DIFFERENCES BETWEEN POWERS OF A PRIMITIVE ROOT

MARIAN VÂJÂITU and ALEXANDRU ZAHARESCU

Received 14 May 2001

We study the set of differences $\left\{g^{x}-g^{y}(\bmod p): 1 \leq x, y \leq N\right\}$ where p is a large prime number, g is a primitive root $(\bmod p)$, and $p^{2 / 3}<N<p$.

2000 Mathematics Subject Classification: 11A07.

1. Introduction. Let p be a large prime number and g a primitive root $(\bmod p)$. The distribution of powers $g^{n}(\bmod p), 1 \leq n \leq N$, for a given integer $N<p$ has been investigated in $[1,2,4]$. In this paper, we use techniques from [4] to study the set of differences

$$
\begin{equation*}
A:=\left\{g^{x}-g^{y}(\bmod p): 1 \leq x, y \leq N\right\} . \tag{1.1}
\end{equation*}
$$

A natural question, attributed to Andrew Odlyzko, asks for which values of N can we be sure that any residue $h(\bmod p)$ belongs to A ? He conjectured that one can take N to be as small as $p^{1 / 2+\epsilon}$, for any fixed $\epsilon>0$ and p large enough in terms of ϵ. If true, this would be essentially best possible since A has at most N^{2} elements. For any residue $a(\bmod p)$, denote

$$
\begin{equation*}
v(N, a)=\#\left\{1 \leq x, y \leq N: g^{x}-g^{y} \equiv a(\bmod p)\right\} . \tag{1.2}
\end{equation*}
$$

If $a \equiv 0(\bmod p)$ we have the diagonal solutions $x=y$, thus $v(N, 0)=N$. For $a \not \equiv$ $0(\bmod p)$ it is proved in [4, Theorem 2] that

$$
\begin{equation*}
v(N, a)=\frac{N^{2}}{p}+O\left(\sqrt{p} \log ^{2} p\right) . \tag{1.3}
\end{equation*}
$$

It follows that we can take $N=c_{0} p^{3 / 4} \log p$ in Odlyzko's problem, for some absolute constant c_{0}. The exponent $3 / 4$ is a natural barrier in this problem, as well as in other similar ones. An example of another such problem is the following: given a large prime number p, for which values of N can we be sure that any residue $h \not \equiv 0(\bmod p)$ belongs to the set $\{x y(\bmod p): 1 \leq x, y \leq N\}$? Again we expect that N can be taken to be as small as $p^{1 / 2+\epsilon}$. As with the other problem, it is known that we can take $N=c_{1} p^{3 / 4} \log p$ for some absolute constant c_{1}, and this is proved by using Weil's bounds for Kloosterman sums [5]. If one assumes the well-known H^{*} conjecture of Hooley which gives square root cancellation in short exponential sums of the form $\sum_{1 \leq x \leq N} e(a \bar{x} / p)$, where \bar{x} denotes the inverse of x modulo p, then we show that N can be taken to be as small as $p^{2 / 3+\epsilon}$ in the above problem. We mention, in passing, that this question is also related to the pair correlation problem for sequences of
fractional parts of the form $\left(\left\{n^{2} \alpha\right\}\right)_{n \in \mathbb{N}}$, which would be completely solved precisely if one could deal with the case when $N=p^{2 / 3-\epsilon}$ (see [3] and the references therein).

Returning to the set A, its structure is also relevant to the pair correlation problem for the set $\left\{g^{n}(\bmod p), 1 \leq n \leq N\right\}$. Here one wants an asymptotic formula for

$$
\begin{equation*}
\#\left\{1 \leq x \neq y \leq N: g^{x}-g^{y} \equiv h(\bmod p), h \in \frac{p}{N} J\right\}, \tag{1.4}
\end{equation*}
$$

