RADIUS OF STRONGLY STARLIKENESS FOR CERTAIN ANALYTIC FUNCTIONS

OH SANG KWON and SHIGEYOSHI OWA

Received 13 April 2001

For analytic functions $f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots$ in the open unit disk \mathbb{U} and a polynomial $Q(z)$ of degree $n>0$, the function $F(z)=f(z)[Q(z)]^{\beta / n}$ is introduced. The object of the present paper is to determine the radius of p-valently strongly starlikeness of order γ for $F(z)$.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let \mathscr{A}_{p} (p is a fixed integer $\geqq 1$) denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disk} \mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Let Ω denote the class of bounded functions $w(z)$ analytic in \mathbb{U} and satisfying the conditions $w(0)=0$ and $|w(z)| \leqq|z|, z \in \mathbb{U}$. We use \mathscr{P} to denote the class of functions $p(z)=1+c_{1} z+$ $c_{2} z^{2}+\cdots$ which are analytic in \mathbb{U} and satisfy $\operatorname{Re} p(z)>0(z \in \mathbb{U})$.

For $0 \leqq \alpha<p$ and $|\lambda|<\pi / 2$, we denote by $\mathscr{S}_{p}^{\lambda}(\alpha)$, the family of functions $g(z) \in \mathscr{A}_{p}$ which satisfy

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)} \prec \frac{p+\left\{2(p-\alpha) e^{-i \lambda} \cos \lambda-p\right\} z}{1-z}, \quad z \in \mathbb{U} \tag{1.2}
\end{equation*}
$$

where \prec means the subordination. From the definition of subordinations, it follows that $g(z) \in \mathscr{A}_{p}$ has the representation

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\frac{p+\left\{2(p-\alpha) e^{-i \lambda} \cos \lambda-p\right\} w(z)}{1-w(z)} \tag{1.3}
\end{equation*}
$$

where $w(z) \in \Omega$. Clearly, $\mathscr{S}_{p}^{\lambda}(\alpha)$ is a subclass of p-valent λ-spiral functions of order α. For $\lambda=0$, we have the class $\mathscr{S}_{p}^{*}(\alpha), 0 \leqq \alpha<p$, of p-valent starlike functions of order α, investigated by Goluzina [5].

A function $f(z) \in \mathscr{A}_{p}$ is said to be p-valently strongly starlike of order $\gamma, 0<\gamma \leqq 1$, if it satisfies

$$
\begin{equation*}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right| \leqq \frac{\pi}{2} \gamma \tag{1.4}
\end{equation*}
$$

Başgöze [1, 2] has obtained sharp inequalities of univalence (starlikeness) for certain polynomials of the form $F(z)=f(z)[Q(z)]^{\beta / n}$, where β is real and $Q(z)$ is a polynomial of degree $n>0$ all of whose zeros are outside or on the unit circle $\{z:|z|=1\}$. Rajasekaran [7] extended Başgöze's results for certain classes of analytic functions of the form $F(z)=f(z)[Q(z)]^{\beta / n}$. Recently, Patel [6] generalized some of the work of Rajasekaran and Başgöze for functions belonging to the class $\varphi_{p}^{\lambda}(\alpha)$. That is, determine the radius of starlikeness for some classes of p-valent analytic functions of the polynomial form $F(z)$.

In the present paper, we extend the results of Patel [6]. Thus, we determine the radius of p-valently strongly starlike of order γ for polynomials of the form $F(z)$ in such problems.
2. Some lemmas. Before proving our next results, we need the following lemmas.

LemmA 2.1 (see Gangadharan [4]). For $|z| \leqq r<1,\left|z_{k}\right|=R>r$,

$$
\begin{equation*}
\left|\frac{z}{z-z_{k}}+\frac{r^{2}}{R^{2}-r^{2}}\right| \leqq \frac{R r}{R^{2}-r^{2}} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 (see Ratti [8]). If $\phi(z)$ is analytic in \mathbb{U} and $|\phi(z)| \leqq 1$ for $z \in \mathbb{U}$, then for $|z|=r<1$,

$$
\begin{equation*}
\left|\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}\right| \leqq \frac{1}{1-r} . \tag{2.2}
\end{equation*}
$$

Lemma 2.3 (see Causey and Merkes [3]). If $p(z)=1+c_{1} z+c_{2} z+\cdots \in \mathscr{P}$, then for $|z|=r<1$,

$$
\begin{equation*}
\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leqq \frac{2 r}{1-r^{2}} . \tag{2.3}
\end{equation*}
$$

