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1. Introduction. If S is a subsemigroup of a topological groupGwith interior points

and G is a left quotient group for S, it is easy to prove that every representation of S
by invertible operators on a Banach space � may be extended, in a unique manner, to

the representation of G on � (see Proposition 6.1 below). It is easy to prove that every

finite-dimensional representation of a generating Lie semigroup S can be extended

to the local representation of the Lie group G generated by S, if G is connected and

the tangent wedge of S is a Lie semialgebra [14]. In this paper, using the infinitesimal

method, we study the problem of extendability of a Banach representations π of a

generating Lie semigroup S to the connected Lie group G generated by S when the

tangent wedge of S is a Lie semialgebra. We show that the differential dπ extends to

the representation of the Lie algebra of G if at least one operator π(s0), s0 ∈ intS,

is invertible. In this way, the necessary and sufficient conditions of a local extend-

ability of π have been obtained in terms of the tangent objects. The most convenient

conditions we obtain, correspond to the case of unitary representations. Thus, the

problem of extendability of a representation of S to G has been reduced to the (group

theoretical) problem of extendability of a local representation of G to a global one

(see Corollary 2.2 below). For exponential and solvable G, we give also necessary and

sufficient conditions of global extendability of unitary representations.

The main results of this paper appeared earlier in [12]. One-dimensional and posi-

tive representations of S were studied in detail in [13].

Throughout, unless otherwise stated, G denotes a connected Lie group with unit

e, L(G) its Lie algebra, and exp : L(G)→ G its exponential function. For a closed sub-

semigroup S of G its tangent wedge is defined by

L(S) := {X ∈ L(G) : exp
(
R+X

)⊆ S}. (1.1)

A closed subsemigroup S ⊆ G is called Lie semigroup if S is the closure in G of

〈expL(S)〉, the semigroup, generated by

expL(S) := {expX :X ∈ L(S)}. (1.2)
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After shrinking G we may assume that S is a generating Lie semigroup, that is, L(G)
is the smallest Lie algebra containing L(S) (see [6]).

Definition 1.1. A Lie subsemigroup S ⊆G is quasi-invariant if its tangent wedge

L(S) is a Lie semialgebra, that is, for some Campbell-Hausdorff-neighborhood B in L(G)
(
L(S)∩B)∗(L(S)∩B)⊆ L(S), (1.3)

where ∗ denotes the Campbell-Hausdorff multiplication in L(G)

X∗Y = (X+Y)+ 1
2
[X,Y]+···+Hn(X,Y)+··· . (1.4)

Note that every invariant (with respect to all inner automorphisms of the group

G) generating Lie semigroup S is quasi-invariant [16, Proposition IV.7], [6, Theorem

III.2.15], but the converse is false. As an example, take the subsemigroup S+ ⊂ GL(2,R)
consisting of all matrices with nonnegative entries [8, Example 6.3, page 182].

For a generating Lie semigroup S in a connected Lie group G the interior intS of S
(with respect to G) is a dense ideal of S, and intS ⊆ 〈expL(S)〉 [16, Proposition IV.6],

[6, Theorem V.1.10]. If, in addition, S is quasi-invariant then, according to [6, Theorem

II.2.13], we have

L(G)= L(S)−L(S). (1.5)

The basic reference in Lie semigroups is [6].

We will employ some preliminary results to prove our main theorems.

2. The Gȧrding space. Let π be a representation of S on a Banach space �, that is,

a homomorphism of S into the multiplicative semigroup gl(�) of all bounded (linear)

operators on � which is continuous with respect to the strong operator topology

and satisfies π(e) = I, the identity operator on �. For every X ∈ L(S) the map t �
π(exptX) : R+ → gl(�) is a one-parameter C0-semigroup of operators. We denote by

A(X) or dπ(X) the generator of this semigroup.

Lemma 2.1. The representation π of a Lie semigroup S is uniquely determined

by dπ .

Proof. Letπ andπ1 be two representations of S in a Banach space � and dπ(X)=
dπ1(X) for allX∈L(S). ThenC0-semigroups t�π(exptX) and t�π1(exptX) coincide

(X ∈ L(S)). Therefore, π | 〈expL(S)〉 =π1 | 〈expL(S)〉, and π =π1 by continuity.

Corollary 2.2. Let a Banach representation π of a Lie semigroup S extend to a

local representation T of the Lie group G generated by S. If, in turn, T extends to a

representation π̂ of the whole G, then π̂ is an extension of π to G.

Indeed, set π1 := π̂ | S. Then π1 and π coincide on the set U ∩S, where U is an

e-neighborhood in G, and so dπ1 = dπ .

