ON THE ROOTS OF THE SUBSTITUTION DICKSON POLYNOMIALS

JAVIER GOMEZ-CALDERON

Received 10 April 2001

We show that under the composition of multivalued functions, the set of the y-radical roots of the Dickson substitution polynomial $g_{d}(x, a)-g_{d}(y, a)$ is generated by one of the roots. Hence, we show an expected generalization of the fact that, under the composition of the functions, the y-radical roots of $x^{d}-y^{d}$ are generated by $\zeta_{d} y$.

2000 Mathematics Subject Classification: 11Txx, 11T06.

Let F_{q} denote the finite field of order q and characteristic p. For $f(x)$ in $F_{q}[x]$, let $f^{*}(x, y)$ denote the substitution polynomial $f(x)-f(y)$. The polynomial $f^{*}(x, y)$ has frequently been used in questions on the set of values $f(x)$, see for example Wan [8], Dickson [4], Hayes [6], and Gomez-Calderon and Madden [5]. The linear and quadratic factors of $f^{*}(x, y)$ have been studied by Cohen [2,3] and also by Acosta and Gomez-Calderon [1]. A factor of $f^{*}(x, y)$ is said to be a radical factor if it has the form

$$
\begin{equation*}
c\left(x-R_{1}(y)\right)\left(x-R_{2}(y)\right) \cdots\left(x-R_{m}(y)\right), \quad c \in F_{q}, \tag{1}
\end{equation*}
$$

where $r_{j}(y), 1 \leq j \leq m$, denotes a radical expression in y over the algebraic closure of the field of functions $F_{q}(y)$. If $R_{i}(y)$ and $R_{j}(y)$ are radical roots of $f^{*}(x, y)$, then the composite multivalued function $R_{i}\left(R_{j}(y)\right)$ provides a set of radical roots of $f^{*}(x, y)$; that is, $f\left(R_{i}\left(R_{j}(y)\right)\right)=f(y)$ for all values of $R_{i}\left(R_{j}(y)\right)$. For example, for q odd,

$$
\begin{equation*}
x^{3}+x-y^{3}-y=\left(x-R_{0}(y)\right)\left(x-R_{1}(y)\right)\left(x-R_{2}(y)\right) \tag{2}
\end{equation*}
$$

where $R_{0}(y)=y, 2 R_{1}(y)=-y+\sqrt{-3 y^{2}-4}$, and $2 R_{2}(y)=-y-\sqrt{-3 y^{2}-4}$. Thus,

$$
\begin{equation*}
R_{1}\left(R_{1}(y)\right)=\frac{\left[y-\sqrt{-3 y^{2}-4}+\left(\left(3 y+\sqrt{-3 y^{2}-4}\right)^{2}\right)^{1 / 2}\right]}{4}=\left\{R_{0}(y), R_{2}(y)\right\} \tag{3}
\end{equation*}
$$

DEFINITION 1. Let F_{q} denote the finite field of order q and characteristic p. For $a \in F_{q}$ and an integer $d \geq 1$, let

$$
\begin{equation*}
g_{d}(x, a)=\sum_{t=0}^{[|d / 2|]} \frac{d}{d-t}\binom{d-t}{t}(-a)^{t} x^{d-2 t} \tag{4}
\end{equation*}
$$

denote the Dickson polynomial of degree d over F_{q}.

Lemma 2. Let d be a positive integer and assume that F_{q} contains a primitive dth root of unity ζ. Put

$$
\begin{equation*}
A_{k}=\zeta^{k}+\zeta^{-k}, \quad B_{k}=\zeta^{k}-\zeta^{-k} \tag{5}
\end{equation*}
$$

Then, for each a in F_{q},
(i) if d is odd,

$$
\begin{equation*}
g_{d}(x, a)-g_{d}(y, a)=\prod_{i=1}^{(d-1) / 2}(x-y)\left(x^{2}-A_{k} x y+y^{2}+B_{k}^{2} a\right) ; \tag{6}
\end{equation*}
$$