This estimate is sharp.
Lemma 2.4 (see Patel [6]). Suppose $g(z) \in \mathscr{\varphi}_{p}^{\lambda}(\alpha)$. Then for $|z|=r<1$,

$$
\begin{equation*}
\left|\frac{z g^{\prime}(z)}{g(z)}-\left(p+\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}\right)\right| \leqq \frac{2(p-\alpha) r \cos \lambda}{1-r^{2}} . \tag{2.4}
\end{equation*}
$$

This result is sharp.
LemmA 2.5 (see Gangadharan [4]). If $R_{a} \leqq \operatorname{Re}(a) \sin ((\pi / 2) \gamma)-\operatorname{Im}(a) \cos ((\pi / 2) \gamma)$, $\operatorname{Im}(a) \geqq 0$, then the disk $|w-a| \leqq R_{a}$ is contained in the sector $|\arg w| \leqq(\pi / 2) \gamma$, $0<\gamma \leqq 1$.
3. Main results. Our first theorem is the following one.

Theorem 3.1. Suppose that

$$
\begin{equation*}
F(z)=f(z)[Q(z)]^{\beta / n}, \tag{3.1}
\end{equation*}
$$

where β is real and $Q(z)$ is a polynomial of degree $n>0$ with no zeros in $|z|<R$,
$R \geqq 1$. If $f(z) \in \mathscr{A}_{p}$ satisfies

$$
\begin{align*}
& \operatorname{Re}\left[\left(\frac{f(z)}{g(z)}\right)^{1 / \delta}\right]>0, \quad 0<\delta \leqq 1, z \in \mathbb{U} \tag{3.2}\\
& \operatorname{Re}\left[\frac{g(z)}{h(z)}\right]>0, \quad z \in \mathbb{U} \tag{3.3}
\end{align*}
$$

for some $g(z) \in \mathscr{A}_{p}$ and $h(z) \in \mathscr{S}_{p}^{\lambda}(\alpha)$, then $F(z)$ is p-valently strongly starlike of order γ in $|z|<R(\gamma)$, where $R(\gamma)$ is the smallest positive root of the equation

$$
\begin{align*}
r^{4}[(p+\beta) & \left.\sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)\right] \\
& +r^{3}[|\beta| R+2(p-\alpha) \cos \lambda+2(\delta+1)] \\
& -r^{2}\left[\left(p\left(1+R^{2}\right)+\beta\right) \sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) R^{2} \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)\right] \tag{3.4}\\
& -r\left[|\beta| R+2(p-\alpha) R^{2} \cos \lambda+2(\delta+1) R^{2}\right]+p R^{2} \sin \left(\frac{\pi}{2} \gamma\right)=0 .
\end{align*}
$$

Proof. We choose a suitable branch of $(f(z) / g(z))^{1 / \delta}$ so that $(f(z) / g(z))^{1 / \delta}$ is analytic in \mathbb{U} and takes the value 1 at $z=0$. Thus from (3.2) and (3.3), we have

$$
\begin{equation*}
F(z)=p_{1}^{\delta}(z) p_{2} h(z)[Q(z)]^{\beta / n} \tag{3.5}
\end{equation*}
$$

where $p_{j}(z) \in \mathscr{P}(j=1,2)$.
Then

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\delta \frac{z p_{1}^{\prime}(z)}{p_{1}(z)}+\frac{z p_{2}^{\prime}(z)}{p_{2}(z)}+\frac{z h^{\prime}(z)}{h(z)}+\frac{\beta}{n} \sum_{k=1}^{n} \frac{z}{z-z_{k}} . \tag{3.6}
\end{equation*}
$$

Since $h(z) \in \mathscr{S}_{p}^{\lambda}(\alpha)$, by Lemma 2.4, we have

$$
\begin{equation*}
\left|\frac{z h^{\prime}(z)}{h(z)}-\left(p+\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}\right)\right| \leqq \frac{2(p-\alpha) r \cos \lambda}{1-r^{2}} \tag{3.7}
\end{equation*}
$$

Using (3.6) and (3.7) with Lemmas 2.1 and 2.3, we get

$$
\begin{align*}
& \left|\frac{z F^{\prime}(z)}{F(z)}-\left(p+\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}-\frac{\beta r^{2}}{R^{2}-r^{2}}\right)\right| \tag{3.8}\\
& \leqq \frac{2\{(p-\alpha) r \cos \lambda+r(\delta+1)\}}{1-r^{2}}+\frac{|\beta| R r}{R^{2}-r^{2}} .
\end{align*}
$$

