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1. Introduction. In this paper, we study the existence, uniqueness, and continuous

dependence of a mild solution of a nonlocal Cauchy problem for impulsive functional-

differential evolution equation. Such problems arise in some physical applications as a

natural generalization of the classical initial value problems. The results for semilinear

functional-differential evolution nonlocal problem [2] are extended for the case of

impulse effect. We consider the nonlocal Cauchy problem in the form

u̇(t)=Au(t)+f (t,ut), t ∈ (0,a], t ≠ τk,
u
(
τk+0

)=Qku(τk)≡u(τk)+Iku(τk), k= 1,2, . . . ,κ,

u(t)+(g(ut1 , . . . ,utp))(t)=φ(t), t ∈ [−r ,0],
(1.1)

where 0< t1 < ···< tp ≤ a, p ∈N, A and Ik (k= 1,2, . . . ,κ) are linear operators acting

in a Banach space E; f , g, and φ are given functions satisfying some assumptions,

ut(s) := u(t+ s) for t ∈ [0,a], s ∈ [−r ,0], Iku(τk) = u(τk+0)−u(τk−0) and the

impulsive moments τk are such that 0< τ1 < τ2 < ···< τk < ···< τκ < a, κ ∈N.

Theorems about the existence, uniqueness, and stability of solutions of differen-

tial and functional-differential abstract evolution Cauchy problems were studied in

[1, 2, 3]. The results presented in this paper are a generalization and a continua-

tion of some results reported in [1, 2, 3]. We consider classical impulsive functional-

differential equation in the case of nonlocal condition, reduced to the classical initial

functional value problem.

As usual, in the theory of impulsive differential equations [4, 5] at the points of

discontinuity τi of the solution t�u(t) we assume that u(τi)≡u(τi−0). It is clear

that, in general, the derivatives u̇(τi) do not exist. On the other hand, according to the

first equality of (1.1) there exist the limits u̇(τi∓0). According to the above convention,

we assume u̇(τi)≡ u̇(τi−0).
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Throughout, we assume that E is a Banach space with norm ‖·‖, A is the infinites-

imal generator of a C0 semigroup {T(t)}t≥0 on E, D(A) is the domain of A, and

M := sup
t∈[0,a]

{∥∥T(t)∥∥BL(E,E)
}
. (1.2)

Let f : [0,a]×C([−r ,0],E)→ E. Introduce the following assumptions:

(H1) for every w ∈ C([−r ,a],E) and t ∈ [0,a], f (·,wt)∈ C([0,a],E);
(H2) there exists a constant L > 0 such that

∥∥f (t,wt
)−f (t,w̃t

)∥∥
E

≤ L1

∥∥w−w̃∥∥C([−r ,t],E) for w,w̃ ∈ C([−r ,a],E), t ∈ [0,a],∥∥Ikv∥∥E ≤ L2‖v‖E for v ∈ E, k= 1,2, . . . ,κ,

L=max
{
L1,L2

}
.

(1.3)

Let g : [C([−r ,0],E)]p → C([−r ,0],E). Then we have the following assumptions:

(H3) there exists a constant K > 0 such that

∥∥(g(wt1 , . . . ,wtp
))
(t)−(g(w̃t1 , . . . ,w̃tp

))
(t)
∥∥≤K∥∥w−w̃∥∥C([−r ,a],E) (1.4)

for w,w̃ ∈ C([−r ,a],E), t ∈ [−r ,0];
(H4) assume that φ∈ C([−r ,0],E).
A function u∈ C([−r ,a],E) satisfying the following conditions:

u(t)= T(t)φ(0)−T(t)[(g(ut1 , . . . ,utp))(0)]

+
∫ t

0
T(t−s)f (s,us)ds+ ∑

0<τk<t
T
(
t−τk

)
Iku

(
τk
)
, t ∈ [0,a],

u(t)+(g(ut1 , . . . ,utp))(t)=φ(t), t ∈ [−r ,0),

(1.5)

is said to be a mild solution of the nonlocal Cauchy problem (1.1).

2. Existence and uniqueness of a mild solution

Theorem 2.1. Suppose that assumptions (H1)–(H4) are satisfied and

M
[
K+L(a+1)

]
< 1. (2.1)

Then the impulsive nonlocal Cauchy problem (1.1) has a unique mild solution.

