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1. Introduction. Let p be a large prime number and g a primitive root (modp).
The distribution of powers gn(modp), 1≤n≤N, for a given integer N <p has been

investigated in [1, 2, 4]. In this paper, we use techniques from [4] to study the set of

differences

A := {gx−gy(modp) : 1≤ x, y ≤N}. (1.1)

A natural question, attributed to Andrew Odlyzko, asks for which values of N can we

be sure that any residue h(modp) belongs to A? He conjectured that one can take

N to be as small as p1/2+ε, for any fixed ε > 0 and p large enough in terms of ε. If

true, this would be essentially best possible since A has at most N2 elements. For any

residue a(modp), denote

ν(N,a)= #
{
1≤ x, y ≤N : gx−gy ≡ a(modp)

}
. (1.2)

If a ≡ 0(modp) we have the diagonal solutions x = y , thus ν(N,0) = N. For a �≡
0(modp) it is proved in [4, Theorem 2] that

ν(N,a)= N
2

p
+O(√p log2p

)
. (1.3)

It follows that we can takeN = c0p3/4 logp in Odlyzko’s problem, for some absolute

constant c0. The exponent 3/4 is a natural barrier in this problem, as well as in other

similar ones. An example of another such problem is the following: given a large

prime number p, for which values of N can we be sure that any residue h �≡ 0(modp)
belongs to the set {xy(modp) : 1≤ x, y ≤N}? Again we expect that N can be taken

to be as small as p1/2+ε. As with the other problem, it is known that we can take

N = c1p3/4 logp for some absolute constant c1, and this is proved by using Weil’s

bounds for Kloosterman sums [5]. If one assumes the well-known H∗ conjecture of

Hooley which gives square root cancellation in short exponential sums of the form∑
1≤x≤N e(ax̄/p), where x̄ denotes the inverse of x modulo p, then we show that N

can be taken to be as small as p2/3+ε in the above problem. We mention, in passing,

that this question is also related to the pair correlation problem for sequences of
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fractional parts of the form ({n2α})n∈N, which would be completely solved precisely

if one could deal with the case when N = p2/3−ε (see [3] and the references therein).

Returning to the set A, its structure is also relevant to the pair correlation problem

for the set {gn(modp), 1≤n≤N}. Here one wants an asymptotic formula for

#
{

1≤ x �=y ≤N : gx−gy ≡ h(modp), h∈ p
N
J
}
, (1.4)

for any fixed interval J ⊂R. The pair correlation problem is similar to Odlyzko’s prob-

lem, but it is more tractable due to the extra average over h. This problem is solved

in [4] for N >p5/7+ε, the result being that the pair correlation is Poissonian as p→∞
(here we need N/p→ 0). It is also proved in [4] that under the assumption of the gen-

eralized Riemann hypothesis (for Dirichlet L-functions) the exponent can be reduced

from 5/7+ε to 2/3+ε. We mention that by assuming square root type cancellation in

certain short character sums with polynomials
∑

1≤n≤N χ(P(n)), the exponent 3/4 in

Odlyzko’s problem can be reduced to 2/3+ε as well. Taking into account the difficulty

of the conjectures which would reduce the exponent to 2/3+ε in all these problems,

it might be of interest to have some more modest, but unconditional results, valid in

the range N >p2/3+ε.
Our first objective, in this paper, is to provide a good upper bound for the second

moment

M2(N) :=
∑

a(modp)

∣∣∣∣∣ν(N,a)− N
2

p

∣∣∣∣∣
2

. (1.5)

From (1.3), it follows that M2(N)	 p2 log4p. The following theorem gives a sharper

upper bound for M2(N).

Theorem 1.1. For any prime number p, any primitive root gmodp, and any posi-

tive integer N <p,

M2(N)	 pN logp. (1.6)

Since each residue h(modp) which does not belong to A contributes an N4/p2 in

M2(N), we obtain the following corollary.

Corollary 1.2. For any prime number p, any primitive root gmodp, and any

positive integer N <p,

#
{
h(modp) : h �∈A}	 p3 logp

N3
. (1.7)

Thus, for N > p2/3+ε, it follows that almost all the residues a(modp) belong to A.

Although by its nature the inequality (1.6) does not give any indication on where the

possible residues h �∈ A might be located, there is a way of obtaining results as in

Corollary 1.2, with h restricted to a smaller set.

Theorem 1.3. For any prime number p, any primitive root gmodp, and any posi-

tive integer N <p,

#
{
1≤ h< √p : h prime, h(modp) �∈A}	 (

p3 logp
N3

)1/2
. (1.8)
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Corollary 1.4. For any ε>0, any prime numberp, and any primitive rootgmodp,

almost all the prime numbersh<√p (in the sense that the exceptional set has	ε p1/2−ε

elements) can be represented in the form

h≡ gx−gy(modp) (1.9)

with 1≤ x, y ≤ p2/3+ε.

