admits at least a critical point $u \in H$. Moreover, this critical point of $\Phi$ is characterized by the equality

$$
\begin{equation*}
\Phi(u)=\min _{w \in W} \max _{v \in V} \Phi(v+w) \tag{2.4}
\end{equation*}
$$

In the proof of Theorem 2.3, we will use the following three lemmas.
LEMMA 2.4. For all $w \in W$, there exists a unique $v \in V$ such that

$$
\begin{equation*}
\Phi(v+w)=\max _{g \in V} \Phi(g+w) \tag{2.5}
\end{equation*}
$$

Proof. From Theorem 2.3(ii), for $w$ fixed in $W, v \mapsto \Phi(v+w)$ is continuous and strictly concave on $V$. Then, it is weakly upper semicontinuous on $V$. Moreover, from Theorem 2.3(iv), it is anticoercive on $V$. So that it admits a maximum on $V$. We affirm that this maximum is unique, otherwise we suppose that there exists two maximums $v_{1}$ and $v_{2}$. Let $v_{\lambda}=\lambda v_{1}+(1-\lambda) v_{2}$ for $0<\lambda<1$, then

$$
\begin{equation*}
\Phi\left(v_{\lambda}+w\right)>\lambda \Phi\left(v_{1}+w\right)+(1-\lambda) \Phi\left(v_{2}+w\right)=\Phi\left(v_{1}+w\right)=\Phi\left(v_{2}+w\right) \tag{2.6}
\end{equation*}
$$

For the rest of the note, we will adopt the notations

$$
\begin{align*}
\bar{V}(w) & =\left\{v \in V: \Phi(v+w)=\max _{g \in V} \Phi(g+w)\right\}  \tag{2.7}\\
S & =\{u=v+w, w \in W, v \in \bar{V}(w)\}
\end{align*}
$$

LEMMA 2.5. There exists $u \in S$ such that

$$
\begin{equation*}
\Phi(u)=\inf _{S} \Phi \tag{2.8}
\end{equation*}
$$

Proof. There exists a sequence $\left(u_{n}\right)$ of $S$ such that $\Phi\left(u_{n}\right) \rightarrow \inf _{S} \Phi=a$. For all $n$, $u_{n}=v_{n}+w_{n}$ with $w_{n} \in W$, and $v_{n} \in \bar{V}\left(w_{n}\right)$.

Claim

$$
\begin{equation*}
\left\|w_{n}\right\| \leq c \tag{2.9}
\end{equation*}
$$

Otherwise,

$$
\begin{equation*}
\Phi\left(u_{n}\right)=\Phi\left(v_{n}+w_{n}\right) \geq \Phi\left(w_{n}\right) \tag{2.10}
\end{equation*}
$$

From Theorem 2.3(iii), $\Phi\left(w_{n}\right) \rightarrow+\infty$, hence $\Phi\left(u_{n}\right) \rightarrow+\infty$. This gives a contradiction. Moreover, from (2.9), there exists a subsequence also denoted $w_{n}$ such that $w_{n} \rightarrow w$. Take $v$ in $V$, by Theorem 2.3(v), we have

$$
\begin{equation*}
\Phi(v+w) \leq \liminf _{n} \Phi\left(v+w_{n}\right) \leq \liminf _{n} \Phi\left(v_{n}+w_{n}\right)=a \tag{2.11}
\end{equation*}
$$

This is true for all $v \in V$, in particular, for $v \in \bar{V}(w)$. Then $u=v+w$ satisfies (2.8).

LEMmA 2.6. The application $\bar{V}: W \rightarrow V$ such that

$$
\begin{equation*}
\Phi(w+\bar{V}(w))=\max _{g \in V} \Phi(g+w) \tag{2.12}
\end{equation*}
$$

is of class $C^{1}$.

