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We prove an almost sure central limit theorem (ASCLT) for strongly mixing sequence of
random variables with a slightly slow mixing rate α(n)=O((log logn)−1−δ). We also show
that ASCLT holds for an associated sequence of random variables without a stationarity
assumption.
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1. Introduction and main results. The almost sure central limit theorem (ASCLT)

has been first introduced independently by Schatte [11] and Brosamler [4]. Since then,

many interesting results have been discovered in this field. For further results on

ASCLT we refer to Berkes [1].

An interesting direction is to prove ASCLT for weakly dependent cases, namely, α,

ρ, φ-mixing, and associated random variables. Among the results in this direction we

refer to Peligrad and Shao [9], Hurelbaatar [5], and Matuła [7].

LetX1,X2, . . . be a sequence of random variables on some probability space (Ω,�,P),
and let σba be the σ -algebra generated by the random variables Xa,Xa+1, . . . ,Xb. For

any two σ -algebras �,�⊂�, define

α(�,�)= sup
{∣∣P(AB)−P(A)P(B)

∣∣; A∈�, B ∈�
}

(1.1)

and put

α(n)= sup
k≥1

α
(
σk1 ,σ

∞
k+n

)
. (1.2)

The sequence X1,X2, . . . is called strongly mixing if α(n)→ 0 as n→∞.

A sequence of random variables X1,X2, . . . is called associated if for every n≥ 1 and

any coordinatewise increasing functions f ,g :Rn→R1,

Cov
(
f
(
X1,X2, . . . ,Xn

)
,g
(
X1,X2, . . . ,Xn

))≥ 0 (1.3)

whenever the covariance is defined.

We set Sn = X1+X2+···+Xn and the notation an� bn means an = O(bn). The

function IA(·) denotes an indicator function on the set A.

Peligrad and Shao [9] proved ASCLT for stationary Gaussian sequences as well as

stationary associated random variables. Their main results are as follows.
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Theorem 1.1 (see [9, Theorem 3]). Let X1,X2, . . . be a stationary α-mixing sequence

with EX1 = 0, EX2
1 <∞, a2

n = ES2
n →∞ as n→∞ and α(n)� log−γ n, for some γ > 0.

Assume that

Sn
an

�
�������������������������������������������→N(0,1) as n �→∞. (1.4)

Then ASCLT holds, that is,

lim
n→∞

1
logn

n∑
k=1

1
k

IA

(
Sk
ak

)
= 1√

2π

∫
A
e−t

2/2dt a.s. (1.5)

for all Borel sets A⊂R with λ(∂A)= 0.

Theorem 1.2 (see [9, Theorem 2]). LetX1,X2, . . . be a stationary associated sequence

with EX1 = 0, and
∑∞
k=1 EX1Xk <∞. Then (1.5) holds.

In this paper, we prove almost sure limit theorems which generalize Theorems 1.1

and 1.2. We also show that under the stationarity assumption, Theorems 1.4 and 1.6

imply Theorems 1.1 and 1.2, respectively. For strong mixing we impose much slower

mixing rate. Our main results are as follows.

Theorem 1.3. Let X1,X2, . . . be a sequence of random variables with zero mean.

Assume that

Var

( n∑
k=1

1
k
f
(
Sk
ak

))
� (log logn)−1−εlog2n (1.6)

for all bounded Lipschitz functions f(x). Then (1.5) holds if and only if

lim
n→∞

1
logn

n∑
k=1

1
k

P
(
Sk
ak
∈A

)
= 1√

2π

∫
A
e−t

2/2dt (1.7)

for all Borel sets A⊂R with λ(∂A)= 0.

Theorem 1.4. LetX1,X2, . . . be a strongly mixing sequence of random variables with

mean zero, and let an > 0 be a numerical sequence such that ES2
n ≤ a2

n and for n≥ k
an
ak

≥
(
n
k

)γ
, γ > 0. (1.8)

Assume that

α(n)� (log logn)−1−δ. (1.9)

Then (1.5) and (1.7) are equivalent.

Berkes, Dehling, and Móri [3] gave an example of independent random variables

such that (1.5) was satisfied, but (1.4) failed. This shows that the class of sequences

satisfying ASCLT is larger than the class of sequences satisfying CLT. Berkes and

Dehling [2] proved the equivalence of (1.5) and (1.7) for independent random variables

not necessarily identically distributed, under mild technical condition on generalized
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moments of the partial sums. This result has been generalized by Hurelbaatar [5]

for strongly mixing and associated random variables. In Theorem 1.4, concerning the

limit distributional behavior of Sn/an, we require more restrictive moment condition

than the one in Hurelbaatar [5] and Berkes and Dehling [2].