Using Lemma 2.5, we get that the above disk is contained in the sector $|\arg w|<$ $(\pi / 2) \gamma$ provided the inequality

$$
\begin{align*}
& \frac{2\{(p-\alpha) r \cos \lambda+r(\delta+1)\}}{1-r^{2}}+\frac{|\beta| R r}{R^{2}-r^{2}} \\
& \leqq \tag{3.9}\\
& \leqq\left(p+\frac{2(p-\alpha) r^{2} \cos ^{2} \lambda}{1-r^{2}}-\frac{\beta r^{2}}{R^{2}-r^{2}}\right) \sin \left(\frac{\pi}{2} \gamma\right) \\
& \quad-\frac{2(p-\alpha) r^{2} \sin \lambda \cos \lambda}{1-r^{2}} \cos \left(\frac{\pi}{2} \gamma\right)
\end{align*}
$$

is satisfied. The above inequality is simplified to $T(r) \geqq 0$, where

$$
\begin{align*}
T(r)= & r^{4}\left[\left(p-2(p-\alpha) \cos ^{2} \lambda+\beta\right) \sin \left(\frac{\pi}{2} \gamma\right)+(p-\alpha) \sin 2 \lambda \cos \left(\frac{\pi}{2} \gamma\right)\right] \\
& +r^{3}[|\beta| R+2(p-\alpha) \cos \lambda+2(\delta+1)] \\
& +r^{2}\left[\left(-p R^{2}-p+2(p-\alpha) R^{2} \cos ^{2} \lambda-\beta\right) \sin \left(\frac{\pi}{2} \gamma\right)-(p-\alpha) R^{2} \sin 2 \lambda \cos \left(\frac{\pi}{2} \gamma\right)\right] \\
& -r\left[|\beta| R+2(p-\alpha) R^{2} \cos \lambda+2(\delta+1) R^{2}\right]+p R^{2} \sin \left(\frac{\pi}{2} \gamma\right) . \tag{3.10}
\end{align*}
$$

Since $T(0)>0$ and $T(1)<1$, there exists a real root of $T(r)=0$ in $(0,1)$. Let $R(\gamma)$ be the smallest positive root of $T(r)=0$ in $(0,1)$. Then $F(z)$ is p-valent strongly starlike of order γ in $|z|<R(\gamma)$.

Remark 3.2. For $R=1$ and $\gamma=1$, Theorem 3.1 reduces to a result by Patel [6].
Theorem 3.3. Suppose that $F(z)$ is given by (3.1). If $f(z) \in \mathscr{A}_{p}$ satisfies (3.2) for some $g(z) \in \varphi_{p}^{\lambda}(\alpha)$, then $F(z)$ is p-valently strongly starlike of order γ in $|z|<R(\gamma)$, where $R(\gamma)$ is the smallest positive root of the equation

$$
\begin{align*}
r^{4}[(p+\beta) & \left.\sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)\right] \\
& +r^{3}[|\beta| R+2(p-\alpha) \cos \lambda+2 \delta] \\
& -r^{2}\left[\left(p\left(1+R^{2}\right)+\beta\right) \sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) R^{2} \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)\right] \tag{3.11}\\
& -r\left[|\beta| R+2(p-\alpha) R^{2} \cos \lambda+2 \delta R^{2}\right]+p R^{2} \sin \left(\frac{\pi}{2} \gamma\right)=0 .
\end{align*}
$$

Proof. If $f(z) \in \mathscr{A}_{p}$ satisfies (3.2) for some $g(z) \in \mathscr{S}_{p}^{\lambda}(\alpha)$, then

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\delta \frac{z p^{\prime}(z)}{p(z)}+\frac{z g^{\prime}(z)}{g(z)}+\frac{\beta}{n} \sum_{k=1}^{n} \frac{z}{z-z_{k}} . \tag{3.12}
\end{equation*}
$$

Using Lemma 2.4, we get

$$
\begin{equation*}
\left|\frac{z g^{\prime}(z)}{g(z)}-\left(p+\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}\right)\right| \leqq \frac{2(p-\alpha) r \cos \lambda}{1-r^{2}} . \tag{3.13}
\end{equation*}
$$

By (3.12) and (3.13) with Lemmas 2.1 and 2.3, we have

$$
\begin{align*}
& \left|\frac{z F^{\prime}(z)}{F(z)}-\left(p+\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}-\frac{\beta r^{2}}{R^{2}-r^{2}}\right)\right| \tag{3.14}\\
& \leqq \frac{2\{(p-\alpha) r \cos \lambda+r \delta\}}{1-r^{2}}+\frac{|\beta| R r}{R^{2}-r^{2}} .
\end{align*}
$$

The remaining parts of the proof can be proved by a method similar to the one given in the proof of Theorem 3.1.