Proof of Theorem 2.3. For each $w \in W$, let $\Phi_{w}: V \rightarrow \mathbb{R}$ be defined by $\Phi_{w}(v)=$ $\Phi(v+w)$. Then $\Phi_{w} \in C^{2}(V, \mathbb{R})$ and for $v^{\prime} \in V$, we have

$$
\begin{align*}
\left(\nabla \phi_{w}(v), v^{\prime}\right) & =\left(\nabla \Phi(v+w), v^{\prime}\right), \\
\left(D^{2} \Phi_{w}(v) v^{\prime}, v^{\prime}\right) & =\left(D^{2} \Phi(v+w) v^{\prime}, v^{\prime}\right) . \tag{2.13}
\end{align*}
$$

By Lemma 2.4, we conclude that for all $w \in W$, there exists a unique $v_{w}$ in $V$ such that $\nabla \Phi_{w}\left(v_{w}\right)=0$. To prove that $\bar{V} \in C^{1}(W, V)$, we will use the implicit function theorem. To see this, let $P$ denote the orthogonal projection of $H$ onto $V$. Then

$$
\begin{equation*}
v=\bar{V}(w) \quad \text { iff } P \nabla \Phi(w+v)=0 . \tag{2.14}
\end{equation*}
$$

Next, we define $E: W \times V \rightarrow V$ by

$$
\begin{equation*}
E(w, v)=P \nabla \Phi(w+v) . \tag{2.15}
\end{equation*}
$$

Then $E$ is of class $C^{1}$ and given any pair $w_{0} \in W, v_{0} \in V$ such that $E\left(w_{0}, v_{0}\right)=0$, it follows that $v_{0}=\bar{V}\left(w_{0}\right)$.

If $E_{v}$ denotes the partial derivative of $E$ with respect to $v$, and if $v^{\prime} \in V$, we have

$$
\begin{equation*}
E_{v}\left(w_{0}, v_{0}\right) v^{\prime}=P D^{2} \Phi\left(w_{0}+v_{0}\right) v^{\prime} \tag{2.16}
\end{equation*}
$$

The mapping $E_{v}\left(w_{0}, v_{0}\right): V \rightarrow V$ is linear and bounded we have from Theorem 2.3(ii)

$$
\begin{equation*}
\left(E_{v}\left(w_{0}, v_{0}\right) v^{\prime}, v^{\prime}\right)=\left(D^{2} \Phi\left(w_{0}+v_{0}\right) v^{\prime}, v^{\prime}\right) \leq-\gamma\left(\left\|v_{0}\right\|\right)\left\|v^{\prime}\right\|^{2}, \tag{2.17}
\end{equation*}
$$

for all $v^{\prime} \in V$. By Proposition 2.2, $E_{v}\left(w_{0}, v_{0}\right)$ is an isomorphism onto $V$. Then from the implicit function theorem [2], there exists a $C^{1}$ mapping $f$ from a neighborhood $U$ of $w_{0}$ in $W$ into $V$ such that $E(w, f(w))=0$ for all $w \in U$. Moreover, from (2.14) and (2.15), $f(w)=\bar{V}(w)$ for all $w \in W$. Hence, since $w_{0}$ was arbitrarily chosen, it follows that $f$ can be defined over all of $W$. Then we conclude that $\bar{V} \in C^{1}(W, V)$.

Remark 2.7. The proof of Lemma 2.6 relies on the implicit function theorem. This theorem was used by Thews in [8] to prove the existence of a critical point for a particular class of functionals. It was also used by Manasevich in [4].

Proof. Let $w \in W$ and $u \in S_{w}$. We will prove that if $u$ satisfies (2.8), then $u$ is a critical point of $\Phi$. By Lemma 2.4, it is easy to see that $(\nabla \Phi(u), g)=0$ for all $g \in V$, so it suffices to prove that

$$
\begin{equation*}
(\nabla \Phi(u), h)=0 \quad \forall h \in W . \tag{2.18}
\end{equation*}
$$

Recall that $u \in S$ can be written $u=w+v$ where $w \in W$ and $v \in \bar{V}(w)$. Take $h \in W$ and let $w_{t}=w+t h$ for $|t| \leq 1$. For each $t$ such that $0<|t| \leq 1$, there exists a unique $v_{t} \in V\left(w_{t}\right)$. By Lemma 2.6, we conclude that $v_{t_{n}}$ converge to a certain $v_{0}$ and that $v_{0} \in \bar{V}(w)$. Then, by Lemma 2.4, $v_{0}=v$. For $t>0$, we have

$$
\begin{equation*}
\frac{\Phi\left(w_{t}+v_{t}\right)-\Phi\left(v_{t}+w\right)}{t} \geq \frac{\Phi\left(w_{t}+v_{t}\right)-\Phi\left(v_{0}+w\right)}{t} \geq 0 \tag{2.19}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left(\nabla \Phi\left(v_{t}+w+\lambda_{t} t h\right), h\right) \geq 0 \quad \text { for } 0<\lambda_{t}<1 \tag{2.20}
\end{equation*}
$$