for any fixed interval $J \subset \mathbb{R}$. The pair correlation problem is similar to Odlyzko's problem, but it is more tractable due to the extra average over h. This problem is solved in [4] for $N>p^{5 / 7+\epsilon}$, the result being that the pair correlation is Poissonian as $p \rightarrow \infty$ (here we need $N / p \rightarrow 0$). It is also proved in [4] that under the assumption of the generalized Riemann hypothesis (for Dirichlet L-functions) the exponent can be reduced from $5 / 7+\epsilon$ to $2 / 3+\epsilon$. We mention that by assuming square root type cancellation in certain short character sums with polynomials $\sum_{1 \leq n \leq N} \mathcal{X}(P(n))$, the exponent $3 / 4$ in Odlyzko's problem can be reduced to $2 / 3+\epsilon$ as well. Taking into account the difficulty of the conjectures which would reduce the exponent to $2 / 3+\epsilon$ in all these problems, it might be of interest to have some more modest, but unconditional results, valid in the range $N>p^{2 / 3+\epsilon}$.

Our first objective, in this paper, is to provide a good upper bound for the second moment

$$
\begin{equation*}
M_{2}(N):=\sum_{a(\bmod p)}\left|v(N, a)-\frac{N^{2}}{p}\right|^{2} . \tag{1.5}
\end{equation*}
$$

From (1.3), it follows that $M_{2}(N) \ll p^{2} \log ^{4} p$. The following theorem gives a sharper upper bound for $M_{2}(N)$.

Theorem 1.1. For any prime number p, any primitive root $g \bmod p$, and any positive integer $N<p$,

$$
\begin{equation*}
M_{2}(N) \ll p N \log p . \tag{1.6}
\end{equation*}
$$

Since each residue $h(\bmod p)$ which does not belong to A contributes an N^{4} / p^{2} in $M_{2}(N)$, we obtain the following corollary.

Corollary 1.2. For any prime number p, any primitive root $g \bmod p$, and any positive integer $N<p$,

$$
\begin{equation*}
\#\{h(\bmod p): h \notin A\} \ll \frac{p^{3} \log p}{N^{3}} . \tag{1.7}
\end{equation*}
$$

Thus, for $N>p^{2 / 3+\epsilon}$, it follows that almost all the residues $a(\bmod p)$ belong to A. Although by its nature the inequality (1.6) does not give any indication on where the possible residues $h \notin A$ might be located, there is a way of obtaining results as in Corollary 1.2, with h restricted to a smaller set.

Theorem 1.3. For any prime number p, any primitive root $g \bmod p$, and any positive integer $N<p$,

$$
\begin{equation*}
\#\{1 \leq h<\sqrt{p}: h \text { prime, } h(\bmod p) \notin A\} \ll\left(\frac{p^{3} \log p}{N^{3}}\right)^{1 / 2} . \tag{1.8}
\end{equation*}
$$

Corollary 1.4. For any $\epsilon>0$, any prime number p, and any primitive root $g \bmod p$, almost all the prime numbers $h<\sqrt{p}$ (in the sense that the exceptional set has $<_{\epsilon} p^{1 / 2-\epsilon}$ elements) can be represented in the form

$$
\begin{equation*}
h \equiv g^{x}-g^{y}(\bmod p) \tag{1.9}
\end{equation*}
$$

with $1 \leq x, y \leq p^{2 / 3+\epsilon}$.
Note that a weaker form of Corollary 1.4, with the range $1 \leq x, y \leq p^{2 / 3+\epsilon}$ replaced by the larger range $1 \leq x, y \leq p^{5 / 6+\epsilon}$, follows directly by taking $N=p^{5 / 6+\epsilon}$ in Corollary 1.2. The point in Corollary 1.4 is that it gives a result where h is restricted to belong to a small set, at no cost of increasing the range $1 \leq x, y \leq p^{2 / 3+\epsilon}$.
2. Proof of Theorem 1.1. Let p be a prime number, g a primitive root $\bmod p$, and N a positive integer smaller than p. We know that $a \equiv 0(\bmod p)$ contributes an $\left(N-N^{2} / p\right)^{2}<N^{2}$ in $M_{2}(N)$. For $a \not \equiv 0(\bmod p)$ define a function h_{a} on $\mathbb{Z} /(p-1) \mathbb{Z} \times$ $\mathbb{Z} /(p-1) \mathbb{Z}$ by

$$
h_{a}(x, y)= \begin{cases}1, & \text { if } g^{x}-g^{y} \equiv a(\bmod p) \tag{2.1}\\ 0, & \text { else }\end{cases}
$$