Let C∞0 (S) be the space of all compactly supported functions in C∞(G) concentrated

in intS. For φ∈ C∞0 (S) and u∈�, set

u(φ) :=
∫
G
φ(x)π(x)udlx (2.1)
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(dlx denotes the left Haar measure in G), and denote by �S the linear subspace of �

generated by {u(φ) :φ∈ C∞0 (S), u∈�}. For the case S =G we get the Gȧrding space

�G (cf. [1, Chapter 11, Section 1]). We denote also by �∞ the set of such u ∈ � that

the function s �π(s)u is in C∞(intS).

Proposition 2.3. Let S be a quasi-invariant generating Lie semigroup in a con-

nected Lie group G and let π be a representation of S on a Banach space �. Then the

following assertions hold:

(i) �S ⊆�∞.

(ii) �S ⊆�(A(X)), the domain of A(X), and �S is A(X)-invariant and π -invariant

(X ∈ L(S)).
(iii) �S is dense in �.

(iv) The map X � A(X) |�S extends uniquely to a linear mapping Â between L(G)
and the linear space of operators on �S .

(v) If π(s0) is invertible for some s0 ∈ intS, then �∞ ⊆ �(A(X)) (X ∈ L(S)), and

the map X �A(X) |�∞ extends uniquely to a linear mapping Â between L(G) and the

linear space of operators �∞ →�.

Proof. (i) Following the proof of Theorem 1 in [1, Chapter 11], let y(t) = exptY
(Y ∈ L(G), t ∈R) be a one-parameter subgroup in G, φ∈ C∞0 (S), s0 ∈ intS. Then (cf.

[1, formula (14)])

t−1(π(s0y(t)
)−π(s0

))
u(φ)=π(s0

)∫
G
t−1(φ(y−1(t)x

)−φ(x))π(x)udlx. (2.2)

Setting in (2.2) t → 0, we get for the derivative of the function s � π(s)u(φ) at s0

along the vector Y

Yπ
(
s0
)
u(φ)=π(s0

)
u
(
Ỹφ

)
, (2.3)

where the function

(
Ỹφ

)
(x) := lim

t→0

φ
(
y(t)−1x

)−φ(x)
t

(2.4)

belongs to C∞0 (S). Indeed, we know from the proof of Theorem 1 in [1, Chapter 11]

that Ỹφ ∈ C∞0 (G). Thus, it is sufficient to prove that the support supp Ỹφ ⊆ intS if

K := suppφ ⊂ intS. Choose U ⊂ G open such that K ⊂ U ⊂ U− ⊂ intS (U− is the

closure of U ). Then there is the neighborhood N of e in G with NK ⊆ U and δ > 0

such that y(t) ∈ N for |t| < δ. Since the support of the function x �φ(y(t)−1x) is

y(t)K ⊆ U for |t| < δ, the support of the function x � t−1(φ(y(t)−1x)−φ(x)) is

contained in U , too. It follows that supp Ỹφ⊆U− ⊂ intS. Now from (2.3) we conclude

that u(φ)∈�∞.

(ii) Suppose that Y ∈ L(S) and t > 0. Then the preceding arguments are true for

all s0 ∈ S. In particular, setting in (2.2) s0 = e and t → 0+ we conclude that u(φ) ∈
�(A(X)) and

A(Y)u(φ)=u(Ỹφ). (2.5)
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Equation (2.5) shows that �S is A(Y)-invariant. The invariance of �S with respect to

π(s) (s ∈ S) follows from the equality

π(s)u(φ)=
∫
G
φ(x)π(sx)udlx =

∫
G
φ
(
s−1x

)
π(x)udlx. (2.6)

(iii) Since e is an adherent point for intS, there is a net of compact subsets K ⊂ intS,

which shrinks to e. By an argument similar to that given in the proof of Theorem 1 in

[1, Chapter 11], �S is dense in �.

(iv) Let X1,X2 ∈ L(S) and u∈�S . Then

A
(
X1+X2

)
u= d

dt
π
(
expt

(
X1+X2

))
u|t=0

= d
dt
π
(
exptX1 exptX2

)|t=0

=A(X1
)
u+A(X2

)
u.

(2.7)

The proof of the equality A(cX1)u= cA(X1)u (c ≥ 0) is similar to the preceding one.

Now let, by definition,

Â
(
X1−X2

)
u :=A(X1

)
u−A(X2

)
u. (2.8)

This definition is correct, Â is linear on L(G) (see (1.5)) and Â | L(S) = A on �S . The

uniqueness of such an extention follows from (1.5), too.

(v) For X ∈ L(S) and s0 ∈ intS the function t � s0 exptX : R+ → intS is differ-

entiable. Therefore, for each u ∈ �∞ and t ≥ 0 the function t � π(s0 exptX)u =
π(s0)π(exptX)u is differentiable, as well. Since π(s0) is invertible, it follows that

the function t � π(exptX)u is differentiable at t = 0 and so u ∈ �(A(X)). The last

assertion follows as in (iv).

