A NOTE ON UNIFORMLY DOMINATED SETS OF SUMMING OPERATORS

J. M. DELGADO and C. PIÑEIRO

Received 26 May 2001

Let *Y* be a Banach space that has no finite cotype and *p* a real number satisfying $1 \le p < \infty$. We prove that a set $\mathcal{M} \subset \prod_p(X, Y)$ is uniformly dominated if and only if there exists a constant C > 0 such that, for every finite set $\{(x_i, T_i) : i = 1, ..., n\} \subset X \times \mathcal{M}$, there is an operator $T \in \prod_p(X, Y)$ satisfying $\pi_p(T) \le C$ and $||T_i x_i|| \le ||Tx_i||$ for i = 1, ..., n.

2000 Mathematics Subject Classification: 47B10.

1. Introduction. Let *X* and *Y* be Banach spaces and *p* a real number satisfying $1 \le p < \infty$. A subset \mathcal{M} of $\Pi_p(X, Y)$ is called *uniformly dominated* if there exists a positive Radon measure μ defined on the compact space $(B_{X^*}, \sigma(X^*, X)|_{B_{X^*}})$ such that

$$\|Tx\|^{p} \leq \int_{B_{X^{*}}} |\langle x^{*}, x \rangle|^{p} d\mu(x^{*})$$

$$(1.1)$$

for all $x \in X$ and all $T \in M$. Since the appearance of Grothendieck-Pietsch's domination theorem for *p*-summing operators, there is a great interest in finding out the structure of uniformly dominated sets. We will denote by $\mathfrak{D}_p(\mu)$ the set of all operators $T \in$ $\Pi_p(X, Y)$ satisfying (1.1) for all $x \in X$. It is easy to prove that $\mathfrak{D}_p(\mu)$ is absolutely convex, closed, and bounded (for the *p*-summing norm).

In [4], the authors consider the case p = 1 and prove that $\mathcal{M} \subset \prod_p(X, Y)$ is uniformly dominated if and only if $\bigcup_{T \in \mathcal{M}} T^*(B_{Y^*})$ lies in the range of a vector measure of bounded variation and valued in X^* .

In [3], the following sufficient condition is proved: "let $\mathcal{M} \subset \prod_p (X, Y)$ and $1 \le p < \infty$. Suppose that there is a positive constant C > 0 such that, for every finite set $\{x_1, ..., x_n\}$ of X, there exists $Q \in \mathcal{M}$ satisfying $\pi_p(Q) \le C$ and

$$\sum_{i=1}^{n} ||Tx_{i}||^{p} \le \sum_{i=1}^{n} ||Qx_{i}||^{p}$$
(1.2)

for all $T \in \mathcal{M}$. Then \mathcal{M} is uniformly dominated." They also prove that this condition is necessary in the rather particular case that $\mathcal{M} \subset \prod_p (c_0, c_0)$ and $\mathcal{M} = \mathfrak{D}_p(\mu)$ for some positive Radon measure μ on B_{ℓ_1} .

In this note, we obtain a necessary and sufficient condition for a set $\mathcal{M} \subset \prod_p (X, Y)$ to be uniformly dominated, with the only restriction that *Y* is a Banach space without finite cotype. We refer to [1] for our operator terminology. If *X* is a Banach space, B_X will denote its closed unit ball; $\ell_a^p(X)$ ($\ell_w^p(X)$) will be the Banach space of the strongly (weakly) *p*-summable sequences.

2. Main result. We need the following characterization of uniformly dominated sets.

PROPOSITION 2.1. Let $1 \le p < \infty$ and $\mathcal{M} \subset \prod_p(X, Y)$. The following statements are equivalent:

(a) *M* is uniformly dominated.

(b) For every $\varepsilon > 0$ and $(x_n) \in \ell^p_w(X)$, there exists $n_0 \in \mathbb{N}$ such that

$$\sum_{n \ge n_0} \left\| \left| T_n x_n \right| \right\|^p < \varepsilon \tag{2.1}$$

for all sequences (T_n) in \mathcal{M} .

(c) There exists a constant C > 0 such that

$$\sum_{i=1}^{n} ||T_{i}x_{i}||^{p} \leq C^{p} \sup_{x^{*} \in B_{X^{*}}} \sum_{i=1}^{n} |\langle x^{*}, x_{i} \rangle|^{p}$$
(2.2)

for all $\{x_1,\ldots,x_n\} \subset X$ and $\{T_1,\ldots,T_n\} \subset \mathcal{M}$.