At the limit, we obtain

$$
\begin{equation*}
(\nabla \Phi(u), h)=0 \quad \forall h \in W \tag{2.21}
\end{equation*}
$$

Hence, $u$ is a critical point of $\Phi$.
3. Second abstract result. Let $H$ be a Hilbert space such that $H=V \oplus W$ where $V$ and $W$ are two closed and orthogonal subspaces of $H$. Let $\Phi: H \rightarrow \mathbb{R}$ be such that

$$
\begin{gather*}
\Phi=q+\psi \\
q(v+w)=q(v)+q(w) \quad \forall(v, w) \in V \times W \tag{3.1}
\end{gather*}
$$

$\psi$ is weakly continuous on $H$.
THEOREM 3.1. Let $H$ be a Hilbert space such that $H=V \oplus W$ where $V$ and $W$ are two closed and orthogonal subspaces of $H$. Let $\Phi: H \rightarrow \mathbb{R}$ be a functional verifying (3.1) such that
(i) $q$ and $\psi$ are of class $\mathscr{C}^{1}$.
(ii) $\nabla \Phi$ is weakly continuous on $H$.
(iii) $\Phi$ is coercive on $W$.
(iv) For a fixed $w \in W, v \mapsto \Phi(v+w)$ is concave on $V$.
(v) For a fixed $w \in W$, $\Phi(v+w) \rightarrow-\infty$ when $\|v\| \rightarrow+\infty, v \in V$; and the convergence is uniform on the bounded sets of $W$.
(vi) For a fixed $v \in V, \Phi$ is weakly lower semicontinuous on $W+v$.

Then $\Phi$ admits a critical point $u \in H$. Moreover, this critical point is characterized by the equality

$$
\begin{equation*}
\Phi(u)=\min _{w \in W} \max _{v \in V} \Phi(v+w) \tag{3.2}
\end{equation*}
$$

For the proof of Theorem 3.1, we use some results of Lemmas 2.4 and 2.5 and we need also the following lemmas.

LEMMA 3.2. For each $w \in W, \bar{V}(w)$ is convex.
Proof. Take $v_{1}, v_{2} \in \bar{V}(w)$ and $v_{\lambda}=\lambda v_{1}+(1-\lambda) v_{2}$ with $\lambda \in[0,1]$. So that from Theorem 3.1(iv), we have $\Phi\left(v_{\lambda}+w\right) \geq \lambda \Phi\left(v_{1}+w\right)+(1-\lambda) \Phi\left(v_{2}+w\right)=\Phi\left(v_{1}+w\right)=$ $\Phi\left(v_{2}+w\right)$. Then

$$
\begin{equation*}
\Phi\left(v_{\lambda}+w\right)=\Phi\left(v_{1}+w\right)=\Phi\left(v_{2}+w\right) \tag{3.3}
\end{equation*}
$$

So $v_{\lambda} \in \bar{V}(w)$.
LEMMA 3.3. Let $L(w)=\{\nabla \Phi(v+w): v \in \bar{V}(w)\}$. For each $w \in W$,
(i) $L(w)$ is convex.
(ii) $L(w)$ is closed.

Proof. (i) Let $h \in W$ and $v_{1}, v_{2} \in \bar{V}(w)$. From Theorem 3.1(iv) and Lemma 3.2, we have for all $t>0$,

$$
\begin{align*}
\Phi\left(v_{\lambda}+w+t h\right)-\Phi\left(v_{\lambda}+w\right) \geq & \lambda\left(\Phi\left(v_{1}+t h+w\right)-\Phi\left(v_{1}+w\right)\right) \\
& +(1-\lambda)\left(\Phi\left(v_{2}+t h+w\right)-\Phi\left(v_{2}+w\right)\right) . \tag{3.4}
\end{align*}
$$