3. Analytical vectors. The vector u∈� is called analytic for the representation π
if the map s �π(s)u is analytic on intS. Let �ω or �ω(π) be the space of all analytic

vectors for π . It is obvious that �ω ⊆�∞. Note that �ω can be trivial even for Hilbert

� and isometric π [3, Example 3.1.18].

Proposition 3.1. Let S be a quasi-invariant generating Lie semigroup in a con-

nected Lie group G and let π(s0) be invertible for some s0 ∈ intS. The space �ω is

π -invariant and A(X)-invariant for X ∈ L(S).
Proof. Let x ∈ S. Since the mapping s � sx : intS → intS is analytic, the same is

s � π(sx)u = π(s)π(x)u for u ∈ �ω. Therefore π(x)u ∈ �ω, that is, �ω is π(x)-
invariant.

To prove the second statement, first note that �ω ⊆ �(A(X)) (X ∈ L(S)) by

Proposition 2.3(v). Let X ∈ L(S), u∈�ω, and v :=A(X)u. If s ∈ intS, then

π(s)v =π(s) d
dt
π(exptX)u|t=0 = d

dt
π(s exptX)u|t=0. (3.1)

Since s � π(s exptX)u is analytic on intS, it follows that s � π(s)v is analytic on

intS by Vitali theorem. Indeed,

d
dt
π(s exptX)u|t=0 = lim

h→0

π(s exphX)u−π(s)u
h

. (3.2)
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For sufficiently small h and compact C ⊂ intS we have (s ∈ C)
∥∥∥∥π(s exphX)u−π(s)u

h

∥∥∥∥≤ sup
s∈C

∥∥π(s)∥∥
∥∥∥∥π(exphX)u−u

h

∥∥∥∥≤ const, (3.3)

because

lim
h→0

∥∥∥∥π(exphX)u−u
h

∥∥∥∥= ∥∥A(X)u∥∥<∞. (3.4)

Thus, the family of analytic functions s � h−1(π(exphX)u−π(s)u) (s ∈ intS) is

uniformly bounded for s ∈ C and small h, and all the conditions of the Vitali theorem

are satisfied.

4. The main lemma. Recall that Â denotes the linear continuation from L(S) to

L(G) of the map A : X � (d/dt)π(exptX)|t=0 (the right side is an operator on �∞

whenever at least one operator π(s), s ∈ intS, is invertible).

Lemma 4.1. Let S be a quasi-invariant generating Lie semigroup in a connected Lie

group G and let π be a representation of S on a Banach space � such that the operator

π(s0) is invertible for some s0 ∈ intS. Then Â is a representation of the Lie algebra

L(G) by operators on �S or �ω.

Proof. There exists a star-shaped neighborhood B0 ⊂ L(G) of 0 such that s0 exprX
∈ intS for X ∈ B0 and |r | ≤ 2. Fix vectors u∈�S (or �ω) and X ∈ B0∩L(S). Applying

the Taylor formula

f(1)= f(0)+f ′(0)+ 1
2!
f
′′
(0)+ 1

2!

∫ 1

0
f
′′′
(ξ)(1−ξ)2dξ (4.1)

to the smooth function f(r)=π(s0 exprX)u (|r | ≤ 2), we have

π
(
s0 expX

)
u=π(s0

)
u+ d

dr
π
(
s0 exprX

)
u|r=0+ 1

2
d2

dr 2
π
(
s0 exprX

)
u|r=0

+ 1
2

∫ 1

0

d3

dr 3
π
(
s0 exprX

)
u|r=ξ(1−ξ)2dξ.

(4.2)

Since for all k∈N and r ≥ 0

dk

drk
π
(
s0 exprX

)
u=π(s0

)
π(exprX)

(
A(X)

)ku (4.3)

and π(s0) is invertible, it follows from (4.2) that

π(expX)u=u+A(X)u+ 1
2

(
A(X)

)2u+ 1
2

∫ 1

0
π(expξX)

(
A(X)

)3u(1−ξ)2dξ. (4.4)

Now fixX1,X2∈L(S) and chooseδ>0 such that tX1, tX2, and tX1∗tX2 belong to B0∩B
for |t| < δ, where B is a Campbell-Hausdorff-neighborhood in L(G) and (1.3) holds.