Note that a weaker form of Corollary 1.4, with the range 1 ≤ x, y ≤ p2/3+ε re-

placed by the larger range 1 ≤ x, y ≤ p5/6+ε, follows directly by taking N = p5/6+ε in

Corollary 1.2. The point in Corollary 1.4 is that it gives a result where h is restricted

to belong to a small set, at no cost of increasing the range 1≤ x, y ≤ p2/3+ε.

2. Proof of Theorem 1.1. Let p be a prime number, g a primitive root mod p,

and N a positive integer smaller than p. We know that a ≡ 0(modp) contributes an

(N−N2/p)2 < N2 in M2(N). For a �≡ 0(modp) define a function ha on Z/(p−1)Z×
Z/(p−1)Z by

ha(x,y)=

1, if gx−gy ≡ a(modp),

0, else.
(2.1)

Thus ν(N,a) =∑1≤x,y≤N ha(x,y). Expanding ha in a Fourier series on Z/(p−1)Z×
Z/(p−1)Z we get

ν(N,a)=
∑

r ,s(modp−1)
ĥa(r ,s)

∑
1≤x,y≤N

e
(
rx+sy
p−1

)
, (2.2)

where the Fourier coefficients are given by

ĥa(r ,s)= 1
(p−1)2

∑
x,y(modp−1)

ha(x,y)e
(
− rx+sy

p−1

)
. (2.3)

The main contribution in (2.2) comes from the terms with r ≡ s ≡ 0(modp−1), and

this equals ĥa(0,0)N2. It is easy to see that ĥa(0,0)= 1/p+O(1/p2). Thus

ν(N,a)= N
2

p

(
1+O

(
1
p

))
+R(a), (2.4)

where

R(a)=
∑

(r ,s)�≡(0,0)
ĥa(r ,s)FN(r)FN(s), (2.5)

FN(r)=
∑

1≤x≤N
e
(
rx
p−1

)
, FN(s)=

∑
1≤y≤N

e
(
sy
p−1

)
. (2.6)
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From (2.4) and the definition of M2(N), it follows that in order to prove Theorem 1.1

it will be enough to show that

p−1∑
a=1

∣∣R(a)∣∣2 	 pN logp. (2.7)

From [4, Lemma 7] it follows that

ĥa(r ,s)= χ
s(−1)τ

(
χr
)
τ
(
χs
)
τ
(
χ−(r+s)

)
p(p−1)2

χr+s(a), (2.8)

where τ(χr ), τ(χs), τ(χ−(r+s)) are Gauss sums associated with the corresponding

multiplicative characters χr , χs , χ−(r+s) defined modp, and χ is the unique character

modp which corresponds to our primitive root g by

χ
(
gm
)= e( m

p−1

)
, (2.9)

for any integer m. From (2.5) and (2.8) we derive

R(a)=
∑

m(modp−1)
bmχm(a), (2.10)

where

bm = τ
(
χ−m

)
p(p−1)2

∑
(r ,s)�≡(0,0)(modp−1)
r+s=m(modp−1)

FN(r)FN(s)χs(−1)τ
(
χr
)
τ
(
χs
)
. (2.11)

Since

∣∣τ(χn)∣∣=


√
p, if n �≡ 0(modp−1),

1, if n≡ 0(modp−1),
(2.12)

it follows that

∣∣bm∣∣	 p−3/2
∑

r+s=m(modp−1)

∣∣FN(r)FN(s)∣∣. (2.13)

Here FN(r) and FN(s) are geometric progressions and can be estimated accurately.

We allow r , s, and m to run over the set {−(p−1)/2+1,−(p−1)/2+2, . . . ,(p−1)/2}.
Then

∣∣FN(r)∣∣	min
{
N,

p
|r |
}
, (2.14)

and similarly for |FN(s)|. From (2.13) and (2.14) it follows that

∣∣bm∣∣	 p−3/2
∑

r+s≡m(modp−1)
|r |,|s|≤(p−1)/2

min
{
N,

p
|r |
}

min
{
N,

p
|s|
}
. (2.15)
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By Cauchy’s inequality we derive

∣∣bm∣∣	 p−3/2


 ∑
|r |≤(p−1)/2

min

{
N2,

p2

|r |2
}

1/2
 ∑
|s|≤(p−1)/2

min

{
N2,

p2

|s|2
}

1/2

= p−3/2
∑

|r |≤(p−1)/2
min

{
N2,

p2

r 2

}
	 p−1/2N.