Divide by $t$ and let $t$ tend to 0 , then

$$
\begin{equation*}
\left(\nabla \Phi\left(v_{\lambda}+w\right), h\right) \geq \lambda\left(\nabla \Phi\left(v_{1}+w\right), h\right)+(1-\lambda)\left(\nabla \Phi\left(v_{2}+w\right), h\right) \tag{3.5}
\end{equation*}
$$

Since this is true for all $h \in W$, we conclude that

$$
\begin{equation*}
\nabla \Phi\left(v_{\lambda}+w\right)=\lambda \nabla \Phi\left(v_{1}+w\right)+(1-\lambda) \nabla \Phi\left(v_{2}+w\right) \tag{3.6}
\end{equation*}
$$

(ii) For $w \in W$, let $S_{w}=\{v+w: v \in \bar{V}(w)\}$.

First, we show that $S_{w}$ is closed. Let $v_{n}+w \in S_{w}$ such that $v_{n}+w \rightarrow v_{0}+w . \Phi\left(v_{n}+\right.$ $w) \rightarrow \Phi\left(v_{0}+w\right)$ and $\Phi\left(v_{n}+w\right)=\max _{g \in V} \Phi(g+w)$. Then $v_{0}+w \in S_{w}$.

Next, we affirm that $S_{w}$ is bounded. If not, there exists $v_{n}$ of $\bar{V}(w)$ such that $\left\|v_{n}\right\| \rightarrow+\infty$, and we conclude from Theorem 3.1(v) that $\Phi\left(v_{n}+w\right) \rightarrow-\infty$. This gives a contradiction.

Consequently, $S_{w}$ is closed and bounded. Since $S_{w}$ is convex, we conclude that $S_{w}$ is weakly compact. From Theorem 3.1(ii), it follows that $L(w)$ is weakly compact. Then $L(w)$ is weakly closed. Thus $L(w)$ is closed.

Proof of Theorem 3.1. Let $w \in W$ and $u \in S_{w}$. If $u$ satisfies (2.8), we will show that $L(w)$ contains 0 and there exists $v \in \bar{V}(w)$ such that

$$
\begin{equation*}
\nabla \Phi(v+w)=0 \tag{3.7}
\end{equation*}
$$

By contradiction, suppose that $L(w)$ does not contain 0 . Since it is convex and closed in the Hilbert space, there exists $h_{1} \in L(w)$ such that

$$
\begin{equation*}
0 \neq\left\|h_{1}\right\|=\inf \{\|h\|: h \in L(w)\} . \tag{3.8}
\end{equation*}
$$

Let $h \in L(w), h_{1}+\lambda\left(h-h_{1}\right) \in L(w)$ for $\lambda \in[0,1]$, thus

$$
\begin{equation*}
\left(h_{1}+\lambda\left(h-h_{1}\right), h_{1}+\lambda\left(h-h_{1}\right)\right) \geq\left\|h_{1}\right\|^{2} . \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|h_{1}\right\|^{2}+2 \lambda\left(h-h_{1}, h_{1}\right)+\lambda^{2}\left\|h-h_{1}\right\|^{2} \geq\left\|h_{1}\right\|^{2} \tag{3.10}
\end{equation*}
$$

so

$$
\begin{equation*}
2\left(h-h_{1}, h_{1}\right)+\lambda\left\|h-h_{1}\right\|^{2} \geq 0 . \tag{3.11}
\end{equation*}
$$

When $\lambda$ tends to 0 . We obtain $\left(h-h_{1}, h_{1}\right) \geq 0$. So that $\left(h, h_{1}\right) \geq\left\|h_{1}\right\|^{2}>0$. Equivalently,

$$
\begin{equation*}
\left(\nabla \Phi(v+w), h_{1}\right)>0 \quad \forall v \in \bar{V}(w) . \tag{3.12}
\end{equation*}
$$