Remark 1.5. For stationary sequence of α-mixing random variables, it is known

that an = nL(n), where L(n) is a slowly varying function at infinity, provided the

central limit theorem holds (see [6, page 316]). By the representation theorem of slowly

varying function, L(s)/L(t) 	 (s/t)−ε for any ε > 0 and s ≥ t ≥ n0(ε) and we see

that condition (1.8) is satisfied for the an and γ = 1/2−ε. Therefore, for stationary

sequence of random variables Theorem 1.4 implies Theorem 1.1.

Theorem 1.6. Let X1,X2, . . . be a sequence of associated random variables with

mean zero satisfying

u(n) <∞ (1.10)

for all n≥ 1 and where u(n)= supk≥1

∑
j:|k−j|≥nCov(Xk,Xj).

Assume that (1.8) is satisfied for some γ > 0 and

lim
k

inf VarXk > 0. (1.11)

Then (1.5) and (1.7) are equivalent.

Remark 1.7. In stationary case, the assumption of Theorem 1.2 implies the one of

Theorem 1.6. We can easily verify that

∞∑
k=1

Cov
(
X1,Xk

)
<∞, (1.12)

u(n)= sup
k≥1

∑
j:|k−j|≥n

Cov
(
Xk,Xj

)
<∞ (1.13)

are equivalent for a stationary sequence of associated random variables. It is well

known that if (1.12) holds, then

lim
n→∞

Var
(
Sn
)

n
= EX2

1+2
∞∑
k=1

EX1Xk. (1.14)

Choosing a2
k as Var(Sk), we see that (1.8) is satisfied with γ = 1/2. By Newman and

Wright [8, Theorem 3], (1.4) is true under the assumption of Theorem 1.2 and implies

(1.7). Thus Theorem 1.2 is a stationary case of Theorem 1.6.

2. Proofs

Proof of Theorem 1.3. It suffices to show that (see [2])

µn = 1
logn

n∑
k=1

1
k
ξk �→ 0 a.s. (2.1)

for any bounded Lipschitz function f , where ξk = f(Sk/ak)−Ef(Sk/ak).
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By (1.6) we have

Eµ2
n = E

(
1

logn

n∑
k=1

1
k
ξk

)2

= 1

log2n
E

( n∑
k=1

1
k
ξk

)2

= 1

log2n
Var

( n∑
k=1

1
k
f
(
Sk
ak

))
� (log logn)−1−ε,

(2.2)

and setting nk = exp(exp(kγ)),

Eµ2
nk �

((
log lognk

)−1−ε)� k−γ(1+ε). (2.3)

Hence

∞∑
k=1

Eµ2
nk <∞ (2.4)

for any γ > 1/(1+ε).
By the well-known result that

∞∑
k=1

EXk <∞ implies
∞∑
k=1

Xk <∞ a.s., (2.5)

we have

µnk �→ 0 a.s. (2.6)

It is easy to see that

(
(1+k)ε−kε) �→ 0 as k �→∞ for any ε < 1, (2.7)

and thus

lognk+1

lognk
= e(1+k)γ−kγ �→ 1 as k �→∞. (2.8)

Obviously, for any given n there always exists k such that nk ≤n≤nk+1 and we have

∣∣µn∣∣≤ 1
logn

n∑
k=1

1
k
∣∣ξk∣∣≤ 1

lognk

nk∑
k=1

1
k
∣∣ξk∣∣+ 1

lognk

nk+1∑
k=nk

1
k
∣∣ξk∣∣

� ∣∣µnk∣∣+ 1
lognk

(
lognk+1− lognk

)� ∣∣µnk∣∣+
(

lognk+1

lognk
−1

)
.

(2.9)

It follows that

lim
n �→∞µn = 0 a.s. (2.10)
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Proof of Theorem 1.4. According to Theorem 1.3, it suffices to show that for all

bounded Lipschitz,

Var

(
1

logn

n∑
k=1

1
k
f
(
Sk
ak

))
� (log logn)−1−ε. (2.11)

Here ξk is the same variable as we defined in the proof of Theorem 1.3. For l > 2k,

we have

∣∣E
(
ξkξl

)∣∣=
∣∣∣∣Cov

(
f
(
Sk
ak

)
,f
(
Sl
al

))∣∣∣∣
≤
∣∣∣∣Cov

(
f
(
Sk
ak

)
,f
(
Sl
al

)
−f

(
Sl−S2k

al

))∣∣∣∣
+
∣∣∣∣Cov

(
f
(
Sk
ak

)
,f
(
Sl−S2k

al

))∣∣∣∣.
(2.12)

Since f is bounded, by [10, Theorem 1.1], we get

∣∣∣∣Cov
(
f
(
Sk
ak

)
,f
(
Sl−S2k

al

))∣∣∣∣�α(k), (2.13)

and by Cauchy-Schwarz inequality, Lipschitz property of f , the facts that ES2
n ≤ a2

n,

and by (1.8) we have

∣∣∣∣Cov
(
f
(
Sk
ak

)
,f
(
Sl
al

)
−f

(
Sl−S2k

al

))∣∣∣∣
� E

(∣∣S2k
∣∣

al

)
�
(

E
(
S2k

al

)2
)1/2

� a2k

al
�
(
k
l

)γ
.