Then tX1∗tX2 ∈ L(S) for t ∈ [0,δ) and the Campbell-Hausdorff formula implies that

tX1∗tX2 = t
(
X1+X2

)+ 1
2
t2[X1,X2

]+t3H3
(
X1,X2

)+··· . (4.5)
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As exp(tX1∗tX2)= exptX1 exptX2, we have for t ∈ [0,δ), u∈�S

π
(
exptX1

)
π
(
exptX2

)
u=π(exp

(
tX1∗tX2

))
u. (4.6)

If we substitute X = tX1∗tX2 (t ∈ [0,δ)) to (4.4), then

π
(
exp

(
tX1∗tX2

))
u=u+A(tX1∗tX2

)
u+ 1

2

(
A
(
tX1∗tX2

))2u

+1
2

∫ 1

0
π
(
expξ

(
tX1∗tX2

))(
A
(
tX1∗tX2

))3u(1−ξ)2dξ.
(4.7)

In view of (4.5) and by the continuity of the linear map X � Â(X)u,

A
(
tX1∗tX2

)
u=t(A(X1

)+A(X2
))
u+1

2
t2Â

([
X1,X2

])
u+t3Â

(
H3
(
X1,X2

))
u+···

=
(
t
(
A
(
X1
)+A(X2

))+ 1
2
t2Â

([
X1,X2

])+t3R1
(
t,X1,X2

))
u.

(4.8)

Thus,
(
A
(
tX1∗tX2

))2u= (t2(A(X1
)+A(X2

))2+t3R2
(
t,X1,X2

))
u,

(
A
(
tX1∗tX2

))3u= t3R3
(
t,X1,X2

)
u,

(4.9)

where the functions t� Rn(t,X1,X2)u (n= 1,2,3) are bounded for t→ 0. From (4.7)

it follows, and since (4.8), (4.9), that for t ∈ [0,δ)

π
(
exp

(
tX1∗tX2

))
u=u+t(A(X1

)+A(X2
))
u+1

2
t2(Â([X1,X2

])+(A(X1
)+A(X2

))2)u

+ 1
2
t3
∫ 1

0
π
(
expξ

(
tX1∗tX2

))
R3
(
t,X1,X2

)
u(1−ξ)2dξ

=u+t(A(X1
)+A(X2

))
u+ 1

2
t2(Â([X1,X2

])

+(A(X1
)+A(X2

))2)u+o(t2),
(4.10)

because ‖π(expξ(tX1∗ tX2))‖ is bounded for t sufficiently small and ξ ∈ [0,1] by

the uniform boundedness principle.

By (4.6) and u ∈ �S , the left-hand side in (4.10) is a smooth function of t. By the

uniqueness of the Taylor polynomial, (4.10) implies

d2

dt2
π
(
exp

(
tX1∗tX2

))
u|t=0 = Â

([
X1,X2

])
u+(A(X1

)+A(X2
))2u. (4.11)

On the other hand, let

F(t)u=π(exptX1
)
π
(
exptX2

)
u, t ≥ 0, u∈�S . (4.12)

Then, for each ∆t > 0

∆F(t)u=π(exptX1
)
π
(
exp∆tX1

)
π
(
exptX2

)
π
(
exp∆tX2

)
u

−π(exptX1
)
π
(
exptX2

)
u

=π(exptX1
)(
π
(
exp∆tX1

)
π
(
exp∆tX2

)
v−v),

(4.13)

where v := π(exptX2)u∈�S (π(exptX) commutes with π(expsX) for all X ∈ L(S),
t,s ≥ 0).
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Therefore,

d
dt
F(t)u= lim

∆t→0
π
(
exptX1

)(
π
(
exp∆tX1

)π(exp∆tX2
)
v−v

∆t
+ π

(
exp∆tX1

)
v−v

∆t

)

=π(exptX1
)(
A
(
X2
)
v+A(X1

)
v
)

=π(exptX1
)
A
(
X1
)
π
(
exptX2

)
u+π(exptX1

)
A
(
X2
)
π
(
exptX2

)
u.

(4.14)

Since π(exptXi) commutes with A(Xi), i= 1,2,

d
dt
F(t)u=A(X1

)
F(t)u+F(t)A(X2

)
u. (4.15)

Because A(X1) is close, it follows that

d2

dt2
F(t)u|t=0 =A

(
X1
)(
A
(
X1
)
u+A(X2

)
u
)+A(X1

)
A
(
X2
)
u+A(X2

)
A
(
X2
)
u

= (A(X1
))2u+2A

(
X1
)
A
(
X2
)
u+(A(X2

))2u.
(4.16)

Now differentiating (4.6) twice at t = 0 we obtain for X1,X2 ∈ L(S) by virtue of (4.11)

(
A
(
X1
))2u+2A

(
X1
)
A
(
X2
)
u+(A(X2

))2u=Â([X1,X2
])
u+(A(X1

)+A(X2
))2u, (4.17)

or

Â
([
X1,X2

])
u= [Â(X1

)
, Â
(
X2
)]
u. (4.18)

Since both sides of the last equality are bilinear, it is valid for all X1,X2 ∈ L(G) by

(1.5). This completes the proof.