PROOF. (a) \Rightarrow (b). In a similar way as in the Pietsch factorization theorem [1], we can obtain, for all $T \in \mathcal{M}$, operators $U_T : L_p(\mu) \rightarrow \ell_{\infty}(B_{Y^*})$, $||U_T|| \leq \mu(B_{X^*})^{1/p}$, and an operator $V : X \rightarrow L_{\infty}(\mu)$ such that the following diagram is commutative:

Here i_p is the canonical injection from $L_{\infty}(\mu)$ into $L_p(\mu)$ and i_Y is the isometry from Y into $\ell_{\infty}(B_{Y^*})$ defined by $i_Y(y) = (\langle y^*, y \rangle)_{y^* \in B_{Y^*}}$. Given $\varepsilon > 0$ and $(x_n) \in \ell^p_w(X)$, we can choose $n_0 \in \mathbb{N}$ so that

$$\sum_{n\geq n_0} \left\| i_p \circ V(x_n) \right\|^p < \frac{\varepsilon}{\mu(B_{X^*})}$$
(2.4)

because $i_p \circ V$ is *p*-summing. Then, if (T_n) is a sequence in \mathcal{M} , we have

$$\sum_{n \ge n_0} ||T_n x_n||^p = \sum_{n \ge n_0} ||i_Y \circ T_n(x_n)||^p$$
$$= \sum_{n \ge n_0} ||U_{T_n} \circ i_p \circ V(x_n)||^p$$
$$\leq \mu(B_{X^*}) \sum_{n \ge n_0} ||i_p \circ V(x_n)||^p \le \varepsilon.$$
(2.5)

(b) \Rightarrow (c). Using a standard argument, we can prove that \mathcal{M} is bounded for the operator norm. Hence, given $\hat{x} = (x_n) \in \ell^p_w(X)$, there exists $M_{\hat{x}} > 0$ such that

$$\sum_{n=1}^{\infty} \left| \left| T_n x_n \right| \right|^p \le M_{\hat{x}} \tag{2.6}$$

308

for all (T_n) in \mathcal{M} . Then, we can consider the linear maps

$$\widehat{T}: (x_n) \in \ell^p_w(X) \longmapsto (T_n x_n) \in \ell^p_a(Y)$$
(2.7)

for each $\hat{T} = (T_n)$ in \mathcal{M} . They have closed graph; so, by the uniform boundedness principle, there exists M > 0 so that

$$\left(\sum_{n=1}^{\infty} \left|\left|T_{n} \boldsymbol{x}_{n}\right|\right|^{p}\right)^{1/p} \le M \epsilon_{p}\left(\boldsymbol{x}_{n}\right)$$
(2.8)

for all $(x_n) \in \ell^p_w(X)$ and all (T_n) in \mathcal{M} (we wrote ϵ_p for the norm in $\ell^p_w(X)$).

(c)⇒(a). Given $A = \{T_1, \ldots, T_n\} \subset \mathcal{M}$ and $B = \{x_1, \ldots, x_n\} \subset X$, we define $f_{A,B} : B_{X^*} \to \mathbb{R}$ by

$$f_{A,B}(x^{*}) = C^{p}\left(\sum_{i=1}^{n} |\langle x^{*}, x_{i} \rangle|^{p}\right) - \sum_{i=1}^{n} ||T_{i}x_{i}||^{p}$$
(2.9)

for all $x^* \in X^*$. We denote by \mathcal{P} the set of all functions $f_{A,B}$. It is clear that \mathcal{P} is convex and disjoint from the cone $\mathcal{N} = \{f \in \mathcal{C}(B_{X^*}) : f(x^*) < 0$, for all $x^* \in B_{X^*}\}$. In a similar way as in the proof of Pietsch's domination theorem [1], we can show that there is a probability measure μ on B_{X^*} satisfying

$$\int_{B_{X^*}} \left(\|Tx\|^p - C^p \left| \left\langle x^*, x \right\rangle \right|^p \right) d\mu \le 0$$
(2.10)

for all $T \in \mathcal{M}$ and all $x \in X$.