Denote $w_{t}=w+t h_{1}$ for $|t| \leq 1$. We note that $w_{t} \in W$. By Lemma 2.4, for each $0<$ $|t| \leq 1$, there exists $v_{t} \in V\left(w_{t}\right)$. Since $\left\|w_{t}\right\| \leq\|w\|+\left\|h_{1}\right\|$, Theorem 3.1(v) implies that there exists a constant $A>0$ such that

$$
\begin{equation*}
\Phi\left(v+w_{t}\right)<\inf _{W} \Phi \leq \Phi\left(w_{t}\right), \tag{3.13}
\end{equation*}
$$

for $v \in V,\|v\| \geq A$, and $|t| \leq 1$. (Since $\Phi$ is coercive and weakly lower semicontinuous in the reflexive space $W$, it reaches its minimum.) It follows that

$$
\begin{equation*}
\left\|v_{t}\right\| \leq A \tag{3.14}
\end{equation*}
$$

Otherwise, we would have

$$
\begin{equation*}
\Phi\left(v_{t}+w_{t}\right)<\Phi\left(w_{t}\right) \tag{3.15}
\end{equation*}
$$

which contradicts the fact that $v_{t} \in \bar{V}\left(w_{t}\right)$. We conclude then as $V$ is reflexive that there exists a subsequence $t_{n} \rightarrow 0$ and $t_{n}<0$ such that $v_{t_{n}}-v_{0} \in V$.

Claim

$$
\begin{equation*}
v_{0} \in \bar{V}(w) \tag{3.16}
\end{equation*}
$$

We have $v_{t_{n}}-v_{0}$ and $w_{t_{n}} \rightarrow w$, so

$$
\begin{equation*}
v_{t_{n}}+w_{t_{n}}-v_{0}+w \tag{3.17}
\end{equation*}
$$

Since $\psi$ is weakly upper semicontinuous on $H$, we have

$$
\begin{equation*}
\psi\left(v_{0}+w\right) \geq \limsup _{n \rightarrow \infty} \psi\left(v_{t_{n}}+w_{t_{n}}\right) \tag{3.18}
\end{equation*}
$$

By Lemma 2.4, $\Phi$ is weakly upper semicontinuous on $V$ and we know that $\psi$ is weakly lower semicontinuous on $V$, so $q=\Phi-\psi$ is weakly upper semicontinuous on $V$. Then

$$
\begin{equation*}
q\left(v_{0}\right) \geq \limsup _{n \rightarrow \infty} q\left(v_{t_{n}}\right) \tag{3.19}
\end{equation*}
$$

Moreover, the continuity of $q$ implies that

$$
\begin{equation*}
q(w)=\lim _{n \rightarrow \infty} q\left(w_{t_{n}}\right)=\limsup _{n \rightarrow \infty} q\left(w_{t_{n}}\right) . \tag{3.20}
\end{equation*}
$$

Then

$$
\begin{align*}
q\left(v_{0}+w\right) & =q\left(v_{0}\right)+q(w) \\
& \geq \limsup _{n \rightarrow \infty} q\left(v_{t_{n}}\right)+\limsup _{n \rightarrow \infty} q\left(w_{t_{n}}\right) \\
& \geq \limsup _{n \rightarrow \infty}\left(q\left(v_{t_{n}}\right)+q\left(w_{t_{n}}\right)\right)  \tag{3.21}\\
& \geq \limsup _{n \rightarrow \infty} q\left(v_{t_{n}}+w_{t_{n}}\right) .
\end{align*}
$$

On the other hand, $v_{t_{n}} \in V\left(w_{t_{n}}\right)$ implies that

$$
\begin{equation*}
\Phi\left(v_{t_{n}}+w_{t_{n}}\right) \geq \Phi\left(v+w_{t_{n}}\right) \quad \forall v \in V . \tag{3.22}
\end{equation*}
$$

We then obtain

$$
\begin{align*}
q\left(v_{0}+w\right)+\psi\left(v_{0}+w\right) & \geq \limsup _{n \rightarrow \infty} q\left(v_{t_{n}}+w_{t_{n}}\right)+\limsup _{n \rightarrow \infty} \psi\left(v_{t_{n}}+w_{t_{n}}\right) \\
& \geq \limsup _{n \rightarrow \infty}\left(q\left(v_{t_{n}}+w_{t_{n}}\right)+\psi\left(v_{t_{n}}+w_{t_{n}}\right)\right)  \tag{3.23}\\
& \geq \limsup _{n \rightarrow \infty}\left(q\left(v+w_{t_{n}}\right)+\psi\left(v+w_{t_{n}}\right)\right) \quad \forall v \in V \\
& \geq q(v+w)+\psi(v+w) \quad \forall v \in V .
\end{align*}
$$

