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We investigate the effect of the heat radiation on the reflection and dissipation of up-
ward propagating waves in an isothermal atmosphere. It is shown that the magnetic field
produces a totally reflecting layer. Consequently, the atmosphere can be divided into two
distinct regions. In the lower region, the solution can be written as a linear combination of
an upward and a downward propagating wave, and in the upper region the solution, which
satisfies the upper boundary condition, decays exponentially or behaves like a constant.
These two regions are connected by a region in which the reflection and transmission of the
waves takes place. Moreover, the heat radiation affects only the lower region and changes
the sound speed from the adiabatic value to the isothermal one. The reflection coefficient
and the attenuation factor of the amplitude of the waves are derived for all values of the
heat radiation coefficient. Finally, the conclusions are presented in connection with the
heating process of the solar atmosphere.
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1. Introduction. Upward propagating small amplitude magnetohydrodynamic

waves in an isothermal and nonisothermal atmospheres have been extensively stud-

ied in recent years. The motivation of these studies is due mainly to the applica-

tion of these waves to phenomena in compressible ionized fluids such as solar, stel-

lar, and planetary atmospheres and to certain phenomena in ocean dynamics (see

[1, 2, 3, 7, 9, 10, 11, 12, 13] and the references therein). In this paper, a linearized theo-

ry of magnetoatmospheric waves, involving the combined effect of restoring forces

due to compressibility, magnetic pressure, and radiative damping is developed for

the case of a uniform horizontal magnetic field. A full wave equation is derived and

then reduced to a special and important case of an isothermal atmosphere with a

uniform horizontal magnetic field and radiative damping. It is shown that the pres-

ence of a uniform horizontal magnetic field in an isothermal atmosphere produces

a reflecting and nonabsorbing critical layer. As a result, the atmosphere is divided

into two distinct regions, above and below the reflecting layer. Below the reflecting

layer, the solution can be written as a linear combination of an upward and a down-

ward propagating wave with equal wavelengths and equal attenuation factor in the

amplitude of the wave. Above the reflecting critical layer, the solution satisfying the

prescribed boundary condition either decays exponentially with altitude or behaves

like a constant. These two distinct regions are connected by a critical layer and in it the

reflection, tunneling, and wave modification take place. In addition, it is shown that
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when the heat radiation is intense, the sound speed changes from the adiabatic value

to the isothermal one. Consequently, the wave length is changed from the adiabatic

value to the isothermal one. As a result, the propagation process below the reflective

layer will be changed to an isothermal one and the trapped wave will dissipate its

energy which will contribute to the heating of the atmosphere. This effect is of partic-

ular interest in solar activity in the sunspots because of their strong magnetic field.

In addition, it is shown that the magnetic field lines is affected by the heat flow but

not by the heat existence.

To obtain a unique solution, certain conditions must be imposed. For this reason we

are able to introduce and justify the magnetic energy as an upper boundary condition.

Finally, the reflection coefficient, location of the critical layer, attenuation factor of the

wave amplitude, and an equation for the resonance are determined and the results

are analyzed in connection with the heating process of the solar atmosphere.

2. Mathematical formulation of the problem. Suppose that an atmosphere, which

is inviscid and perfectly electrically conducting, occupies the upper half-space z > 0.

It is assumed that the gas is under the influence of a horizontal magnetic field and

a uniform gravitational acceleration in the negative z direction. Let p, ρ, u, T , and

B be the perturbation quantities in the pressure, density, velocity, temperature, and

magnetic field strength. Let p0, ρ0, u0, T0, and B0 be the equilibrium quantities. The

equations of motion are

ρ0
∂u
∂t
+∇p−ρg− 1

4π
[
(∇×B)×B0+

(∇×B0
)×B]= 0,

∂ρ
∂t
+∇·(ρ0u

)= 0,
∂B
∂t
−∇×(u×B0

)= 0,
(2.1)

∂ρ
∂t
+u·∇p0−c2

o

(
∂ρ
∂t
+u·∇ρ0

)
+ p0

τ
T
T0
= 0, (2.2)

dp0

dz
+ρ0g+ 1

8π
dB2

0

dz
= 0· (2.3)