As an application of this result, we can show a relatively compact set for the *p*-summing norm which is not uniformly dominated. Put $T_n = (1/n)e_n^* \otimes e_n$, $n \in \mathbb{N}$, where (e_n) and (e_n^*) are the unit basis of c_0 and ℓ_1 , respectively. As $\pi_1(T_n) = 1/n$, (T_n) is a null sequence in $\Pi_1(c_0, c_0)$, so (T_n) is relatively compact. To see that it is not uniformly dominated, we will use Proposition 2.1: the sequence (e_n) is weakly summable but, for all $n \in \mathbb{N}$, we have

$$\sum_{k \ge n} ||T_k e_k||_{\infty} = \sum_{k \ge n} \frac{1}{k}.$$
(2.11)

We are now ready to introduce our main result.

THEOREM 2.2. Let *Y* be a Banach space that has no finite cotype, $\mathcal{M} \subset \Pi_p(X, Y)$, and $1 \le p < \infty$. The following statements are equivalent:

(a) \mathcal{M} is uniformly dominated.

(b) There is a constant C > 0 such that, for every $\{x_1, ..., x_n\} \subset X$ and $\{T_1, ..., T_n\} \subset M$, there exists an operator $T \in \prod_p (X, Y)$ satisfying $\pi_p(T) \leq C$ and

$$||T_i x_i|| \le ||T x_i||, \quad i = 1, \dots, n.$$
 (2.12)

PROOF. (a) \Rightarrow (b). By hypothesis, there exists a positive Radon measure μ on B_{X^*} such that

$$\|T\mathbf{x}\| \le \left(\int_{B_{X^*}} \left| \langle x^*, x \rangle \right|^p d\mu(x^*) \right)^{1/p}$$
(2.13)

for all $T \in \mathcal{M}$ and all $x \in X$. Since *Y* has no finite cotype, *Y* contains ℓ_{∞}^{n} 's uniformly. By [2], for every $\varepsilon > 0$ and $n \in \mathbb{N}$, there is an isomorphism J_n from ℓ_{∞}^{n} onto a subspace of *Y* satisfying $||J_n^{-1}|| = 1$ and $||J_n|| \le 1 + \varepsilon$ for all $n \in \mathbb{N}$.

Given $\{x_1, \ldots, x_n\} \subset X$ and $\{T_1, \ldots, T_n\} \subset \mathcal{M}$, by (2.13) we have

$$||T_i x_i|| \le \left(\int_{B_{X^*}} |\langle x^*, x_i \rangle|^p d\mu(x^*) \right)^{1/p}, \quad i = 1, \dots, n.$$
 (2.14)

For every i = 1, ..., n, take $g_i \in L_q(\mu)$ such that $||g_i||_q = 1$ and

$$\left(\int_{B_{X^*}} |\langle x^*, x_i \rangle|^p d\mu(x^*)\right)^{1/p} = \int_{B_{X^*}} \langle x^*, x_i \rangle g_i(x^*) d\mu(x^*).$$
(2.15)

From (2.14) and (2.15), we obtain

$$||T_i x_i|| \le \int_{B_{X^*}} \langle x^*, x_i \rangle g_i(x^*) d\mu(x^*), \quad i = 1, \dots, n.$$
 (2.16)

Put $y_i = J_n e_i$, being $(e_i)_{i=1}^n$ the unit basis of ℓ_{∞}^n . We define an operator $T: X \to Y$ by

$$Tx = \sum_{i=1}^{n} \left(\int_{B_{X^*}} \langle x^*, x \rangle g_i(x^*) d\mu(x^*) \right) y_i.$$
(2.17)

We first prove that $||Tx||^p \le (\int_{B_{X^*}} |\langle x^*, x \rangle|^p d\mu(x^*))(1+\varepsilon)$ for all $x \in X$:

$$\|Tx\| = \sup_{y^{*} \in B_{Y^{*}}} \left| \left\langle y^{*}, \sum_{i=1}^{n} \left(\int_{B_{X^{*}}} \langle x^{*}, x \rangle g_{i}(x^{*}) d\mu(x^{*}) \right) y_{i} \right\rangle \right|$$