Thus

$$
\begin{equation*}
\Phi\left(v_{0}+w\right) \geq \Phi(v+w) \quad \forall v \in V \tag{3.24}
\end{equation*}
$$

Equivalently, $v_{0} \in \bar{V}(w)$.
Therefore, we have

$$
\begin{equation*}
-\frac{\Phi\left(w_{t_{n}}+v_{t_{n}}\right)-\Phi\left(v_{t_{n}}+w\right)}{t_{n}} \geq-\frac{\Phi\left(w_{t_{n}}+v_{t_{n}}\right)-\Phi\left(v_{0}+w\right)}{t_{n}} \geq 0 \tag{3.25}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\nabla \Phi\left(v_{t_{n}}+w+\varepsilon_{n} t_{n} h_{1}\right), h_{1}\right) \leq 0 \text { for } 0<\varepsilon_{n}<1 . \tag{3.26}
\end{equation*}
$$

When $t_{n}$ tend to 0 , by (ii), we deduce finally that

$$
\begin{equation*}
\left(\nabla \Phi\left(v_{0}+w\right), h_{1}\right) \leq 0 \tag{3.27}
\end{equation*}
$$

Which contradicts (3.8). Then there exists $v_{1} \in \bar{V}(w)$ such that $\nabla \Phi\left(v_{1}+w\right)=0$ and

$$
\begin{equation*}
\Phi\left(v_{1}+w\right)=\min _{w \in W} \max _{v \in V} \Phi(v+w) \tag{3.28}
\end{equation*}
$$

Remark 3.4. In the proof of Theorem 3.1, (3.1) allows us to show that $v_{0} \in \bar{V}(w)$. Or, we remark that we do not need to introduce $\psi$ and $q$ if $\Phi(v+w)=\Phi(v)+\Phi(w)$. Indeed, $w_{t_{n}} \rightarrow w$ and $v_{t_{n}}-v_{0}$ imply that

$$
\begin{align*}
\lim \sup \Phi\left(v_{t_{n}}+w_{t_{n}}\right) & =\lim \sup \left(\Phi\left(v_{t_{n}}\right)+\Phi\left(w_{t_{n}}\right)\right) \\
& \leq \lim \sup \Phi\left(v_{t_{n}}\right)+\lim \sup \Phi\left(w_{t_{n}}\right) \tag{3.29}
\end{align*}
$$

By Lemma 2.4, $\Phi$ is weakly upper semicontinuous on $V$, thus

$$
\begin{equation*}
\limsup \Phi\left(v_{t_{n}}+w_{t_{n}}\right) \leq \Phi\left(v_{0}\right)+\Phi(w)=\Phi\left(v_{0}+w\right) \tag{3.30}
\end{equation*}
$$

On the other hand, $v_{t_{n}} \in \bar{V}\left(w_{t_{n}}\right)$ implies that

$$
\begin{equation*}
\Phi\left(v_{t_{n}}+w_{t_{n}}\right) \geq \Phi\left(v+w_{t_{n}}\right) \quad \forall v \in V \tag{3.31}
\end{equation*}
$$

So

$$
\begin{equation*}
\limsup \Phi\left(v_{t_{n}}+w_{t_{n}}\right) \geq \Phi(v+w) \quad \forall v \in V \tag{3.32}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Phi\left(v_{0}+w\right) \geq \Phi(v+w) \quad \forall v \in V \tag{3.33}
\end{equation*}
$$

that is, $v_{0} \in \bar{V}(w)$.

Remark 3.5. We can also prove Theorem 3.1 for any functional $\Phi: H \rightarrow \mathbb{R}$ without introducing $\psi$ and $q$ if $\Phi$ is weakly upper semicontinuous on $H$.

ANOTHER VERSION OF THEOREM 3.1. Let $A$ be a convex set. The function $f: A \rightarrow \mathbb{R}$ is quasiconcave if for all $x_{1}, x_{2}$ in $A$, and for all $\lambda$ in $] 0,1[$, then

$$
\begin{equation*}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(f\left(x_{1}\right), f\left(x_{2}\right)\right) . \tag{3.34}
\end{equation*}
$$

The function $f$ is quasiconvex if $(-f)$ is quasiconcave, and it is strictly quasiconcave if the inequality above is strict.