(2.14)

Noting that

E

( n∑
k=1

1
k
ξk

)2

≤
n∑
k=1

1
k2

E
∣∣ξk∣∣2+2

∑
1≤k<l≤n

2k≥l

∣∣E
(
ξkξl

)∣∣
kl

+2
∑

1≤k<l≤n
2k<l

∣∣E
(
ξkξl

)∣∣
kl

= T1+T2+T3

(2.15)

and since ξk is bounded, we have the following estimations for the first two terms

T1 �
∞∑
k=1

1
k2
<∞, T2 �

n∑
k=1

2k∑
l=k+1

1
kl
� logn. (2.16)

By (2.12), (2.13), and (2.14) the third term is estimated as

T3 �
∑

1≤k<l≤n
2k<l

1
kl

(
k
l

)γ
+

∑
1≤k<l≤n

2k<l

α(k)
kl

= T31+T32, (2.17)
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and furthermore

T32 �
n∑
l=2

1
l

l−1∑
k=1

α(k)
k

�
n∑
k=1

α(k)
k

n∑
l=k

1
l

�
n∑
k=1

logk
k(log logk)1+δ

� (log logn)−1−δ log2n,

(2.18)

T31 ≤
∑

1≤k<l≤n
2k<l

1
kl

(
k
l

)γ
�

n∑
l=1

1
l1+γ

l∑
k=1

1
k1−γ �

n∑
l=1

1
l
� logn. (2.19)

Now it can be easily shown that (2.15), (2.16), (2.17), (2.18), and (2.19) together give

(1.6) which is equivalent to (2.11).

Proof of Theorem 1.6. The general idea of the proof is similar to the method in

the proof of Theorem 1.4. We will verify (2.11). From (2.15) we see that

Var

( n∑
k=1

1
k
f
(
Sk
ak

))
= E

( n∑
k=1

1
k
ξk

)2

≤
n∑
k=1

1
k2

E
∣∣ξk∣∣2+2

∑
1≤k<l≤n

2k≥l

∣∣E
(
ξkξl

)∣∣
kl

+2
∑

1≤k<l≤n
2k<l

∣∣E
(
ξkξl

)∣∣
kl

= T1+T2+T3,

(2.20)

and moreover,

T3 =
∑

1≤k<l≤n
2k<l

∣∣E
(
ξkξl

)∣∣
kl

=
∑

1≤k<l≤n
2k<l

1
kl

∣∣∣∣Cov
(
f
(
Sk
ak

)
,f
(
Sl
al

))∣∣∣∣

≤
∑

1≤k<l≤n
2k<l

1
kl

∣∣∣∣Cov
(
f
(
Sk
ak

)
,f
(
Sl
al

)
−f

(
Sl−S2k

al

))∣∣∣∣

+
∑

1≤k<l≤n
2k<l

1
kl

∣∣∣∣Cov
(
f
(
Sk
ak

)
,f
(
Sl−S2k

al

))∣∣∣∣
= T31+T32.

(2.21)

For a bounded Lipschitz function f , it is shown, by Peligrad and Shao [9], that

Cov
(
f
(
Sk
ak

)
,f
(
Sl−S2k

al

))
� Cov

(
Sk
ak
,
Sl−S2k

al

)
. (2.22)

Hence

T32 �
∑

1≤k<l≤n
2k<l

1
kl

∣∣∣∣Cov
(
Sk
ak
,
Sl−S2k

al

)∣∣∣∣� ∑
1≤k<l≤n

2k<l

1
kl
ku(k)
akal

. (2.23)

For associated random variables, clearly

VarSn ≥
n∑
k=1

VarX2
k . (2.24)
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By the assumption that ES2
n ≤ a2

n and (1.11), we get

a2
n	

n∑
k=1

VarX2
k	n, (2.25)

therefore,

T32 �
∑

1≤k<l≤n
2k<l

ku(k)
k3/2l3/2

�
n∑
k=1

u(k)
k1/2

n∑
l=k

1
l3/2

�
n∑
k=1

logk
k(log logk)1+δ

� (log logn)−1−δ log2n.

(2.26)

By (2.14) and (2.19)

T31 � logn, (2.27)

and (2.16), (2.26), and (2.27) follow (2.11).
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