Proof. The mild solution of the impulsive system (1.1) with nonlocal condition

can be written in the form

u(t;φ)= (Fu)(t), (2.2)



IMPULSIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS . . . 253

where

(Fw)(t) :=




φ(t)−(g(wt1 , . . . ,wtp
))
(t), t ∈ [−r ,0),

T(t)φ(0)−T(t)[(g(wt1 , . . . ,wtp
))
(0)
]

+
∫ t

0
T(t−s)f (s,ws

)
ds+

∑
0<τk<t

T
(
t−τk

)
Ikw

(
τk
)
, t ∈ [0,a],

(2.3)

such that w ∈ C([−r ,a],E) and F : C([−r ,a],E)→ C([−r ,a],E). Now, we show that

F is a contraction mapping on C([−r ,a],E). Therefore,

(Fw)(t)−(Fw̃)(t) :=




(
g
(
w̃t1 , . . . ,w̃tp

))
(t)−(g(wt1 , . . . ,wtp

))
(t)

for w,w̃ ∈ C([−r ,a],E), t ∈ [−r ,0),
T(t)

[(
g
(
w̃t1 , . . . ,w̃tp

))
(0)−(g(wt1 , . . . ,wtp

))
(0)
]

+
∫ t

0
T(t−s)[f (s,ws

)−f (s,w̃s
)]
ds

+
∑

0<τk<t
T
(
t−τk

)[
Ikw

(
τk
)−Ikw̃(τk)]

for w,w̃ ∈ C([−r ,a],E), t ∈ [0,a].

(2.4)

From (2.4), we have

∥∥(Fw)(t)−(Fw̃)(t)∥∥≤ ∥∥T(t)∥∥·∥∥(g(w̃t1 , . . . ,w̃tp
))
(0)−(g(wt1 , . . . ,wtp

))
(0)
∥∥

+
∫ t

0

∥∥T(t−s)∥∥·∥∥f (s,ws
)−f (s,w̃s

)∥∥ds
+

∑
0<τk<t

∥∥T(t−τk)∥∥·∥∥Ikw(τk)−Ikw̃(τk)∥∥
(2.5)

for w,w̃ ∈ C([−r ,a],E), t ∈ [0,a]. Because of (2.5), in view of (1.2), and applying

assumptions (H1)–(H4) we obtain

∥∥(Fw)(t)−(Fw̃)(t)∥∥≤MK∥∥w−w̃∥∥C([−r ,a],E)
+ML1

∫ t
0

∥∥w−w̃∥∥C([−r ,a],E)ds+ML2

∥∥w(τk)−w̃(τk)∥∥E
≤ (MK+MaL1+ML2

)∥∥w−w̃∥∥C([−r ,a],E)
≤M[K+L(a+1)

]·∥∥w−w̃∥∥C([−r ,a],E)

(2.6)

for w,w̃ ∈ C([−r ,a],E), t ∈ [0,a], which implies that

∥∥Fw−Fw̃∥∥C([−r ,a],E) ≤ β∥∥w−w̃∥∥C([−r ,a],E), w,w̃ ∈ C([−r ,a],E), (2.7)

where β :=M[K+L(a+1)]. The operator F satisfies all the assumptions of the Banach

contraction theorem, and therefore, in the space C([−r ,a],E) there is only one fixed

point of F and this is the mild solution of the nonlocal Cauchy problem with impulse

effect. This completes the proof of the theorem.
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3. Continuous dependence of a mild solution

Theorem 3.1. Suppose that the functions f , g, and Ik(u), k= 1, 2, . . . ,κ, satisfy the

assumptions (H1)–(H4) and M[K+L(a+1)] < 1. Then, for each φ1,φ2 ∈ C([−r ,a],E),
and for the corresponding mild solutions u1, u2 of the problems,

u̇(t)=Au(t)+f (t,ut), t ∈ (0,a], t ≠ τk,
u
(
τk+0

)=Qku(τk)≡u(τk)+Iku(τk), k= 1,2, . . . ,κ,

u(t)+(g(ut1 , . . . ,utp))(t)=φi(t) (i= 1,2), t ∈ [−r ,0],
(3.1)

the following inequality holds:

∥∥u1−u2

∥∥
C([−r ,a],E) ≤MeaML(1+ML)κ

{∥∥φ1−φ2

∥∥
C([−r ,0],E)+K

∥∥u1−u2

∥∥
C([−r ,a],E)

}
.