These are, respectively, the momentum equation, the mass conservation equation, the

induction equation, the heat flow equation, and the magnetohydrostatic equilibrium

equation. Here c0 = (γp0/ρ0)1/2 is the adiabatic sound speed, and τ is the radiative

relaxation time. The form of τ differs depending on whether continuum or line emis-

sions dominate the oscillatory process. If the line emissions dominate the oscillatory

process, the radiative relaxation time can be written as

τ = τ1 = ρ0cp
16σκT 3

0

, (2.4)

where cp is the specific heat at constant pressure, σ is the Stefan-Boltzmann constant,

and κ is the mean absorption coefficient. On the other hand, if the continuum emis-

sions is dominant, the form τ will be the same except cp is replaced by the specific

heat at a constant volume cV . Assuming the time dependence solutions, exp(−iωt),
for the perturbation variables, p = p(z)exp(−iωt), and so forth then (2.3) may be
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written in the following form:

iωp−
[
c2

0

((
a2−1

)
u·∇ρ0+a2ρ0∇·u

)+u·∇p0
]

a1
= 0, (2.5)

where

a1 = 1+ i
ωτ

, a2 = 1+ i
γωτ

. (2.6)

Using the Fourier time decomposition to (2.1), with aid of (2.3) and (2.6), letting the

velocity u = (U,V ,W1) and eliminating the perturbations quantities p, ρ, and B, re-

spectively, we obtain the following vector equation for the velocity alone:

ωρ0u+∇
[
ρ0

a1
W1

(
g+1

2

[
da2

0

dz
−a

2
0

H

])
+a2

a1
c2

0ρ0∇·u−c
2
0ρ0

(
a2−1

)
Ha1

W1

]
−[u∇ρ0+ρ0∇·u

]
g

+ 1
4π

{(∇×B0
)×(∇×(∇×B0

))−B0×
(∇×[∇×(u×B0

)])}= 0,
(2.7)

where H = −ρ0/(dρ0/dz) is the density scale height, and a0 = B0/(4πρ0)1/2 is the

Alfvén speed. Removing the horizontal dependence of the velocity by assuming u =
u(z)exp[i(kxx+kyy)], the three components of (2.7) form a system of three ordinary

differential equations in U , V , and W1(z) (the analysis proceeds in much the same

way as in [6], so we omit the details for simplicity). The horizontal components of

velocity may be eliminated in favor of W1 and ultimately, a second-order equation in

the vertical velocity alone is obtained

d2W1

dz2
+A(z)dW1

dz
+B(z)W1 = 0. (2.8)

The coefficients A(z) and B(z) are defined by

A(z)=ω4A2
1
dc2

dz
D−1E−1+A2A1

da2
0

dz
D−1+ω2A1D−1Ψ−H−1,

B(z)= B1ω6−B2ω4+(B3−B4+B5
)
ω2+B6+B7+B8.

(2.9)

Here we have

D = (ω2−a2
0k

2
x
)[
ω2(c2+a2

0

)−c2a2
0k

2
x
]
,

E =ω4−C1ω2+C2, A1 =
(
ω2−a2

0k
2
x
)
,

A2 =
(
ω2−c2k2

x
)
, A3 =

(
1+ω4E−1)−ω4,

B1 =
(

1−k2
y
(
g−Ψ)da2

0

dz
E−1

)
,

B2 =
[(
c2+a2

0

)(
k2
x+k2

y
)+a2

0k
2
x
]
,

B3 = a2
0k

2
x
(
k2
x+k2

y
)(

2c2+a2
0

)
,

B4 = (g−Ψ)
(
k2
x+k2

y
)(
g−c2H−1),
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B5 = (g−Ψ)H−1a2
0k

2
y,

B6 =−a2
0k

2
x
(
k2
x+k2

y
)[
c2a2

0k
2
x−(g−Ψ)

(
g−c2H−1)],

B7 =−(g−Ψ)
(
ω2−a2

0k
2
x
)
ω2(k2

x+k2
y
)dc2

dz
E−1,

B8 =−ΨEH−1−ω2(ω2−a2
0k

2
x
)dΨ
dz
D−1,

C1 =
(
k2
x+k2

y
)(
c2+a2

0

)
,

C2 =
(
k2
x+k2

y
)
c2a2

0k
2
x,

C2 = a2

a1
c0,

(2.10)

and Ψ denotes the scaled temperature gradient which is defined by the equation

Ψ =
(

1− 1
a1

)(
1
2

[da2
0

dz
− a

2
0

H

]
+g

)
+ a2−1

a1

c2
0

H
=− i

γa1ωτ
dc2

0

dz
. (2.11)

3. Simplification and boundary conditions of the problem. For the simplification

of the problem, the atmosphere is assumed to be an isothermal one (i.e., the speed

of sound is constant), and permeated with a uniform horizontal magnetic field B =
(B0,0,0). Moreover, the equilibrium pressure, density, and temperature are connected

by the gas law P0(z) = RT0ρ0 and the hydrostatic equation dP0/dz+gρ0 = 0, where

R denotes the gas constant. Using the gas law and the hydrostatic equations, the

pressure and density can be written in the following form:

P0(z)
P0(0)

= ρ0(z)
ρ0(0)

= exp
(
− z
H

)
, (3.1)

where H = RT0/g denotes the density scale height. Moreover, let z∗ = z/H, W =
HW1/c where in the body of the problem the star notation is eliminated for simplicity.