Thus $v(N, a)=\sum_{1 \leq x, y \leq N} h_{a}(x, y)$. Expanding h_{a} in a Fourier series on $\mathbb{Z} /(p-1) \mathbb{Z} \times$ $\mathbb{Z} /(p-1) \mathbb{Z}$ we get

$$
\begin{equation*}
v(N, a)=\sum_{r, s(\bmod p-1)} \hat{h}_{a}(r, s) \sum_{1 \leq x, y \leq N} e\left(\frac{r x+s y}{p-1}\right) \tag{2.2}
\end{equation*}
$$

where the Fourier coefficients are given by

$$
\begin{equation*}
\hat{h}_{a}(r, s)=\frac{1}{(p-1)^{2}} \sum_{x, y(\bmod p-1)} h_{a}(x, y) e\left(-\frac{r x+s y}{p-1}\right) . \tag{2.3}
\end{equation*}
$$

The main contribution in (2.2) comes from the terms with $r \equiv s \equiv 0(\bmod p-1)$, and this equals $\hat{h}_{a}(0,0) N^{2}$. It is easy to see that $\hat{h}_{a}(0,0)=1 / p+O\left(1 / p^{2}\right)$. Thus

$$
\begin{equation*}
v(N, a)=\frac{N^{2}}{p}\left(1+O\left(\frac{1}{p}\right)\right)+R(a) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
R(a) & =\sum_{(r, s) \neq(0,0)} \hat{h}_{a}(r, s) F_{N}(r) F_{N}(s), \tag{2.5}\\
F_{N}(r) & =\sum_{1 \leq x \leq N} e\left(\frac{r x}{p-1}\right), \quad F_{N}(s)=\sum_{1 \leq y \leq N} e\left(\frac{s y}{p-1}\right) . \tag{2.6}
\end{align*}
$$

From (2.4) and the definition of $M_{2}(N)$, it follows that in order to prove Theorem 1.1 it will be enough to show that

$$
\begin{equation*}
\sum_{a=1}^{p-1}|R(a)|^{2} \ll p N \log p \tag{2.7}
\end{equation*}
$$

From [4, Lemma 7] it follows that

$$
\begin{equation*}
\hat{h}_{a}(r, s)=\frac{\chi^{s}(-1) \tau\left(\chi^{r}\right) \tau\left(\chi^{s}\right) \tau\left(\chi^{-(r+s)}\right)}{p(p-1)^{2}} \chi^{r+s}(a) \tag{2.8}
\end{equation*}
$$

where $\boldsymbol{\tau}\left(\chi^{r}\right), \tau\left(\chi^{s}\right), \tau\left(\chi^{-(r+s)}\right)$ are Gauss sums associated with the corresponding multiplicative characters $\chi^{r}, \chi^{s}, \chi^{-(r+s)}$ defined $\bmod p$, and χ is the unique character $\bmod p$ which corresponds to our primitive root g by

$$
\begin{equation*}
x\left(g^{m}\right)=e\left(\frac{m}{p-1}\right) \tag{2.9}
\end{equation*}
$$

for any integer m. From (2.5) and (2.8) we derive

$$
\begin{equation*}
R(a)=\sum_{m(\bmod p-1)} b_{m} X^{m}(a) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{m}=\frac{\tau\left(\chi^{-m}\right)}{p(p-1)^{2}} \sum_{\substack{(r, s) \neq(0,0)(\bmod p-1) \\ r+s=m(\bmod p-1)}} F_{N}(r) F_{N}(s) \chi^{s}(-1) \tau\left(\chi^{r}\right) \tau\left(\chi^{s}\right) \tag{2.11}
\end{equation*}
$$