(3.2)

Additionally, if

K <
e−aML(1+ML)−κ

M
, (3.3)

then

∥∥u1−u2

∥∥
C([−r ,a],E) ≤

MeaML(1+ML)κ
1−KMeaML(1+ML)κ

∥∥φ1−φ2

∥∥
C([−r ,0],E). (3.4)

Proof. Assume that φi ∈ C([−r ,0],E) (i= 1,2) are arbitrary functions and let ui
(i= 1,2) be the mild solutions of problem (3.1). Then

u1(t)−u2(t)= T(t)
[
φ1(0)−φ2(0)

]
−T(t){[g((u1

)
t1 , . . . ,

(
u1
)
tp

)]
(0)−[g((u2

)
t1 , . . . ,

(
u2
)
tp

)]
(0)
}

+
∫ t

0
T(t−s)[f (s,(u1

)
s
)−f (s,(u2

)
s
)]
ds

+
∑

0<τk<t
T
(
t−τk

)[
Iku1

(
τk
)−Iku2

(
τk
)]

(3.5)

for t ∈ [0,a] and

u1(t)−u2(t)=φ1(t)−φ2(t)−
{[
g
((
u2
)
t1 , . . . ,

(
u2
)
tp

)]
(t)−[g((u1

)
t1 , . . . ,

(
u1
)
tp

)]
(t)
}

(3.6)

for t ∈ [−r ,0). From (3.5), (1.2), and using (H2) we get

∥∥u1(ξ)−u2(ξ)
∥∥≤M∥∥φ1−φ2

∥∥
C([−r ,0],E)+MK

∥∥u1−u2

∥∥
C([−r ,a],E)

+ML1

∫ ξ
0

∥∥u1−u2

∥∥
C([−r ,s],E)ds+ML2

∑
0<τk<ξ

∥∥u1
(
τk
)−u2

(
τk
)∥∥
E

≤M∥∥φ1−φ2

∥∥
C([−r ,0],E)+MK

∥∥u1−u2

∥∥
C([−r ,a],E)

+ML1

∫ t
0

∥∥u1−u2

∥∥
C([−r ,s],E)ds+ML2

∑
0<τk<t

∥∥u1
(
τk
)−u2

(
τk
)∥∥
E

(3.7)
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for 0≤ ξ ≤ t ≤ a. With this result, by virtue of (H3) it follows that

sup
ξ∈[0,t]

∥∥u1(ξ)−u2(ξ)
∥∥

≤M∥∥φ1−φ2

∥∥
C([−r ,0],E)+MK

∥∥u1−u2

∥∥
C([−r ,a],E)

+ML1

∫ t
0

∥∥u1−u2

∥∥
C([−r ,s],E)ds+ML2

∑
0<τk<t

∥∥u1
(
τk
)−u2

(
τk
)∥∥
E

(3.8)

for t ∈ [0,a]. At the same time, by (3.6) and (H3) we have

∥∥u1(t)−u2(t)
∥∥≤M∥∥φ1−φ2

∥∥
C([−r ,0],E)+MK

∥∥u1−u2

∥∥
C([−r ,a],E) (3.9)

for t ∈ [−r ,0). Formulas (3.8) and (3.9) imply that
∥∥u1(t)−u2(t)

∥∥≤M∥∥φ1−φ2

∥∥
C([−r ,0],E)+MK

∥∥u1−u2

∥∥
C([−r ,a],E)

+ML
{∫ t

0

∥∥u1−u2

∥∥
C([−r ,s],E)ds+

∑
0<τk<t

∥∥u1
(
τk
)−u2

(
τk
)∥∥
E

}
.

(3.10)

Applying Gronwall’s inequality for discontinuous functions (see [5]), from (3.10) it

follows that

∥∥u1(t)−u2(t)
∥∥
C([−r ,a],E) ≤

{
M
∥∥φ1−φ2

∥∥
C([−r ,0],E)

+MK∥∥u1−u2

∥∥
C([−r ,a],E)

}
eaML(1+ML)κ

(3.11)

and therefore, (3.2) holds. Inequality (3.4) is a consequence of (3.2). This completes

the proof of the theorem.

Remark 3.2. If K = κ = 0, then (3.2) is reduced to the classical inequality

∥∥u1(t)−u2(t)
∥∥
C([−r ,a],E) ≤MeaML

∥∥φ1−φ2

∥∥
C([−r ,0],E), (3.12)

which is characteristic for the continuous dependence of the semilinear functional-

differential evolution Cauchy problem with the classical initial condition.
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