ON THE ROOTS OF THE SUBSTITUTION DICKSON POLYNOMIALS

JAVIER GOMEZ-CALDERON

Received 10 April 2001

We show that under the composition of multivalued functions, the set of the *y*-radical roots of the Dickson substitution polynomial $g_d(x,a) - g_d(y,a)$ is *generated* by one of the roots. Hence, we show an expected generalization of the fact that, under the composition of the functions, the *y*-radical roots of $x^d - y^d$ are generated by $\zeta_d y$.

2000 Mathematics Subject Classification: 11Txx, 11T06.

Let F_q denote the finite field of order q and characteristic p. For f(x) in $F_q[x]$, let $f^*(x, y)$ denote the substitution polynomial f(x) - f(y). The polynomial $f^*(x, y)$ has frequently been used in questions on the set of values f(x), see for example Wan [8], Dickson [4], Hayes [6], and Gomez-Calderon and Madden [5]. The linear and quadratic factors of $f^*(x, y)$ have been studied by Cohen [2, 3] and also by Acosta and Gomez-Calderon [1]. A factor of $f^*(x, y)$ is said to be a *radical factor* if it has the form

$$c(x-R_1(y))(x-R_2(y))\cdots(x-R_m(y)), \quad c\in F_q,$$
(1)

where $r_j(y)$, $1 \le j \le m$, denotes a radical expression in y over the algebraic closure of the field of functions $F_q(y)$. If $R_i(y)$ and $R_j(y)$ are *radical roots* of $f^*(x, y)$, then the *composite multivalued function* $R_i(R_j(y))$ provides a set of radical roots of $f^*(x, y)$; that is, $f(R_i(R_j(y))) = f(y)$ for all values of $R_i(R_j(y))$. For example, for q odd,

$$x^{3} + x - y^{3} - y = (x - R_{0}(y))(x - R_{1}(y))(x - R_{2}(y)),$$
(2)

where $R_0(y) = y$, $2R_1(y) = -y + \sqrt{-3y^2 - 4}$, and $2R_2(y) = -y - \sqrt{-3y^2 - 4}$. Thus,

$$R_1(R_1(y)) = \frac{\left[y - \sqrt{-3y^2 - 4} + \left(\left(3y + \sqrt{-3y^2 - 4}\right)^2\right)^{1/2}\right]}{4} = \{R_0(y), R_2(y)\}.$$
 (3)

DEFINITION 1. Let F_q denote the finite field of order q and characteristic p. For $a \in F_q$ and an integer $d \ge 1$, let

$$g_d(x,a) = \sum_{t=0}^{\lfloor |d/2| \rfloor} \frac{d}{d-t} \binom{d-t}{t} (-a)^t x^{d-2t}$$
(4)

1 (0 7

denote the Dickson polynomial of degree d over F_q .

LEMMA 2. Let *d* be a positive integer and assume that F_q contains a primitive *d*th root of unity ζ . Put

$$A_k = \zeta^k + \zeta^{-k}, \qquad B_k = \zeta^k - \zeta^{-k}.$$
(5)

Then, for each a in F_q ,

(i) if d is odd,

$$g_d(x,a) - g_d(y,a) = \prod_{i=1}^{(d-1)/2} (x-y) \left(x^2 - A_k x y + y^2 + B_k^2 a \right);$$
(6)

(ii) if d is even,

$$g_d(x,a) - g_d(y,a) = \prod_{i=1}^{d/2} (x^2 - y^2) (x^2 - A_k x y + y^2 + B_k^2 a).$$
(7)

Moreover for $a \neq 0$, the quadratic factors are different from each other and irreducible in $F_q[x, y]$.

PROOF. See [7, Theorem 3.12].

THEOREM 3. If q is odd, $0 \neq a \in F_q$, and (d,q) = 1, then

- (i) g_d(x,a) g_d(y,a) = ∏^d_{i=1}(x R_i(y)), where R₁(y), R₂(y),...,R_d(y) denote d-radical expressions in y over the algebraic closure of the field of functions F_q(y);
- (ii) under the composition of multivalued functions, the set of roots R₁(y), R₂(y), ..., R_d(y) is generated by one of the roots R_i(y).