Since

$$
\left|\tau\left(X^{n}\right)\right|= \begin{cases}\sqrt{p}, & \text { if } n \neq 0(\bmod p-1) \tag{2.12}\\ 1, & \text { if } n \equiv 0(\bmod p-1)\end{cases}
$$

it follows that

$$
\begin{equation*}
\left|b_{m}\right| \ll p^{-3 / 2} \sum_{r+s=m(\bmod p-1)}\left|F_{N}(r) F_{N}(s)\right| \tag{2.13}
\end{equation*}
$$

Here $F_{N}(r)$ and $F_{N}(s)$ are geometric progressions and can be estimated accurately. We allow r, s, and m to run over the set $\{-(p-1) / 2+1,-(p-1) / 2+2, \ldots,(p-1) / 2\}$. Then

$$
\begin{equation*}
\left|F_{N}(r)\right| \ll \min \left\{N, \frac{p}{|r|}\right\} \tag{2.14}
\end{equation*}
$$

and similarly for $\left|F_{N}(s)\right|$. From (2.13) and (2.14) it follows that

$$
\begin{equation*}
\left|b_{m}\right| \ll p^{-3 / 2} \sum_{\substack{r+s=m(\bmod p-1) \\|r|,|s| \leq(p-1) / 2}} \min \left\{N, \frac{p}{|r|}\right\} \min \left\{N, \frac{p}{|s|}\right\} . \tag{2.15}
\end{equation*}
$$

By Cauchy's inequality we derive

$$
\begin{align*}
\left|b_{m}\right| & \ll p^{-3 / 2}\left(\sum_{|r| \leq(p-1) / 2} \min \left\{N^{2}, \frac{p^{2}}{|r|^{2}}\right\}\right)^{1 / 2}\left(\sum_{|s| \leq(p-1) / 2} \min \left\{N^{2}, \frac{p^{2}}{|S|^{2}}\right\}\right)^{1 / 2} \tag{2.16}\\
& =p^{-3 / 2} \sum_{|r| \leq(p-1) / 2} \min \left\{N^{2}, \frac{p^{2}}{r^{2}}\right\} \ll p^{-1 / 2} N .
\end{align*}
$$

Ignoring the two terms $r=0, s=m$ and $r=m, s=0$ which contribute in (2.15) at most $2 p^{-3 / 2} N^{2} \leq 2 p^{-1 / 2} N$, the rest of the sum in (2.15) is less than or equal to

$$
\begin{equation*}
\sum_{\substack{r+s=m(\bmod p-1) \\ 0<|r|,|s| \leq(p-1) / 2}} \frac{p^{2}}{|r||s|}=S_{1}+S_{2} \tag{2.17}
\end{equation*}
$$

where we denote by S_{1} the sum of the terms with $|r| \leq|s|$ and by S_{2} the sum of the terms with $|\gamma|>|s|$. Note that in S_{1} we have $|s| \geq|m| / 2$ and so

$$
\begin{equation*}
S_{1} \ll \sum_{0<|r| \leq(p-1) / 2} \frac{p^{2}}{|m||r|} \ll \frac{p^{2} \log p}{|m|} \tag{2.18}
\end{equation*}
$$

and similarly for S_{2}. From (2.16), (2.17), and (2.18) we conclude that

$$
\begin{equation*}
\left|b_{m}\right| \ll \frac{1}{\sqrt{p}} \min \left\{N, \frac{p \log p}{|m|}\right\} . \tag{2.19}
\end{equation*}
$$

We now return to (2.10) and compute

$$
\begin{align*}
\sum_{a=1}^{p-1}|R(a)|^{2} & =\sum_{a=1}^{p-1} \sum_{m_{1}(\bmod p-1)} \sum_{m_{2}(\bmod p-1)} b_{m_{1}} \bar{b}_{m_{2}} x^{m_{1}-m_{2}}(a) \tag{2.20}\\
& =\sum_{m_{1}, m_{2}(\bmod p-1)} b_{m_{1}} \bar{b}_{m_{2}} \sum_{a=1}^{p-1} x^{m_{1}-m_{2}}(a) .
\end{align*}
$$