It is clear that any strictly concave function is strictly quasiconcave.
Proposition 3.6. Let $E$ be a reflexive Banach space. If $\Phi: E \rightarrow \mathbb{R}$ is quasiconcave and upper semicontinuous, then $\Phi$ is weakly upper semicontinuous.

Theorem 3.7. Let $E$ be a reflexive Banach space such that $E=V \oplus W$ where $V$ and $W$ are two closed subspaces of $E$ not necessarily orthogonal. Let $\Phi: H \rightarrow \mathbb{R}$ be a functional satisfying (3.1) such that
(i) $q$ and $\psi$ are of class $\mathscr{C}^{1}$.
(ii) $\nabla \Phi$ is weakly continuous.
(iii) $\Phi$ is coercive on $W$.
(iv) For all $w \in W, v \mapsto \Phi(v+w)$ is strictly quasiconcave on $V$.
(v) For all $w \in W, \Phi(v+w) \rightarrow-\infty$ when $\|v\| \rightarrow+\infty, v \in V$; and the convergence is uniform on bounded subsets of $W$.
(vi) For all $v \in V, \Phi$ is lower weakly semicontinuous on $W+v$.

Then $\Phi$ admits a critical point $u \in H$. Moreover, this critical point is characterized by the equality

$$
\begin{equation*}
\Phi(u)=\min _{w \in W} \max _{v \in V} \Phi(v+w) . \tag{3.35}
\end{equation*}
$$

In the proof of this theorem, we need Lemmas 2.4 and 2.5 . We note that by Proposition 3.6, the result of Lemma 2.4 is still true in this case.

Proof. We will prove that $u \in S$ obtained in Lemma 2.5 is a critical point of $\Phi$. We have $\left\langle\Phi^{\prime}(u), v\right\rangle$ for all $v \in V$, so it is sufficient to show that $\left\langle\Phi^{\prime}(u), h\right\rangle=0$ for all $h \in W$. Recall that $u \in S$ can be written as $u=v+w$ where $w \in W$ and $v \in \bar{V}(w)$. Let $h \in W$ and $w_{t}=w+t h$ for $|t| \leq 1$. For all $t$ such that $0<|t| \leq 1$, there exists a unique $v_{t} \in \bar{V}\left(w_{t}\right)$. In the same way as in the proof of Theorem 3.1, we can extract a subsequence $v_{t_{n}}$ such that $v_{t_{n}}-v_{0}$ and $v_{0} \in \bar{V}(w)$. By Lemma 2.4, we deduce that $v_{0}=v$. Hence for $t>0$, we have

$$
\begin{equation*}
\left\langle\Phi^{\prime}(u), h\right\rangle=0 \quad \forall h \in W . \tag{3.36}
\end{equation*}
$$

Then, $u$ is a critical point of $\Phi$.

## References

[1] P. W. Bates and I. Ekeland, A saddle-point theorem, Differential Equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla., 1979), Academic Press, New York, 1980, pp. 123-126.
[2] M. S. Berger, Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, vol. 74, Academic Press, New York, 1977.
[3] A. C. Lazer, E. M. Landesman, and D. R. Meyers, On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl. 52 (1975), no. 3, 594-614.
[4] R. F. Manasevich, A min max theorem, J. Math. Anal. Appl. 90 (1982), 64-71.
[5] A. M. Moussaoui, Questions d'existence dans les problèmes semi-lineaires elliptiques, Ph.D. thesis, Université libre de Bruxelles, 1990-1991.
[6] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach Science Publishers, New York, 1969.
[7] S. A. Tersian, A minimax theorem and applications to nonresonance problems for semilinear equations, Nonlinear Anal. 10 (1986), no. 7, 651-668.
[8] K. Thews, A reduction method for some nonlinear Dirichlet problems, Nonlinear Anal. 3 (1979), 795-813.
H. Boukhrisse: Department of Mathematics, Faculty of Sciences, University Mohammed I, Oujda, Morocco

E-mail address: boukhrisse@operamai1.com
M. Moussaoui: Department of Mathematics, Faculty of Sciences, University MOHAMMED I, OUJDA, MOROCCO