Example 4.2. Let S be as in Lemma 4.1 and � a finite-dimensional subspace of

Lp(S) (1≤ p <∞) which is invariant under left translations λ(s)f(x)= f(sx) (s,x ∈
S). Then λ is a left regular representation of S on �. Since t � λ(t expX) (t ≥ 0, X ∈
L(S)) is a one-parameter C0-semigroup on �, the operator λ(expX) is invertible. Thus

λ(s) is invertible for all s ∈ 〈expL(S)〉 ⊇ intS and dλ extends to a representation Â
of L(G) on � by Lemma 4.1. Then the local representation T of G on � with dT = Â
extends λ. The representation T is global for simply connected G.

5. Extension of unitary representations. Our first statement deals with local

extensions.

Theorem 5.1. Let π be a unitary representation on a Hilbert space � of a quasi-

invariant generating Lie semigroup S in a connected Lie group G and let one of the

following conditions holds:

(1) �ω is dense in �;

(2) for some linear independent X1, . . . ,Xd ∈ L(S) (d = dimL(G)) the Nelson

operator

∆=
d∑
j=1

(
A
(
Xj
))2

(5.1)

is essentially selfadjoint on �S .
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Then π extends to a local unitary representation of G on �. Moreover, if S algebraically

generatesG, for some e-neighborhoodU ⊂G the extension ofπ to a local representation

of U is unique.

Proof. (1) First, prove that every vector u∈�ω is analytic for the operator A(X)
if X ∈ L(S) satisfies expX ∈ intS. Indeed, �ω ⊆ �(A(X)) and since the function t �
exptX : R → G is analytic, the function t � π(exptX)u has the same property in

the same ε-neighborhood of the point t = 1. Therefore, u is an analytic vector of the

one-parameter unitary group T1(t) which agrees with π(exptX) for t ≥ 0 and has the

generator A(X) (in the sense of semigroup theory). Standard Cauchy estimates for the

disc {|t−1|< ε} give

∥∥(A(X))nu∥∥= ∥∥T1(1)
(
A(X)

)nu∥∥=
∥∥∥∥ d

n

dtn
T1(t)u|t=1

∥∥∥∥≤ n!M
εn

(5.2)

for some M > 0, and so u is an analytic vector for A(X).
Being the generator of T1(t), operator A(X) is antiselfadjoint and so, it is antisym-

metric on �ω (X ∈ L(S)). We claim that expXj ∈ intS for some linear independent

Xj ∈ L(S), j = 1, . . . ,d. Since L(S) is generating in L(G), zero is in the closure of intL(S)
(with respect to L(G)). Let B1 be a neighborhood of zero in L(G) such that exp|B1 is a

homomorphism on its image. Then exp(B1∩ intL(S)) is a nonvoid open subset of S,

and we may choose linear independent Xj ∈ B1∩ intL(S), j = 1, . . . ,d.

Now if (1) holds, then for the representation Â of the Lie algebra L(G) by oper-

ators on �ω (see Lemma 4.1) all the conditions of the FS3-criterion (cf. [1, Chap-

ter 11, Section 6, Theorem 5]), except the simply connectedness of G, are satisfied.

But the proof of the FS3-criterion in [1] shows that for connected G we get a uni-

tary representation T of a local group W , where W is a neighborhood of unit in G,

and a T -invariant dense linear subspace �∞ ⊆ � such that for all X ∈ L(G) we have

�ω ⊆ �∞ ⊆ �(T(X)) and dT(X) | �∞ = Â(X) | �∞ (the bar denotes the closure of

an operator; see Lemmas 3, 4, and formula (11) therein). Since the one-parameter

C0-semigroup T1(t) = π(exptX), X ∈ L(S), leaves �ω invariant, �ω is an essen-

tial domain for A(X) by [3, Corollary 3.1.7]. Hence, Â(X) = A(X) |�ω = A(X) for

X ∈ L(S), and the definition of �∞ in [1, Chapter 11, Section 6, Lemma 3] entails that

�∞ ⊆�(A(X)). The first assertion follows now from the next proposition.

Proposition 5.2. Let π be a representation on a Banach space � of a quasi-

invariant generating Lie semigroup S in a connected Lie group G.

(i) Let T be a local representation of G on � and let �0 ⊆� be a T -invariant dense

linear subspace such that �1 ⊆�0 ⊆�(T(X))∩�(A(X)) for a some π -invariant dense

linear subspace �1 ⊆� and dT(X) |�0 =A(X) |�0 for all X ∈ L(S). Then T | U∩S =
π |U∩S for some e-neighborhood U ⊆G, and π(s) is invertible for all s ∈ S.

(ii) If S algebraically generatesG, then for some e-neighborhoodU ⊆G the extension

of π to a local representation of U (if such exists) is unique.