PROOF. Let ζ be a *d*th primitive root over the field F_q . With notation as in Lemma 2, write,

(a) if d is odd,

$$g_d(x,a) - g_d(y,a) = (x,y) \prod_{i=1}^{(d-1)/2} (x^2 - A_k x y + y^2 + B_k^2 a)$$

= $(x - \sigma_0(y)) \prod_{i=1}^{(d-1)/2} (x - \sigma_k y^+) (x - \sigma_k y^-),$ (8)

where $\sigma_0(y^{\pm}) = y$, $2\sigma_k(y^+) = A_k y + B_k \sqrt{y^2 - 4a}$, and $2\sigma_k(y^-) = A_k y - B_k \sqrt{y^2 - 4a}$ for $1 \le k \le (d-1)/2$;

(b) if d is even,

$$g_{d}(x,a) - g_{d}(y,a) = (x^{2} - y^{2}) \prod_{i=1}^{d/2} (x^{2} - y^{2}) (x^{2} - A_{k}xy + y^{2} + B_{k}^{2}a)$$

$$= (x - \sigma_{0}(y)) (x - \sigma_{d/2}(y)) \prod_{i=1}^{d/2} (x - \sigma_{k}(y^{+})) (x - \sigma_{k}(y^{-})),$$
(9)

where $\sigma_0(y) = y$, $\sigma_{d/2}(y) = -y$, $2\sigma_k(y^+) = A_k y + B_k \sqrt{y^2 - 4a}$, and $2\sigma_k(y^-) = A_k y - B_k \sqrt{y^2 - 4a}$ for $1 \le k \le d/2$.

Now we consider the composite multivalued function $\sigma_{1}(y^{+}) \circ \sigma_{k}(y^{+})$ $= \sigma_{1} \left(\frac{\left[A_{k}y + B_{k}\sqrt{y^{2} - 4a}\right]}{2} \right)$ $= \frac{\left[A_{1}A_{k}y + A_{1}B_{k}\sqrt{y^{2} - 4a} + B_{1}\left(\left(A_{k}y + B_{k}\sqrt{y^{2} - 4a}\right)^{2} - 16a\right)^{1/2}\right]}{4}$ $= \frac{\left[A_{1}A_{k}y + A_{1}B_{k}\sqrt{y^{2} - 4a} + B_{1}\left(A_{k}^{2}y^{2} + 2yA_{k}B_{k}\sqrt{y^{2} - 4a} + B_{k}^{2}y^{2} - 4aB_{k}^{2} - 16a\right)^{1/2}\right]}{4}$ $= \frac{\left[A_{1}A_{k}y + A_{1}B_{k}\sqrt{y^{2} - 4a} + B_{1}\left(A_{k}^{2}y^{2} + 2yA_{k}B_{k}\sqrt{y^{2} - 4a} + B_{k}^{2}y^{2} - 4aA_{k}^{2}\right)^{1/2}\right]}{4}$ $= \frac{\left[A_{1}A_{k}y + A_{1}B_{k}\sqrt{y^{2} - 4a} + B_{1}\left(B_{k}y^{2} + 2yA_{k}B_{k}\sqrt{y^{2} - 4a} + B_{k}^{2}y^{2} - 4aA_{k}^{2}\right)^{1/2}\right]}{4}$ $= \frac{\left[A_{1}A_{k}y + A_{1}B_{k}\sqrt{y^{2} - 4a} + B_{1}\left(B_{k}y + A_{k}\sqrt{y^{2} - a}\right)\right]}{4}$ $= \frac{\left[A_{1}A_{k}y + A_{1}B_{k}\sqrt{y^{2} - 4a} \pm B_{1}\left(B_{k}y + A_{k}\sqrt{y^{2} - 4a}\right)\right]}{4}$ $= \left\{\left(A_{1}A_{k} + B_{1}B_{k}\right)y + \frac{\left(A_{1}B_{k} - A_{k}B_{1}\right)\sqrt{y^{2} - 4a}}{4}\right\}.$ (10)

Thus,

$$\sigma_{1}(y^{+}) \circ \sigma_{k}(y^{+}) = \begin{cases} \sigma_{k+1}(y^{+}), \ \sigma_{k-1}(y^{+}), & \text{if } 1 \le k \le \frac{d-3}{2}, d \text{ is odd,} \\ \sigma_{(d-1)/2}(y^{-}), \ \sigma_{(d-3)/2}(y^{+}), & \text{if } k = \frac{d-1}{2}, d \text{ is odd,} \\ \sigma_{k+1}(y^{+}), \ \sigma_{k-1}(y^{+}), & \text{if } 1 \le k \le \frac{d}{2} - 1, d \text{ is even,} \\ \sigma_{d/2-1}(y^{+}), \ \sigma_{d/2-1}(y^{-}), & \text{if } k = \frac{d}{2}, d \text{ is even.} \end{cases}$$
(11)

Similarly, we get

$$\sigma_{1}(y^{+}) \circ \sigma_{k}(y^{+}) = \begin{cases} \sigma_{k+1}(y^{-}), \ \sigma_{k-1}(y^{-}), & \text{if } 1 \le k \le \frac{(d-3)}{2}, \ d \text{ is odd,} \\ \sigma_{(d-1)/2}(y^{+}), \ \sigma_{(d-3)/2}(y^{-}), & \text{if } k = \frac{d-1}{2}, \ d \text{ is odd,} \\ \sigma_{k+1}(y^{-}), \ \sigma_{k-1}(y^{-}), & \text{if } 1 \le k \le \frac{d}{2} - 1, \ d \text{ is even,} \\ \sigma_{d/2-1}(y^{+}), \ \sigma_{d/2-1}(y^{-}), & \text{if } k = \frac{d}{2}, \ d \text{ is even.} \end{cases}$$
(12)

Therefore, $\sigma_1(y^+)$ generates the set of radical roots $\sigma_i(y^+)$, $\sigma_i(y^-)$, for all values *i*.