Let ky = 0, a2
0 = B2/(4πρ0(0)), a2 = a2

0/c2, q = a2γ/a1, ξ0 = a2ω/(k2−ω2), k=Hkx ,

and assume that

W1(z)=W(ξ)exp(kz), ξ = ξ0 exp(−z). (3.2)

As a result, the differential equation (2.8) can be written as

ξ(1−ξ)d
2W(ξ)
dξ2

+(2k+1−(2k+2)ξ
)dW(ξ)

dξ
−
(
ω2+k+ (q−1)

q2

k2

ω2

)
W(ξ)= 0. (3.3)

It is clear that the differential equation (3.3) is a special case of the hypergeometric

equation

ξ(1−ξ)d
2W(ξ)
dξ2

+(c−(a+b+1)ξ
)dW(ξ)

dξ
−abW(ξ)= 0, (3.4)
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with

a+b = c = 2k+1, ab =ω2+k+ (q−1)
q2

k2

ω2
. (3.5)

The oscillations can be assumed to be excited by some mechanism at z = 0 or below.

The exact nature of the excitation is not important because our object is to investigate

the reflection and effect of the heat radiation on the propagation of the waves at

high altitudes. If the atmosphere is viscous, an appropriate condition would be the

dissipation condition, which requires that the energy dissipation in an infinite column

of fluid of unit cross-section to be finite. Since the dissipation condition depends on

the square of the gradient of the velocity, this implies that

∫∞
0

∣∣∣∣dWdz
∣∣∣∣

2

dz <∞. (3.6)

In this problem the fluid is inviscid, but the integral in (3.6), which is sometimes called

the upper boundary condition, is proportional to the magnetic energy in an infinite

column of fluid of unit cross-section. This condition is a reasonable one to apply so

long as there is no energy radiation to infinity, which is true in our case. A boundary

condition is required at z = 0 and we set

W(0)= 1, (3.7)

by suitable normalizing ofW(z). This condition, sometimes, is called the lower bound-

ary condition. We show that the upper boundary condition and the lower boundary

condition are sufficient to ensure a unique solution, within a multiplicative constant.

4. Solution of the simplified problem. In this section, we investigate and analyze

the solutions of the following differential equation subject to the lower and upper

boundary conditions given in Section 3:

ξ(1−ξ)d
2W(ξ)
dξ2

+(2k+1−(2k+2)ξ
)dW(ξ)

dξ
−
(
ω2+k+ (q−1)

q2

k2

ω2

)
W(ξ)= 0, (4.1)

where

a+b = c = 2k+1, ab =ω2+k+ q−1
q2

k2

ω2
, q = γ(ωτ+i)

(γωτ+i) . (4.2)

It is clear that when τ → 0 we have q→ γ. Consequently, the last term in (2.2), which

contains the heat perturbation, increases to infinity. In other words, when the heat

is intense enough, the oscillatory process will be dominated by the heat radiation. In

addition, the sound speed changes from the adiabatic value
√
γgH to the isothermal

one
√
gH. Moreover, when τ → 0 we obtain ab = ω2 + k+ (γ − 1)k2/γω2 and we

recover (3.7) in [6]. On the other hand, when τ →∞, the term with heat perturbation

in (2.2) will be eliminated. Consequently, the oscillatory process will be adiabatic.

It is clear that the differential equation has three regular singular points ξ = 0,

ξ = 1, and ξ = ∞. The intermediate singular point ξ = 1 indicates the existence and

location of the critical layer, in which the reflection and wave transformation takes
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place. In addition ξ → 0 as z → ∞, ξ → 1 as ξ0 → exp(z), and finally, ξ → ∞ when

ω→ k for a fixed value of z. Two singular points of the differential equation indicate

that the atmosphere can be divided into the two distinct regions above and below the

reflecting layer and this idea will be clear in the analysis of the solution in Section 6.