The orthogonality of characters $(\bmod p)$ shows that the last inner sum is zero unless $m_{1}=m_{2}$ when it equals $p-1$, hence

$$
\begin{equation*}
\sum_{a=1}^{p-1}|R(a)|^{2}=(p-1) \sum_{m(\bmod p-1)}\left|b_{m}\right|^{2} . \tag{2.21}
\end{equation*}
$$

Using (2.19) in (2.21) we obtain

$$
\begin{equation*}
\sum_{a=1}^{p-1}|R(a)|^{2} \ll \sum_{|m| \leq(p-1) / 2} \min \left\{N^{2}, \frac{p^{2} \log ^{2} p}{|m|^{2}}\right\} \ll p N \log p . \tag{2.22}
\end{equation*}
$$

Thus (2.7) holds and Theorem 1.1 is proved.
3. Proof of Theorem 1.3. Let p, g, and N be as in the statement of the theorem. We will combine the second moment estimate from Theorem 1.1 with two new ideas. The first idea is to restrict the range of x, y to $1 \leq x, y \leq N_{1}=[N / 2]$ in the definition of A in order to increase the number of residues which do not belong to the set. To be precise, we consider the set

$$
\begin{equation*}
A_{1}=\left\{g^{x}-g^{y}(\bmod p): 1 \leq x, y \leq N_{1}\right\}, \tag{3.1}
\end{equation*}
$$

and note that, for any residue $h(\bmod p)$ which does not belong to A and any integer $0 \leq n \leq N_{1}$, the residue $h g^{-n}$ will not belong to A_{1}. Indeed, if there were integers $x, y \in\left\{1,2, \ldots, N_{1}\right\}$ such that $g^{x}-g^{y} \equiv h g^{-n}(\bmod p)$, then $g^{x+n}-g^{y+n} \equiv h(\bmod p)$ which is not the case since $1 \leq x+n, y+n \leq N$, and h does not belong to A. Therefore, if \mathscr{H} is a set of residues $(\bmod p)$ which do not belong to A, no element of the set $\mathcal{M}=\left\{h g^{-n}(\bmod p): h \in \mathscr{H}, 0 \leq n \leq N_{1}\right\}$ will belong to A_{1}. The second idea is captured in the following lemma.

Lemma 3.1. Let p be a prime number, g a primitive root $\bmod p$, \mathscr{H} a set of prime numbers smaller than \sqrt{p}, N_{1} an integer larger than $|\mathscr{H}|$, and denote $\mathcal{M}=$ $\left\{h g^{-n}(\bmod p): h \in \mathscr{H}, 0 \leq n \leq N_{1}\right\}$. Then

$$
\begin{equation*}
|\mathcal{M}| \geq \frac{|\mathscr{H}|(|\mathscr{H}|+1)}{2} \tag{3.2}
\end{equation*}
$$

Proof. The set \mathcal{M} becomes larger if one increases N_{1} thus it is enough to deal with the case $N_{1}=|\mathscr{H}|$. Consider the sets

$$
\begin{equation*}
\mathscr{H}_{n}=\left\{h g^{-n}(\bmod p): h \in \mathscr{H}\right\} . \tag{3.3}
\end{equation*}
$$

Each of these sets has exactly $|\mathscr{H}|$ elements and we have

$$
\begin{equation*}
\mathcal{M}=\bigcup_{0 \leq n \leq N_{1}} \mathscr{H}_{n} \tag{3.4}
\end{equation*}
$$

We claim that for any $1 \leq n_{1} \neq n_{2} \leq N_{1}$, the intersection $\mathscr{H}_{n_{1}} \cap \mathscr{H}_{n_{2}}$ has at most one element. Indeed, assume that for some distinct $n_{1}, n_{2} \in\left\{1,2, \ldots, N_{1}\right\}$, the set $\mathscr{H}_{n_{1}} \cap$ $\mathscr{H}_{n_{2}}$ has at least two elements, call them a and b. There are then prime numbers $p_{1}, p_{2}, p_{3}, p_{4} \in \mathscr{H}$ such that

$$
\begin{align*}
& a \equiv p_{1} g^{-n_{1}} \\
& \equiv p_{2} g^{-n_{2}}(\bmod p) \tag{3.5}\\
& b \equiv p_{3} g^{-n_{1}}
\end{align*} \equiv p_{4} g^{-n_{2}}(\bmod p) .
$$