Proof. (i) Let T be a representation of a local groupW , whereW is a neighborhood

of e in G. Fix X ∈ L(S) and pick δ > 0 such that exptX ∈W for t ∈R with |t|< δ. The
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map t � T(exptX) is a representation of the additive local group (−δ,δ) and for δ
sufficiently small it extends to the one-parameter group TX on � with the generator

dT(X) (cf. [2, Chapter 3, Section 6, Lemma 1]), and �0 is TX -invariant. Consider also the

C0-semigroup T1(t) = π(exptX), t ∈ R+, with generator A(X). Note that generators

of TX and T1 coincide on �0 and that �0 and �1 are essential domains for dT(X)
and A(X), respectively, by [3, Corollary 3.1.7]. Since �1 ⊆ �0 ⊆ �(A(X)), �0 is an

essential domain for A(X), too. Therefore, dT(X)=A(X) and hence TX(t)= T1(t) for

all t ∈ R+. In particular, T(exptX)= π(exptX) for 0 ≤ t < δ. Let B0 be a star-shaped

neighborhood of zero in L(G) such that expB0 ⊂ W . Then the preceding equality

implies that T(expX) = π(expX) for X ∈ B0∩L(S). But exp(B0∩L(S)) ⊃ U ∩S for

some e-neighborhood U ⊂W , because L(S) is a semialgebra [15, Theorem III.9], and

hence T |U∩S =π |U∩S.

The equality TX(t) = T1(t), t ≥ 0, shows also that π(expX) is invertible for X ∈
L(S). It follows that π(s0) is invertible for s0 ∈ 〈expL(S)〉 ⊇ intS, and so is π(s) =
π(ss0)π(s0)−1 for all s ∈ S (s0 ∈ intS).

(ii) As before, for an arbitrary small e-neighborhoodU inGwe haveU∩S = exp(B∩
L(S)) (B ⊂ L(G) is a neighborhood of zero) by [15, Theorem III.9]. Then the set U ∩
σX algebraically generates the full one-parameter semigroup σX corresponding to

X ∈ L(S). Therefore, the set U∩S algebraically generates the semigroup 〈expL(S)〉 ⊇
intS. Being an ideal in S, intS algebraically generates G, too. Thus U∩S algebraically

generates G and the local representation T is completely determined by its restriction

T |U∩S. This completes the proof of Proposition 5.2.

(2) Let condition (2) of Theorem 5.1 be satisfied. As it was mentioned above, A(X)
is an antiselfadjoint operator and �S is an essential domain for A(X), X ∈ L(S), by

[3, Corollary 3.1.7]. Therefore, operator iA(X) | �S has a selfadjoint closure. Thus

for the representation Â of the Lie algebra L(G) by operators on �S all the condi-

tions of the Nelson criterion (cf. [1, Chapter 11, Section 5, Theorem 2]), excepting the

simply connectedness of G, are satisfied. The proof of this criterion (see especially

Lemma 1 therein) shows that for connected G we get a local unitary representation

T of some neighborhood N of unit in G such that for X ∈ L(G) with expX ∈ N we

have T(expX)= eÂ(X) := TX(1), where TX is a one-parameter unitary group on � with

the generator Â(X) (in the sense of semigroup theory). Choose, as in the proof of

Proposition 5.2, a neighborhood of zero B0 ⊂ L(G) such that expB0 ⊂N and exp(B0∩
L(S)) contains U∩S for some e-neighborhoodU ⊂G. Since Â(X)=A(X) forX ∈ L(S),
TX(t) = T1(t) := π(exptX) for X ∈ L(S), t ≥ 0. Thus for X ∈ B0 ∩ L(S) we have

T(expX)=π(expX) and T |U∩S =π |U∩S. In other words, T is an extension of π
to U . The uniqueness of such an extention follows from Proposition 5.2 immediately.

We call a Lie group G exponential if expL(G)=G.

Theorem 5.3. Let G be a connected exponential and solvable Lie group, S a quasi-

invariant generating Lie subsemigroup of G. A unitary representation π of S on a

Hilbert space � extends to the whole G if and only if condition (2) of Theorem 5.1 and

the following condition (3) hold:
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(3) if X1,2,Y1,2 ∈ L(S) satisfy exp(X1−X2)= exp(Y1−Y2), then

lim
n→∞

(
π
(

exp
1
n
X1

)(
π
(

exp
1
n
X2

))−1)n
= lim
n→∞

(
π
(

exp
1
n
Y1

)(
π
(

exp
1
n
Y2

))−1)n
(5.3)

(the strong operator convergence). Moreover, such an extension is unique.

Proof. The existence of a basis X1, . . . ,Xd ∈ L(S) has been proved above (Theorem

5.1), and the necessity of (2) follows from the Nelson-Stinespring theorem (cf. [1, Chap-

ter 11, Section 2, Theorem 2]).

Next we have

exp
(
X1−X2

)= lim
n→∞

(
exp

1
n
X1

(
exp

1
n
X2

)−1)n
, (5.4)

and the same formula for exp(Y1−Y2). The necessity of (3) follows.