(ii) if d is even,

$$
\begin{equation*}
g_{d}(x, a)-g_{d}(y, a)=\prod_{i=1}^{d / 2}\left(x^{2}-y^{2}\right)\left(x^{2}-A_{k} x y+y^{2}+B_{k}^{2} a\right) \tag{7}
\end{equation*}
$$

Moreover for $a \neq 0$, the quadratic factors are different from each other and irreducible in $F_{q}[x, y]$.
Proof. See [7, Theorem 3.12].
Theorem 3. If q is odd, $0 \neq a \in F_{q}$, and $(d, q)=1$, then
(i) $g_{d}(x, a)-g_{d}(y, a)=\prod_{i=1}^{d}\left(x-R_{i}(y)\right)$, where $R_{1}(y), R_{2}(y), \ldots, R_{d}(y)$ denote d-radical expressions in y over the algebraic closure of the field of functions $F_{q}(y)$;
(ii) under the composition of multivalued functions, the set of roots $R_{1}(y), R_{2}(y)$, $\ldots, R_{d}(y)$ is generated by one of the roots $R_{i}(y)$.
Proof. Let ζ be a d th primitive root over the field F_{q}. With notation as in Lemma 2, write,
(a) if d is odd,

$$
\begin{align*}
g_{d}(x, a)-g_{d}(y, a) & =(x, y) \prod_{i=1}^{(d-1) / 2}\left(x^{2}-A_{k} x y+y^{2}+B_{k}^{2} a\right) \\
& =\left(x-\sigma_{0}(y)\right) \prod_{i=1}^{(d-1) / 2}\left(x-\sigma_{k} y^{+}\right)\left(x-\sigma_{k} y^{-}\right), \tag{8}
\end{align*}
$$

where $\sigma_{0}\left(y^{ \pm}\right)=y, 2 \sigma_{k}\left(y^{+}\right)=A_{k} y+B_{k} \sqrt{y^{2}-4 a}$, and $2 \sigma_{k}\left(y^{-}\right)=A_{k} y-$ $B_{k} \sqrt{y^{2}-4 a}$ for $1 \leq k \leq(d-1) / 2$;
(b) if d is even,

$$
\begin{align*}
g_{d}(x, a)-g_{d}(y, a) & =\left(x^{2}-y^{2}\right) \prod_{i=1}^{d / 2}\left(x^{2}-y^{2}\right)\left(x^{2}-A_{k} x y+y^{2}+B_{k}^{2} a\right) \\
& =\left(x-\sigma_{0}(y)\right)\left(x-\sigma_{d / 2}(y)\right) \prod_{i=1}^{d / 2}\left(x-\sigma_{k}\left(y^{+}\right)\right)\left(x-\sigma_{k}\left(y^{-}\right)\right) \tag{9}
\end{align*}
$$

where $\sigma_{0}(y)=y, \sigma_{d / 2}(y)=-y, 2 \sigma_{k}\left(y^{+}\right)=A_{k} y+B_{k} \sqrt{y^{2}-4 a}$, and $2 \sigma_{k}\left(y^{-}\right)=$ $A_{k} y-B_{k} \sqrt{y^{2}-4 a}$ for $1 \leq k \leq d / 2$.

Now we consider the composite multivalued function $\sigma_{1}\left(y^{+}\right) \circ \sigma_{k}\left(y^{+}\right)$