With $\lambda=0, \beta=0, \delta=1, R=1$, and $\gamma=1$, Theorem 3.3 gives the following corollary.

Corollary 3.4. Suppose that $f(z)$ is in \mathscr{A}_{p}. If $\operatorname{Re}(f(z) / g(z))>0$ for $z \in \mathbb{U}$ and $g(z) \in \mathscr{C}_{p}^{*}(\alpha)$, then $f(z)$ is p-valently starlike for

$$
\begin{equation*}
|z|<\frac{p}{(p+1-\alpha)+\sqrt{\alpha^{2}-2 \alpha+2 p+1}} . \tag{3.15}
\end{equation*}
$$

Theorem 3.5. Suppose that $F(z)$ is given by (3.1). If $f(z) \in \mathscr{A}_{p}$ satisfies

$$
\begin{gather*}
\left|\left(\frac{f(z)}{g(z)}\right)^{1 / \delta}-1\right|<1, \quad 0<\delta \leqq 1, \quad p \sin \left(\frac{\pi}{2} \gamma\right)>\delta \tag{3.16}\\
\operatorname{Re}\left(\frac{g(z)}{h(z)}\right)>0, \quad z \in \mathbb{U} \tag{3.17}
\end{gather*}
$$

for some $g(z) \in \mathscr{A} \mathscr{p}_{p}$ and $h(z) \in \mathscr{G}_{p}^{\lambda}(\alpha)$, then $F(z)$ is p-valently strongly starlike of order γ in $|z|<R(\gamma)$, where $R(\gamma)$ is the smallest positive root of the equation

$$
\begin{align*}
r^{4}[(p+\beta) & \left.\sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)\right] \\
& +r^{3}[|\beta| R+2(p-\alpha) \cos \lambda+2+\delta] \\
& -r^{2}\left[\left(p\left(1+R^{2}\right)+\beta\right) \sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) R^{2} \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)+\delta\right] \tag{3.18}\\
& -r\left[|\beta| R+2(p-\alpha) R^{2} \cos \lambda+2(\delta+1) R^{2}\right]+p R^{2} \sin \left(\frac{\pi}{2} \gamma\right)-\delta R^{2}=0 .
\end{align*}
$$

Proof. We choose a suitable branch of $(f(z) / g(z))^{1 / \delta}$ so that $(f(z) / g(z))^{1 / \delta}$ is analytic in \mathbb{U} and takes the value 1 at $z=0$. From (3.16), we deduce that

$$
\begin{equation*}
f(z)=g(z)(1+w(z))^{\delta}, \quad w(z) \in \Omega . \tag{3.19}
\end{equation*}
$$

So that

$$
\begin{equation*}
F(z)=p(z) h(z)(1+z \phi(z))^{\delta}[Q(z)]^{\beta / n} \tag{3.20}
\end{equation*}
$$

where $\phi(z)$ is analytic in \mathbb{U} and satisfies $|\phi(z)| \leqq 1$ and $p \in \mathscr{P}$ for $z \in \mathbb{U}$.
We have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\frac{z h^{\prime}(z)}{h(z)}+\frac{z p^{\prime}(z)}{p(z)}+\delta\left(\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}\right)+\frac{\beta}{n} \sum_{k=1}^{n} \frac{z}{z-z_{k}} . \tag{3.21}
\end{equation*}
$$

Using Lemma 2.4 and (3.21), we have

$$
\begin{align*}
\left\lvert\, \frac{z F^{\prime}(z)}{F(z)}-(p+\right. & \left.\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}\right) \mid \tag{3.22}\\
& \leqq \frac{2\{(p-\alpha) r \cos \lambda+r\}+\delta(1+r)}{1-r^{2}}+\frac{|\beta| R r}{R^{2}-r^{2}} .
\end{align*}
$$

So, using Lemma 2.5 and (3.22), the result can be proved by using a method similar to the one given in the proof of Theorem 3.1.