The set of the y-radical roots of a substitution polynomial may require more than one *generator* as we illustrate in the following theorem.

THEOREM 4. For $0 \neq b \in F_q$ and (mn,q) = 1, let $f_{m,n}(x,b)$ denote the polynomial $(x^m + b)^n$. Then,

(i) $f_{m,n}(x,b) - f_{m,n}(y,b) = \prod_{i=1}^{mn} (x - R_i(y))$, where $R_1(y), R_2(y), \dots, R_{mn}(y)$ denote radical expressions in y over algebraic closure of the field of functions $F_q(y)$.

(ii) Under the composition of multivalued functions, the set of roots $R_1(y), R_2(y), \dots, R_{mn}y$ is generated by at least m of the roots $R_i(y)$.

PROOF. Let ζ and ξ be primitive roots of unity of order *n* and *m*, respectively, over the field *F*_{*q*}. Then

$$f_{m,n}(x,b) - f_{m,n}(y,b) = \prod_{k=1}^{n} \left[(x^{m} + b) - \zeta^{k} (y^{m} + b) \right]$$
$$= \prod_{k=1}^{n} \prod_{i=1}^{m} \left[x - \xi^{i} (\zeta^{k} y^{m} + b(1 - \zeta))^{1/m} \right]$$
$$= \prod_{k=1}^{n} \prod_{i=1}^{m} (x - \sigma_{ik}(y)).$$
(13)

Now we consider the composite multivalued function $\sigma_{i1}(y) \circ \sigma_{ik}(y)$.

$$\sigma_{ji}(y) \circ \sigma_{ik}(y) = \xi^{j} \left(\left(\zeta \left(\xi^{i} (\zeta^{k} y^{m} + b(1 - \zeta^{k}) \right)^{1/m} \right)^{m} + b(1 - \zeta) \right) \right)^{1/m}$$

$$= \xi^{j} \left(\left(\zeta \left(\zeta^{k} y^{m} + b(1 - \zeta^{k}) \right) + b(1 - \zeta) \right) \right)^{1/m}$$

$$= \xi^{j} \left(\zeta^{k+1} y^{m} + b(1 - \zeta^{k+1}) \right)^{1/m}$$

$$= \begin{cases} \sigma_{jk+1}(y), & \text{if } 1 \le k \le n-2, \ 1 \le j \le m, \\ \{\sigma_{10}(y), \sigma_{20}(y), \dots, \sigma_{m0}(y) \}, & \text{if } k = n-1, \ 1 \le j \le m. \end{cases}$$

$$(14)$$

Therefore, $\sigma_{11}(y), \sigma_{21}(y), \dots, \sigma_{m1}(y)$ generate the set of roots $\{\sigma_{jk}(y) : 1 \le j \le m, 1 \le k \le n\}$.

References

- [1] M. T. Acosta and J. Gomez-Calderon, *The second-order factorable core of polynomials over finite fields*, Rocky Mountain J. Math. **29** (1999), no. 1, 1–12.
- [2] S. D. Cohen, *Exceptional polynomials and the reducibility of substitution polynomials*, Enseign. Math. (2) 36 (1990), no. 1-2, 53-65.
- [3] _____, The factorable core of polynomials over finite fields, J. Austral. Math. Soc. Ser. A 49 (1990), no. 2, 309–318.
- [4] L. E. Dickson, The analytic representation of substitutions on a prime power of letters with a discussion of the linear group, Ann. of Math. 11 (1897), 65–120, 161–183.
- [5] J. Gomez-Calderon and D. J. Madden, *Polynomials with small value set over finite fields*, J. Number Theory 28 (1988), no. 2, 167–188.
- [6] D. R. Hayes, A geometric approach to permutation polynomials over a finite field, Duke Math. J. 34 (1967), 293–305.

352

- [7] R. Lidl, G. L. Mullen, and G. Turnwald, *Dickson Polynomials*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific and Technical, Harlow, 1993.
- [8] D. Q. Wan, On a conjecture of Carlitz, J. Austral. Math. Soc. Ser. A 43 (1987), no. 3, 375-384.

JAVIER GOMEZ-CALDERON: DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNI-VERSITY, NEW KENSINGTON CAMPUS, NEW KENSINGTON, PA 15068, USA *E-mail address*: jxg11@psu.edu