$$\leq \sup_{y^{*} \in B_{Y^{*}}} \sum_{i=1}^{n} \left(\int_{B_{X^{*}}} |\langle x^{*}, x \rangle| |g_{i}(x^{*})| d\mu(x^{*}) \right)^{1/p} \left(\int_{B_{X^{*}}} |g_{i}(x^{*})|^{q} d\mu(x^{*}) \right)^{1/q} |\langle y^{*}, y_{i} \rangle|$$

$$\leq \left(\int_{B_{X^{*}}} |\langle x^{*}, x \rangle| |^{p} d\mu(x^{*}) \right)^{1/p} \sup_{y^{*} \in B_{Y^{*}}} \sum_{i=1}^{n} |\langle y^{*}, y_{i} \rangle|$$

$$\leq \left(\int_{B_{X^{*}}} |\langle x^{*}, x \rangle| |^{p} d\mu(x^{*}) \right)^{1/p} ||J_{n}^{*}||$$

$$\leq \left(\int_{B_{X^{*}}} |\langle x^{*}, x \rangle| |^{p} d\mu(x^{*}) \right)^{1/p} (1 + \varepsilon).$$
(2.18)

Finally, we need to prove that $||T_i x_i|| \le ||Tx_i||$ for i = 1,...,n. Put $y_i^* = e_i^* \circ J_n^{-1}$, $(e_i^*)_{i=1}^n$ being the unit basis of $(\ell_\infty^n)^* \simeq \ell_1^n$. Notice that $||y_i^*|| \le 1$ for i = 1,...,n. We

also denote by y_i^* a Hahn-Banach extension of $e_i^* \circ J_n^{-1}$ to *Y*. We have

$$|Tx_{i}|| \geq |\langle y_{i}^{*}, Tx_{i} \rangle|$$

$$= \left| \left\langle y_{i}^{*}, \sum_{j=1}^{n} \left(\int_{B_{X^{*}}} \langle x^{*}, x_{i} \rangle g_{j}(x^{*}) d\mu(x^{*}) \right) y_{j} \right\rangle \right|$$

$$= \left| \sum_{j=1}^{n} \left(\int_{B_{X^{*}}} \langle x^{*}, x_{i} \rangle g_{j}(x^{*}) d\mu(x^{*}) \right) \langle y_{i}^{*}, y_{j} \rangle \right|$$

$$= \left| \sum_{j=1}^{n} \left(\int_{B_{X^{*}}} \langle x^{*}, x_{i} \rangle g_{j}(x^{*}) d\mu(x^{*}) \right) \langle e_{i}^{*} \circ J_{n}^{-1}, J_{n} e_{j} \rangle \right|$$

$$= \left| \sum_{j=1}^{n} \left(\int_{B_{X^{*}}} \langle x^{*}, x_{i} \rangle g_{j}(x^{*}) d\mu(x^{*}) \right) \langle e_{i}^{*}, e_{j} \rangle \right|$$

$$= \int_{B_{X^{*}}} \langle x^{*}, x_{i} \rangle g_{i}(x^{*}) d\mu(x^{*})$$

$$\geq ||T_{i}x_{i}||,$$

$$(2.19)$$

the last inequality is due to (2.16).

(b) \Rightarrow (a). It follows easily using Proposition 2.1(c).

REMARKS. (1) It is interesting to give an example of a uniformly dominated set \mathcal{M} for which there is no operator $T \in \mathcal{M}$ satisfying $||T_i x_i|| \le ||Tx_i||$, i = 1, ..., n, for some finite set $\{(x_i, T_i) : i = 1, ..., n\} \subset X \times \mathcal{M}$. Let $X = \ell_1$ and $Y = \ell_{\infty}$ and consider the set $\mathcal{M} = \{T_\beta : \beta \in B_{\ell_2}\}, T_\beta : \ell_1 \to \ell_{\infty}$ being defined by $T_\beta(\alpha) = (\alpha_n \beta_n)$ for all $\alpha = (\alpha_n) \in \ell_1$. Obviously, \mathcal{M} is a uniformly dominated subset of $\Pi_1(\ell_1, \ell_{\infty})$.