Theorem 3.6. Suppose that $F(z)$ is given by (3.1). If $f(z) \in \mathscr{A}_{p}$ satisfies (3.16) for some $g(z) \in \mathscr{\varphi}_{p}^{\lambda}(\alpha)$, then $F(z)$ is p-valently strongly starlike of order γ in $|z|<R(\gamma)$, where $R(\gamma)$ is the smallest positive root of the equation

$$
\begin{align*}
r^{4}[(p+\beta) & \left.\sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)\right] \\
& +r^{3}[|\beta| R+2(p-\alpha) \cos \lambda+\delta] \\
& -r^{2}\left[\left(p\left(1+R^{2}\right)+\beta\right) \sin \left(\frac{\pi}{2} \gamma\right)+2(p-\alpha) R^{2} \cos \lambda \sin \left(\lambda-\frac{\pi}{2} \gamma\right)+\delta\right] \tag{3.23}\\
& -r\left[|\beta| R+2(p-\alpha) R^{2} \cos \lambda+\delta R^{2}\right]+p R^{2} \sin \left(\frac{\pi}{2} \gamma\right)-\delta R^{2}=0 .
\end{align*}
$$

Proof. We choose a suitable branch of $(f(z) / g(z))^{1 / \delta}$ so that $(f(z) / g(z))^{1 / \delta}$ is analytic in \mathbb{U} and takes the value 1 at $z=0$. Since $f(z) \in \mathscr{A}_{p}$ satisfies (3.16) for some $g(z) \in \varphi_{p}^{\lambda}(\alpha)$, we have

$$
\begin{equation*}
F(z)=g(z)(1+z \phi(z))[Q(z)]^{\beta / n} \tag{3.24}
\end{equation*}
$$

where $\phi(z)$ is analytic in \mathbb{U} and satisfies the condition $|\phi(z)| \leqq 1$ for $z \in \mathbb{U}$. Thus, we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=\frac{z g^{\prime}(z)}{g(z)}+\delta\left(\frac{z \phi^{\prime}(z)+\phi(z)}{1+z \phi(z)}\right)+\frac{\beta}{n} \sum_{k=1}^{n} \frac{z}{z-z_{k}} \tag{3.25}
\end{equation*}
$$

Using Lemma 2.4 and (3.25), we get

$$
\begin{align*}
\left\lvert\, \frac{z F^{\prime}(z)}{F(z)}-(p+\right. & \left.\frac{2(p-\alpha) e^{i \lambda} r^{2} \cos \lambda}{1-r^{2}}\right) \mid \tag{3.26}\\
& \leqq \frac{2(p-\alpha) r \cos \lambda+\delta(1+r)}{1-r^{2}}+\frac{|\beta| R r}{R^{2}-r^{2}} .
\end{align*}
$$

Using Lemma 2.5 and (3.26) and a method similar to the one given in the proof of Theorem 3.1, we complete the proof of the theorem.

Remark 3.7. Some of the results of Patel [6] can be obtained from Theorem 3.6 by taking $R=1$ and $\gamma=1$.

References

[1] T. Başgöze, On the univalence of certain classes of analytic functions, J. London Math. Soc. (2) 1 (1969), 140-144.
[2] __ On the univalence of polynomials, Compositio Math. 22 (1970), 245-252.
[3] W. M. Causey and E. P. Merkes, Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl. 31 (1970), 579-586.
[4] A. Gangadharan, V. Ravichandran, and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301-313.
[5] E. C. Goluzina, On the coefficients of a class of functions, regular in a disk and having an integral representation in it, J. Soviet Math. 2 (1974), 606-617.
[6] J. Patel, Radii of p-valent starlikeness for certain classes of analytic functions, Bull. Calcutta Math. Soc. 85 (1993), no. 5, 427-436.
[7] S. Rajasekaran, A study on extremal problems for certain classes of univalent analytic functions, Ph.D. thesis, Indian Institute of Technology Kanpur, India, 1985.
[8] J. S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107 (1968), 241248.

Oh Sang Kwon: Department of Mathematics, Kyungsung University, Pusan 608-736, Korea

E-mail address: oskwon@star.kyungsung.ac.kr
Shigeyoshi Owa: Department of Mathematics, Kinki University, Higashi-Osaka, OSAKA 577-8502, JAPAN

E-mail address: owa@math.kindai.ac.jp