Solving for the parameters a and b we obtain

a= 1
2
+d+iβ, b = 1

2
−d+iβ, (4.3)

where d and β are the real and imaginary parts of the complex number

√(
k2+ 1

4

)
−
(
ω2+ 4(q−1)

qω2

)
. (4.4)

The differential equation (4.1) has two linearly independent solutions that can be

written, for |ξ|< 1, in the following form:

W1(ξ)= F(a,b,c,ξ), W2(ξ)= ξ1−cF(a−c+1,b−c+1,2−c,ξ), (4.5)

and F denotes the hypergeometric function, which is defined by

F(a,b,c,ξ)= Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a+n)Γ(b+n)
Γ(c+n)

ξn

n!
, (4.6)

where Γ is the gamma function. It is clear, using (3.2), that

ξ1−c = ∣∣ξ0 exp(−z)∣∣1−c. (4.7)

Since c = 2k+1, we have 1−c =−2k, and hence

ξ1−c = ∣∣ξ0

∣∣exp(2kz). (4.8)

Consequently, W2(z) → ∞ as z → ∞, since k > 0. As a result, W2(ξ) will be elimi-

nated using the magnetic energy condition, defined by (3.6). Finally, the solution of

the differential equation (3.3) that satisfies the prescribed boundary conditions can

be written as

W(ξ)= CW1(ξ)= CF(a,b,c,ξ), (4.9)

where C is a multiplicative constant which can be determined using the lower bound-

ary condition.

5. Asymptotic estimate and the magnitude of the reflection coefficient. The as-

ymptotic behavior of F(a,b,c,ξ) for |ξ| > 1 and |arg(−ξ)| < π/2 can be written in

the following form:

W(ξ)= C
[
Γ(c)Γ(b−a)
bΓ 2(b)

(−ξ)−aF(a,1−c+a,1−b+a,ξ−1)

+ Γ(c)Γ(a−b)
aΓ 2(a)

(−ξ)−bF(b,1−c+b,1−a+b,ξ−1)].
(5.1)
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Retaining the most significant terms of (5.1), we have

W(ξ)= C
[
Γ(c)Γ(b−a)
bΓ 2(b)

(−ξ)−a+ Γ(c)Γ(a−b)
aΓ 2(a)

(−ξ)−b
]
. (5.2)

Reintroducing the variable z, using (3.2), we have

W(z)∼ C
[
P
{

exp
((

1
2
−d+iβ

)
z
)
+Rexp

((
1
2
+d−iβ

)
z
)}]

, (5.3)

where R denotes the reflection coefficient defined by

R = bΓ
2(b)Γ(a−b)

aΓ 2(a)Γ(b−a) exp
[−(a−b) log

(
ξ0
)]
,

R = exp
(
iθ−(2d−2iβ) log

(
ξ0
))
,

P = Γ(c)Γ(b−a)
bΓ 2(b)

,

θ = arg
(
bΓ 2(b)Γ(a−b)
aΓ 2(a)Γ(b−a)

)
.

(5.4)

The constant C can be determined by applying the lower boundary condition (3.7).

Consequently, we have

C = 1
P(1+R) . (5.5)

6. Conclusion and general remarks. (A) It is clear, in (5.3), that the solution below

the reflecting layer can be written as a linear combination of an upward and a down-

ward propagating wave with equal wave number and equal decaying factor. The first

term on the right represents an upward propagating wave, its amplitude decaying with

altitude like exp(−dz), while the second term is a downward traveling wave decaying

in the same rate. The decaying factor will be eliminated when τ → 0 and when τ →∞,

as we indicated in the solution of the problem. At the same time, the wave number

changes from β to βi.
(B) It is clear that the magnitude of the reflection coefficient, |R| = exp(−2d), de-

pends on the value of the decaying factor d. It follows from (A) that the magnitude of

the reflection coefficient is one when the radiative damping is zero and when it goes

to infinity.

(C) It has been reported, see [6], that when the isothermal atmosphere is influenced

by a uniform horizontal magnetic field, the magnitude of the reflection coefficient

is one. This result is expected because of the dissipationless nature of the magnetic

field. It flows from (A) and (B) that the magnitude of the reflection coefficient is not

effected by the heat radiation when the atmosphere is adiabatic or isothermal and it

is less than one only when the atmosphere is in process of change from adiabatic to

isothermal form and vice versa. In other words, the magnetic field line could be dis-

turbed by the heat flow not by the heat existence. This property should be investigated

experimentally to determine the disturbance of the magnetic field lines.

(D) An equation for the resonance can be derived when the atmosphere is adia-

batic and when it is isothermal. The resonance occurs if the magnetic field strength is
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matched with wave length of the wave for infinitely many values of the magnetic field

and the frequency of the wave [1, 3, 4, 6, 7, 8] and a numerical computation can be

found in [4, 5]. At the resonance frequencies the values of the kinetic and magnetic

energies of the wave will be increase to a very large values.

Remark 6.1. Conclusion (C) is a theoretical prediction and can be a very interesting

experimental work to determine the form of the disturbance of the magnetic field

during the flow.
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