(2.16)

Ignoring the two terms r = 0, s =m and r =m, s = 0 which contribute in (2.15) at

most 2p−3/2N2 ≤ 2p−1/2N, the rest of the sum in (2.15) is less than or equal to

∑
r+s≡m(modp−1)
0<|r |,|s|≤(p−1)/2

p2

|r ||s| = S1+S2, (2.17)

where we denote by S1 the sum of the terms with |r | ≤ |s| and by S2 the sum of the

terms with |r |> |s|. Note that in S1 we have |s| ≥ |m|/2 and so

S1 	
∑

0<|r |≤(p−1)/2

p2

|m||r | 	
p2 logp
|m| (2.18)

and similarly for S2. From (2.16), (2.17), and (2.18) we conclude that

∣∣bm∣∣	 1√p min
{
N,
p logp
|m|

}
. (2.19)

We now return to (2.10) and compute

p−1∑
a=1

∣∣R(a)∣∣2 =
p−1∑
a=1

∑
m1(modp−1)

∑
m2(modp−1)

bm1 b̄m2χ
m1−m2(a)

=
∑

m1,m2(modp−1)
bm1 b̄m2

p−1∑
a=1

χm1−m2(a).

(2.20)

The orthogonality of characters (modp) shows that the last inner sum is zero unless

m1 =m2 when it equals p−1, hence

p−1∑
a=1

∣∣R(a)∣∣2 = (p−1)
∑

m(modp−1)

∣∣bm∣∣2. (2.21)

Using (2.19) in (2.21) we obtain

p−1∑
a=1

∣∣R(a)∣∣2 	
∑

|m|≤(p−1)/2
min

{
N2,

p2 log2p
|m|2

}
	 pN logp. (2.22)

Thus (2.7) holds and Theorem 1.1 is proved.
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3. Proof of Theorem 1.3. Let p, g, and N be as in the statement of the theorem.

We will combine the second moment estimate from Theorem 1.1 with two new ideas.

The first idea is to restrict the range of x, y to 1≤ x, y ≤N1 = [N/2] in the definition

of A in order to increase the number of residues which do not belong to the set. To

be precise, we consider the set

A1 =
{
gx−gy(modp) : 1≤ x, y ≤N1

}
, (3.1)

and note that, for any residue h(modp) which does not belong to A and any integer

0 ≤ n ≤ N1, the residue hg−n will not belong to A1. Indeed, if there were integers

x,y ∈ {1,2, . . . ,N1} such that gx−gy ≡ hg−n(modp), then gx+n−gy+n ≡ h(modp)
which is not the case since 1≤ x+n,y+n≤N, and h does not belong toA. Therefore,

if � is a set of residues (modp) which do not belong to A, no element of the set

� = {hg−n(modp) : h∈�, 0≤n≤N1}will belong toA1. The second idea is captured

in the following lemma.

Lemma 3.1. Let p be a prime number, g a primitive root modp, � a set of

prime numbers smaller than
√p, N1 an integer larger than |�|, and denote � =

{hg−n(modp) : h∈�, 0≤n≤N1}. Then

|�| ≥ |�|
(|�|+1

)
2

. (3.2)

Proof. The set � becomes larger if one increases N1 thus it is enough to deal with

the case N1 = |�|. Consider the sets

�n =
{
hg−n(modp) : h∈�

}
. (3.3)

Each of these sets has exactly |�| elements and we have

� =
⋃

0≤n≤N1

�n. (3.4)

We claim that for any 1 ≤ n1 ≠ n2 ≤ N1, the intersection �n1 ∩�n2 has at most one

element. Indeed, assume that for some distinct n1,n2 ∈ {1,2, . . . ,N1}, the set �n1 ∩
�n2 has at least two elements, call them a and b. There are then prime numbers

p1,p2,p3,p4 ∈� such that

a≡ p1g−n1 ≡ p2g−n2(modp),

b ≡ p3g−n1 ≡ p4g−n2(modp).
(3.5)

Note that since n1 �≡ n2(modp−1) we have g−n1 �≡ g−n2(modp) hence the numbers

p1 and p2 are distinct. Also, p1 and p3 are distinct because a and b are distinct.

We have

ab ≡ p1p4g−n1−n2 ≡ p2p3g−n1−n2(modp), (3.6)

thus

p1p4 ≡ p2p3(modp). (3.7)
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Now the point is that p1p4 and p2p3 are positive integers less than p, and so the

above congruence implies the equality p1p4 = p2p3. Since these four factors are prime

numbers,p1 coincides with eitherp2 orp3, which is not the case. This proves the claim.

We now count in � all the elements of �0, all the elements of �1 with possibly one

exception if this was already counted in �0, from �2 we count all the elements with

at most two exceptions, and so on. Thus

|�| ≥ |�|+(|�|−1
)+···+1= |�|

(|�|+1
)

2
, (3.8)

which proves the lemma.

We now apply Lemma 3.1 to the set � of prime numbers < √p which do not be-

long to A, and with N1 = [N/2]. It follows that the corresponding set � has at least

|�|2/2 elements. As we know, none of them belongs to A1. Thus each such element

contributes an N4
1/p2 in M2(N1), and combining this with Theorem 1.1 we find that

|�|2
2

N4
1

p2
≤M2

(
N1
)	 pN1 logp. (3.9)

This implies

|�|	
(
p3 logp
N3

)1/2
, (3.10)

which completes the proof of Theorem 1.3.
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