Now let (2) and (3) hold. By Theorem 5.1, there is a local unitary representation T
which extends π to some e-neighborhood N ⊆G. For X ∈ L(G) denote by TX the uni-

tary one-parameter group in � such that TX(t)= T(exptX) for t ∈R with exptX ∈N.

The proof of Theorem 5.1 yields that the antiselfadjoint operator Â(X) is the gener-

ator of TX . We extend T to the full G setting π̂(expX) := TX(1). To prove the correct-

ness of this definition one should show that expX = expY implies TX(1)= TY (1) for

X,Y ∈ L(G). Let X =X1−X2 where X1,X2 ∈ L(S). We claim that A(X1)−A(X2)= Â(X)
and that the Trotter multiplicative formula can be applied to the unitary group TX
(cf. [17, Theorem VIII.31]). Indeed, by definition Â(X) = (A(X1)−A(X2)) | �S . Since

the operator A(X1)−A(X2)⊇ Â(X) is antisymmetric, it has an antisymmetric closure

A(X1)−A(X2)⊇ Â(X), and the hypermaximality property of a selfadjoint operator im-

plies A(X1)−A(X2) = Â(X), an antiselfadjoint operator. Now by the Trotter formula

mentioned above

TX(1)= eA(X1)−A(X2) = lim
n→∞

(
e(1/n)A(X1)e−(1/n)A(X2)

)n

= lim
n→∞

(
π
(

exp
1
n
X1

)(
π
(

exp
1
n
X2

))−1)n
,

(5.5)

so the mapping π̂ is well defined by virtue of (3).

Let G1 be the simply connected Lie group with L(G1) = L(G). Then there exist e-
neighborhoods U ⊆ N and U1 ⊆ G1 and a local Lie group morphism ϕ : U → U1 such

thatϕ and its reciprocalϕ−1 both are analytic. Writeπ1(x) := T(ϕ−1(x)), x ∈U1, and

extend π1 to a (unique) unitary representation π1 of G1 on �. Then for each X ∈ L(G)
and sufficiently large n∈N we have

π̂(expX)= TX(1)=
(
TX
(

1
n

))n
=
(
T
(

exp
1
n
X
))n

=
(
π1

(
ϕ
(

exp
1
n
X
)))n

=π1

((
ϕ
(

exp
1
n
X
))n)

.
(5.6)

Hence, the mapping f(X) := π̂(expX)v is analytic on L(G) for every v in �ω(π1),
which is a π1-invariant dense linear subspace of �, and thus the map (X,Y) �
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π̂(expX)π̂(expY)v is separately analytic on L(G)×L(G) (formula (5.6) shows that

�ω(π1) is π̂(expX)-invariant).

Since G is exponential and solvable, for each x0 ∈G there is an X0 ∈ L(G) such that

x0 = expX0 and exp is regular atX0 [18, Theorem IV.2.44] (see also [4]). So the mapping

exp−1 = log is analytic on the neighborhood U := expB of x0 for some neighborhood B
ofX0 in L(G). Therefore the function x� π̂(x)v = f(logx) (x ∈U) is analytic for v ∈
�ω(π1) too, and hence the map (X,Y)� π̂(expX expY)v is analytic on L(G)×L(G).

Because T is a local representation, the equality

π̂(expX expY)v = π̂(expX)π̂(expY)v (5.7)

holds for all X,Y ∈ L(G) with sufficiently small norms, and v ∈�ω(π1). The separate

analyticity of both sides of (5.7) implies that this formula is valid for all X,Y ∈ L(G),
v ∈�ω(π1). By continuity, (5.7) holds for all v ∈� so π̂ is a unitary representation of

G (the continuity of π̂ on G is a consequence of its continuity on N). The application

of Corollary 2.2 shows that π̂ is an extension of π to G.

Finally, let π ′ be a unitary extension of π to G. Note that �ω(π ′) ⊆�ω(π). Since

for all X1,X2 ∈ L(S), u∈�ω(π ′),

dπ ′
(
X1−X2

)
u= dπ ′(X1

)
u−dπ ′(X2

)
u= dπ(X1

)
u−dπ(X2

)
u (5.8)

and (1.5) hold, π ′ is completely determined by π , which completes the proof.

6. The case of Banach representations. We begin with a very simple case when

G is the left quotient group for S [10, Chapter 1, Section 1.10], that is, S ⊂ G and

G = S−1S.

Proposition 6.1. Let G be a topological group and a group of left quotients for

S, intS �= ∅. The representation π of S on a Banach space � is extendable to a repre-

sentation of G on � if and only if all operators π(s), s ∈ S, are invertible. Moreover,

such an extension is unique.