Note that since $n_{1} \equiv n_{2}(\bmod p-1)$ we have $g^{-n_{1}} \not \equiv g^{-n_{2}}(\bmod p)$ hence the numbers p_{1} and p_{2} are distinct. Also, p_{1} and p_{3} are distinct because a and b are distinct. We have

$$
\begin{equation*}
a b \equiv p_{1} p_{4} g^{-n_{1}-n_{2}} \equiv p_{2} p_{3} g^{-n_{1}-n_{2}}(\bmod p) \tag{3.6}
\end{equation*}
$$

thus

$$
\begin{equation*}
p_{1} p_{4} \equiv p_{2} p_{3}(\bmod p) \tag{3.7}
\end{equation*}
$$

Now the point is that $p_{1} p_{4}$ and $p_{2} p_{3}$ are positive integers less than p, and so the above congruence implies the equality $p_{1} p_{4}=p_{2} p_{3}$. Since these four factors are prime numbers, p_{1} coincides with either p_{2} or p_{3}, which is not the case. This proves the claim. We now count in \mathcal{M} all the elements of \mathscr{H}_{0}, all the elements of \mathscr{H}_{1} with possibly one exception if this was already counted in \mathscr{H}_{0}, from \mathscr{H}_{2} we count all the elements with at most two exceptions, and so on. Thus

$$
\begin{equation*}
|\mathcal{M}| \geq|\mathscr{H}|+(|\mathscr{H}|-1)+\cdots+1=\frac{|\mathscr{H}|(|\mathscr{H}|+1)}{2}, \tag{3.8}
\end{equation*}
$$

which proves the lemma.
We now apply Lemma 3.1 to the set \mathscr{H} of prime numbers $<\sqrt{p}$ which do not belong to A, and with $N_{1}=[N / 2]$. It follows that the corresponding set \mathcal{M} has at least $|\mathscr{H}|^{2} / 2$ elements. As we know, none of them belongs to A_{1}. Thus each such element contributes an N_{1}^{4} / p^{2} in $M_{2}\left(N_{1}\right)$, and combining this with Theorem 1.1 we find that

$$
\begin{equation*}
\frac{|\mathscr{H}|^{2}}{2} \frac{N_{1}^{4}}{p^{2}} \leq M_{2}\left(N_{1}\right) \ll p N_{1} \log p . \tag{3.9}
\end{equation*}
$$

This implies

$$
\begin{equation*}
|\mathscr{H}| \ll\left(\frac{p^{3} \log p}{N^{3}}\right)^{1 / 2}, \tag{3.10}
\end{equation*}
$$

which completes the proof of Theorem 1.3.

References

[1] C. I. Cobeli, S. M. Gonek, and A. Zaharescu, On the distribution of small powers of a primitive root, J. Number Theory 88 (2001), no. 1, 49-58.
[2] H. L. Montgomery, Distribution of small powers of a primitive root, Advances in Number Theory (Kingston, ON, 1991), Oxford Sci. Publ., Oxford University Press, New York, 1993, pp. 137-149.
[3] Z. Rudnick, P. Sarnak, and A. Zaharescu, The distribution of spacings between the fractional parts of $n^{2} \alpha$, Invent. Math. 145 (2001), no. 1, 37-57.
[4] Z. Rudnick and A. Zaharescu, The distribution of spacings between small powers of a primitive root, Israel J. Math. 120 (2000), 271-287.
[5] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.
Marian VÂJÂitu: Institute of Mathematics of the Romanian academy, p.o. Box 1-764, 70700 Bucharest, Romania

E-mail address: mvajaitu@stoilow.imar.ro
Alexandru Zaharescu: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 70700 Bucharest, Romania

Current address: Department of Mathematics, University of Illinois at UrbanaChampaign, Altgeld Hall, 1409 W. Green Street, Urbana, IL 61801, USA

E-mail address: zaharesc@math.uiuc.edu