$$
\begin{align*}
& \sigma_{1}\left(y^{+}\right) \circ \sigma_{k}\left(y^{+}\right) \\
&=\sigma_{1}\left(\frac{\left[A_{k} y+B_{k} \sqrt{y^{2}-4 a}\right]}{2}\right) \\
&=\frac{\left[A_{1} A_{k} y+A_{1} B_{k} \sqrt{y^{2}-4 a}+B_{1}\left(\left(A_{k} y+B_{k} \sqrt{y^{2}-4 a}\right)^{2}-16 a\right)^{1 / 2}\right]}{4} \\
&=\frac{\left[A_{1} A_{k} y+A_{1} B_{k} \sqrt{y^{2}-4 a}+B_{1}\left(A_{k}^{2} y^{2}+2 y A_{k} B_{k} \sqrt{y^{2}-4 a}+B_{k}^{2} y^{2}-4 a B_{k}^{2}-16 a\right)^{1 / 2}\right]}{4} \\
&=\frac{\left[A_{1} A_{k} y+A_{1} B_{k} \sqrt{y^{2}-4 a}+B_{1}\left(A_{k}^{2} y^{2}+2 y A_{k} B_{k} \sqrt{y^{2}-4 a}+B_{k}^{2} y^{2}-4 a A_{k}^{2}\right)^{1 / 2}\right]}{4} \\
&=\frac{\left[A_{1} A_{k} y+A_{1} B_{k} \sqrt{y^{2}-4 a}+B_{1}\left(B_{k} y+A_{k} \sqrt{y^{2}-a}\right)\right]}{4} \\
&=\frac{\left[A_{1} A_{k} y+A_{1} B_{k} \sqrt{y^{2}-4 a} \pm B_{1}\left(B_{k} y+A_{k} \sqrt{y^{2}-4 a}\right)\right]}{4} \\
&=\left\{\left(A_{1} A_{k}+B_{1} B_{k}\right) y+\frac{\left(A_{1} B_{k}+A_{k} B_{1}\right) \sqrt{y^{2}-4 a}}{4},\right. \\
&\left.\left(A_{1} A_{k}-B_{1} B_{k}\right) y+\frac{\left(A_{1} B_{k}-A_{k} B_{1}\right) \sqrt{y^{2}-4 a}}{4}\right\} . \tag{10}
\end{align*}
$$

Thus,

$$
\sigma_{1}\left(y^{+}\right) \circ \sigma_{k}\left(y^{+}\right)= \begin{cases}\sigma_{k+1}\left(y^{+}\right), \sigma_{k-1}\left(y^{+}\right), & \text {if } 1 \leq k \leq \frac{d-3}{2}, d \text { is odd }, \tag{11}\\ \sigma_{(d-1) / 2}\left(y^{-}\right), \sigma_{(d-3) / 2}\left(y^{+}\right), & \text {if } k=\frac{d-1}{2}, d \text { is odd } \\ \sigma_{k+1}\left(y^{+}\right), \sigma_{k-1}\left(y^{+}\right), & \text {if } 1 \leq k \leq \frac{d}{2}-1, d \text { is even, } \\ \sigma_{d / 2-1}\left(y^{+}\right), \sigma_{d / 2-1}\left(y^{-}\right), & \text {if } k=\frac{d}{2}, d \text { is even. }\end{cases}
$$

Similarly, we get

$$
\sigma_{1}\left(y^{+}\right) \circ \sigma_{k}\left(y^{+}\right)= \begin{cases}\sigma_{k+1}\left(y^{-}\right), \sigma_{k-1}\left(y^{-}\right), & \text {if } 1 \leq k \leq \frac{(d-3)}{2}, d \text { is odd, } \tag{12}\\ \sigma_{(d-1) / 2}\left(y^{+}\right), \sigma_{(d-3) / 2}\left(y^{-}\right), & \text {if } k=\frac{d-1}{2}, d \text { is odd, } \\ \sigma_{k+1}\left(y^{-}\right), \sigma_{k-1}\left(y^{-}\right), & \text {if } 1 \leq k \leq \frac{d}{2}-1, d \text { is even, } \\ \sigma_{d / 2-1}\left(y^{+}\right), \sigma_{d / 2-1}\left(y^{-}\right), & \text {if } k=\frac{d}{2}, d \text { is even. }\end{cases}
$$

Therefore, $\sigma_{1}\left(y^{+}\right)$generates the set of radical roots $\sigma_{i}\left(y^{+}\right), \sigma_{i}\left(y^{-}\right)$, for all values i.

The set of the y-radical roots of a substitution polynomial may require more than one generator as we illustrate in the following theorem.