By contradiction, suppose the following condition holds: "there is a constant C > 0 such that, for every finite set $\{(x_i, T_i) : i = 1, ..., n\} \subset X \times M$, there exists $T \in M$ satisfying $||T_i x_i|| \le C ||T x_i||$, i = 1, ..., n." Put $x_i = e_i$ and $T_i = T_{\beta_i}$ for i = 1, ..., n, where $(e_i)_{i=1}^{\infty}$ is the unit basis of ℓ_1 and $\beta_i = (1/\sqrt{i}, \stackrel{(i)}{\ldots}, 1/\sqrt{i}, 0, ...)$. Take $T_Y \in M$ such that

$$||T_i x_i|| \le C ||T_y x_i||, \quad i = 1, ..., n;$$
 (2.20)

this yields

$$\frac{1}{\sqrt{i}} \le C \left| \gamma_i \right|, \quad i = 1, \dots, n.$$
(2.21)

Then we have

$$1 \ge \sum_{i=1}^{\infty} |\gamma_i|^2 \ge \sum_{i=1}^n |\gamma_i|^2 \ge \frac{1}{C^2} \sum_{i=1}^n \frac{1}{i}.$$
 (2.22)

So, we have obtained the inequality $\sum_{i=1}^{n} 1/i \le C^2$ for all $n \in \mathbb{N}$ which allows us to state that such an operator *T* cannot exist.

(2) Notice that, in the above example, \mathcal{M} is absolutely convex and weakly compact in $\Pi_1(\ell_1, \ell_\infty)$. Then, \mathcal{M} is absolutely convex, closed, and uniformly dominated but $\mathcal{M} \neq \mathfrak{D}_1(\mu)$ for every admissible positive Radon measure μ .

(3) Finally, we give an example of a bounded set \mathcal{M} of 2-summing operators that does not have property (b) in Theorem 2.2. Consider the set \mathcal{M} of all 2-summing operators $T_{\beta}: c_0 \to \ell_{\infty}$ defined by $T_{\beta}(\alpha) = (\alpha_n \beta_n)$ for all $\alpha = (\alpha_n) \in c_0$, where $\beta = (\beta_n)$ runs over the unit ball of ℓ_2 . We have $T_{\beta} = i \circ S_{\beta}$, *i* being the identity map from ℓ_2 into ℓ_{∞} and $S_{\beta}: c_0 \to \ell_2$ defined by $S_{\beta}(\alpha) = (\alpha_n \beta_n)$. Since ℓ_2 has cotype 2, it follows that S_{β} is 2-summing [1]. Nevertheless, \mathcal{M} does not satisfy property (b) in the above theorem. By contradiction, suppose that there is a constant C > 0 such that (b) holds. Again, we take $\tilde{\beta}_i = (1/\sqrt{i}, \stackrel{(i)}{\ldots}, 1/\sqrt{i}, 0, \ldots)$ for all $i \in \mathbb{N}$. By hypothesis, there exists $T \in \Pi_2(c_0, \ell_{\infty})$ such that $\pi_2(T) \leq C$ and $||T_{\bar{\beta}_i} e_i|| \leq ||Te_i||$ for $i = 1, \ldots, n$. Then we have

$$\sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n} \left| \left| T_{\tilde{\beta}_{i}} e_{i} \right| \right|^{2} \le \sum_{i=1}^{n} \left| \left| T e_{i} \right| \right|^{2} \le C^{2}$$
(2.23)

for all $n \in \mathbb{N}$. Hence, \mathcal{M} does not have property (b) in Theorem 2.2.

REFERENCES

- J. Diestel, H. Jarchow, and A. Tonge, *Absolutely Summing Operators*, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
- [2] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550.
- [3] R. Khalil and M. Hussain, Uniformly dominated sets of p-summing operators, Far East J. Math. Sci. (1998), Special Volume, Part I, 59–68.
- [4] B. Marchena and C. Piñeiro, Bounded sets in the range of an X**-valued measure with bounded variation, Int. J. Math. Math. Sci. 23 (2000), no. 1, 21-30.

J. M. DELGADO: DEPARTAMENTO DE MATEMÁTICAS, ESCUELA POLITÉCNICA SUPERIOR, UNIVER-SIDAD DE HUELVA, LA RÁBIDA 21819, HUELVA, SPAIN *E-mail address*: jmde]ga@uhu.es

C. PIÑEIRO: DEPARTAMENTO DE MATEMÁTICAS, ESCUELA POLITÉCNICA SUPERIOR, UNIVERSI-DAD DE HUELVA, LA RÁBIDA 21819, HUELVA, SPAIN *E-mail address*: candido@uhu.es