Proof. To prove the sufficiency, for every x ∈G, x = a−1b (a,b ∈ S), set π̂(x) :=
π(a)−1π(b). Let, in addition, x = c−1d (c,d ∈ S). Then ac−1 = p−1q for some p,q ∈
S. Since pa = qc, π(p)π(a) = π(q)π(c). On the other hand, a−1b = c−1d implies

pb = qd. Therefore, π(p)π(b)=π(q)π(d) or

π(p)π(a)π̂
(
a−1b

)=π(q)π(c)π̂(c−1d
)
. (6.1)

Thus, we proved that π̂(a−1b)= π̂(c−1d) and the definition of π̂ is consistent.

Now let x = a−1b and y = c−1d (a,b,c,d ∈ S) are arbitrary elements of G, and let

bc−1 = r−1s, where r ,s ∈ S. Then xy = (ra)−1sd and we have

π̂(xy)= (π(ra))−1π(sd)=π(a)−1π(r)−1π(s)π(d). (6.2)

Since rb = sc, π(r)−1π(s)=π(b)π(c)−1. Therefore

π̂(xy)=π(a)−1π(b)π(c)−1π(d)= π̂(x)π̂(y). (6.3)

Finally, π̂ is continuous on G, because it is continuous on intS. The uniqueness of

π̂ is obvious.
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Corollary 6.2. Let S be a generating Lie subsemigroup in a connected Lie group

G and let one of the following conditions be satisfied:

(1) G is nilpotent.

(2) L(G) is a compact Lie algebra.

(3) S is invariant in G.

Then every representation of S by invertible operators on a Banach space � extends

uniquely to the representation of G on �.

Indeed, by [7, Theorem 3.46], G is a left quotient group for S.

The general case is more complicated. The following theorem describes the tangent

map of a Banach representation of S which extends to a local representation of G. We

assume below that �(Â(X))=�S .

Theorem 6.3. Let S be a quasi-invariant generating Lie subsemigroup in a con-

nected Lie group G. The representation π of S on a Banach space � is extendable to

a local representation of G on � which leaves �S invariant if and only if the following

conditions hold:

(a) the operators Â(X) are closable for all X ∈ L(G);
(b) there exist constants C and ε > 0 such that for all X ∈ L(G) with the norms

|X|< 1 and |Reλ|> ε the resolvents R(λ,Â(X)) are defined and

∥∥Rn(λ,Â(X))∥∥≤ C(|Reλ|−ε)n , n∈N; (6.4)

(c) �S is invariant with respect to R(λ,Â(X)), X ∈ L(G).
In this case, all operators π(s), s ∈ S, are invertible. Moreover, if S algebraically gen-

erates G, for some e-neighborhood U in G the extension of π to a local representation

of U is unique.

Proof. Let T be a representation of a local Lie group U ⊂G (U is a neighborhood

of unit) which extends π and leaves �S invariant. The fact that T | U∩S = π | U∩S
entails that dT(X)u= Â(X)u (=A(X)u) for all X ∈ L(S), u∈�S . In view of formula

(1.5), the last equality is valid for all X ∈ L(G) by linearity, and conditions (a), (b), (c)

follow from the Krein-Shihvatov theorem [11] in the Kirillov formulation [9, Section

10.5, Theorem 2], for �0 =�S .

Now let π satisfies (a), (b), and (c). We claim that π(s) is invertible for each s ∈ S.

Indeed, since �S is an essential domain for A(X), X ∈ L(S), condition (b) implies that

A(X) is a generator of a C0-group by Gelfand theorem [5]. Thus operators π(exptX),
t ≥ 0, are invertible and the invertibility of π(s) follows as in Proposition 5.2. Accord-

ing to Lemma 4.1, Â is a representation of L(G) by operators on �S . Again, by the

Krein-Shihvatov theorem in the Kirillov formulation for �0 =�S , T 0 = Â, there exists

a representation T of some local Lie group W with L(W) = L(G) such that dT(X) |
�S = Â(X), X ∈ L(G), and �S is T -invariant. After shrinking W we may assume that

W is an e-neighborhood in G and then apply Proposition 5.2 with �0 =�1 =�S .

Corollary 6.4. Let S be a quasi-invariant generating Lie semigroup in a simply

connected Lie group G. The representation π of S on a Banach space � extends to a

representation of the full G on � which leaves �S invariant if and only if conditions (a),

(b), and (c) of Theorem 6.3 hold. Moreover, such an extension is unique.
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Proof. To demonstrate the sufficiency, note that for simply connected G the local

representation T constructed in Theorem 6.3 extends uniquely to the representation

π̂ of the whole G. Since every symmetric e-neighborhood generates G as a semigroup,

the extension π̂ leaves �S invariant, as well. Finally, π̂ | S =π by Lemma 2.1.

The uniqueness of the extension can be proved as in Theorem 5.3. This completes

the proof.

Remark 6.5. The results in Sections 4, 5, and 6 are true with any A(X)- and π -

invariant dense linear subspace �⊆�∞∩�(A(X)), X ∈ L(S), in place of �S .
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