Theorem 4. For $0 \neq b \in F_{q}$ and $(m n, q)=1$, let $f_{m, n}(x, b)$ denote the polynomial $\left(x^{m}+b\right)^{n}$. Then,
(i) $f_{m, n}(x, b)-f_{m, n}(y, b)=\prod_{i=1}^{m n}\left(x-R_{i}(y)\right)$, where $R_{1}(y), R_{2}(y), \ldots, R_{m n}(y) d e-$ note radical expressions in y over algebraic closure of the field of functions $F_{q}(y)$.
(ii) Under the composition of multivalued functions, the set of roots $R_{1}(y), R_{2}(y)$, $\ldots, R_{m n} y$ is generated by at least m of the roots $R_{i}(y)$.
PROOF. Let ζ and ξ be primitive roots of unity of order n and m, respectively, over the field F_{q}. Then

$$
\begin{align*}
f_{m, n}(x, b)-f_{m, n}(y, b) & =\prod_{k=1}^{n}\left[\left(x^{m}+b\right)-\zeta^{k}\left(y^{m}+b\right)\right] \\
& =\prod_{k=1}^{n} \prod_{i=1}^{m}\left[x-\xi^{i}\left(\zeta^{k} y^{m}+b(1-\zeta)\right)^{1 / m}\right] \tag{13}\\
& =\prod_{k=1}^{n} \prod_{i=1}^{m}\left(x-\sigma_{i k}(y)\right) .
\end{align*}
$$

Now we consider the composite multivalued function $\sigma_{j 1}(y) \circ \sigma_{i k}(y)$.

$$
\begin{align*}
\sigma_{j i}(y) \circ \sigma_{i k}(y) & =\xi^{j}\left(\left(\zeta\left(\xi^{i}\left(\zeta^{k} y^{m}+b\left(1-\zeta^{k}\right)\right)^{1 / m}\right)^{m}+b(1-\zeta)\right)\right)^{1 / m} \\
& =\xi^{j}\left(\left(\zeta\left(\zeta^{k} y^{m}+b\left(1-\zeta^{k}\right)\right)+b(1-\zeta)\right)\right)^{1 / m} \\
& =\xi^{j}\left(\zeta^{k+1} y^{m}+b\left(1-\zeta^{k+1}\right)\right)^{1 / m} \tag{14}\\
& = \begin{cases}\sigma_{j k+1}(y), & \text { if } 1 \leq k \leq n-2,1 \leq j \leq m, \\
\left\{\sigma_{10}(y), \sigma_{20}(y), \ldots, \sigma_{m 0}(y)\right\}, & \text { if } k=n-1,1 \leq j \leq m .\end{cases}
\end{align*}
$$

Therefore, $\sigma_{11}(y), \sigma_{21}(y), \ldots, \sigma_{m 1}(y)$ generate the set of roots $\left\{\sigma_{j k}(y): 1 \leq j \leq m\right.$, $1 \leq k \leq n\}$.

References

[1] M. T. Acosta and J. Gomez-Calderon, The second-order factorable core of polynomials over finite fields, Rocky Mountain J. Math. 29 (1999), no. 1, 1-12.
[2] S. D. Cohen, Exceptional polynomials and the reducibility of substitution polynomials, Enseign. Math. (2) 36 (1990), no. 1-2, 53-65.
[3] __ The factorable core of polynomials over finite fields, J. Austral. Math. Soc. Ser. A 49 (1990), no. 2, 309-318.
[4] L. E. Dickson, The analytic representation of substitutions on a prime power of letters with a discussion of the linear group, Ann. of Math. 11 (1897), 65-120, 161-183.
[5] J. Gomez-Calderon and D. J. Madden, Polynomials with small value set over finite fields, J. Number Theory 28 (1988), no. 2, 167-188.
[6] D. R. Hayes, A geometric approach to permutation polynomials over a finite field, Duke Math. J. 34 (1967), 293-305.
[7] R. Lidl, G. L. Mullen, and G. Turnwald, Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific and Technical, Harlow, 1993.
[8] D. Q. Wan, On a conjecture of Carlitz, J. Austral. Math. Soc. Ser. A 43 (1987), no. 3, 375-384.
Javier Gomez-Calderon: Department of Mathematics, The Pennsylvania State University, New Kensington Campus, New Kensington, PA 15068, USA

E-mail address: jxg11@psu.edu

