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Let U and V be, respectively, an infinite- and a finite-dimensional complex Banach algebras,
and letU⊗pV be their projective tensor product. We prove that (i) every compact Hermitian
operator T1 on U gives rise to a compact Hermitian operator T on U ⊗p V having the
properties that ‖T1‖ = ‖T‖ and sp(T1) = sp(T); (ii) if U and V are separable and U has
Hermitian approximation property (HAP), then U ⊗p V is also separable and has HAP;
(iii) every compact analytic semigroup (CAS) onU induces the existence of a CAS onU⊗pV
having some nice properties. In addition, the converse of the above results are discussed
and some open problems are posed.
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1. Introduction. We first introduce the terminologies which are initially needed for

our main purpose.

1.1. The projective tensor norm ‖ ·‖p is defined on the algebraic tensor product

U⊗V of two complex Banach algebras U and V by

‖a‖p = inf




n∑
i=1

∥∥ui∥∥∥∥vi∥∥ : a=
n∑
i=1

ui⊗vi

, (1.1)

where the infimum is taken over all (finite) representations of a∈U⊗V . The projective

tensor product U⊗pV is the completion of U⊗V with this norm. Furthermore, a norm

‖·‖π onU⊗V is said to be a cross-norm if ‖u⊗v‖π = ‖u‖‖v‖. (For detailed discussion

of various tensor products, see [1, 3, 6, 7].)

1.2. A state on a unital Banach algebra U with the unit e is a continuous linear

functional f such that ‖f‖ = f(e)= 1, and an element u in U is Hermitian if and only

if its numerical range, that is, N(u) = {f(u) : f is a state on U}, is contained in the

real line. Equivalently, u is Hermitian if and only if limα→0+(1/α)[‖e+iαu‖−1]= 0. If

an operator T on U is such that it is a Hermitian as an element of the operator algebra,

then T is called a Hermitian operator on U .

1.3. A linear transformation T mapping a normed linear space X into a normed lin-

ear space Y is said to be compact if, given any sequence {xn} in X such that {‖xn‖} is

bounded, the sequence {Txn} has a convergent subsequence. If T is both compact and

Hermitian, it is then termed as a compact Hermitian operator. A compact Hermitian

operator enjoys many powerful technical results (see [4]).
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Throughout this paper, unless stated specifically,U denotes an infinite-dimensional

complex Banach algebra with its dual U∗, V is a finite-dimensional complex Banach

algebra with dimV = k, {e1,e2, . . . ,ek} a standardized basis for V with ‖ej‖ = 1, for all

j = 1,2, . . . ,k and U⊗p V their projective tensor product. Our primary aim is to study

how a compact Hermitian operator on U , the Hermitian approximation property in

U and a compact analytic semigroup on U gives rise to the significant existence of

those on U ⊗p V . The converse route from U ⊗p V to U with these properties is also

investigated with some fruitful outcomes.

2. The main results. We first prove a simple but illuminating lemma.

Lemma 2.1. Every element a of U⊗p V can be expressed in the form
∑k
j=1wj⊗ej .

Proof. We know that U⊗p V is a Banach algebra consisting of all elements of the

form

a=
∞∑
i=1

ui⊗vi, where
∞∑
i=1

∥∥ui∥∥∥∥vi∥∥<∞, (2.1)

(see [5]). We can choose vi such that ‖vi‖ = 1 for all i. If ‖vi‖ �= 1, put v′i = vi/‖vi‖
and replace vi by ‖vi‖v′i and adjoin ‖vi‖ to ui. Then vi =

∑k
j=1αijej , where αij ’s

are scalars.

Now

an =
n∑
i=1

ui⊗vi =
n∑
i=1

ui⊗
k∑
j=1

αijej

=
k∑
j=1


 n∑
i=1

αijui


⊗ej =

k∑
j=1

wj,n⊗ej, where wj,n =
n∑
i=1

αijui ∈U.
(2.2)

If v = ∑k
j=1βjej is an arbitrary element of V , then the map φ : V → �∞k , defined

by φ(v) = (β1,β2, . . . ,βk), is a topological isomorphism. Hence there is a positive

constant M such that ‖φ(v)‖ ≤M‖v‖, for all v ∈ V . Substituting vi in v , ‖φ(vi)‖ ≤
M‖vi‖ =M , for all i. This gives

Max
1≤j≤k

{∣∣αij∣∣}≤M. (2.3)

Also,
n∑
i=1

∣∣αij∣∣∥∥ui∥∥≤M
n∑
i=1

∥∥ui∥∥≤M
∞∑
i=1

∥∥ui∥∥<∞. (2.4)

This shows that the partial sums of the series
∑∞
i=1αijui are absolutely uniformly

bounded and hence the series
∑∞
i=1αijui is absolutely summable. Consequently,∑∞

i=1αijui is summable to an element, say wj in U . Thus, limn→∞wj,n = wj and so

a= limn→∞an =
∑k
j=1wj⊗ej .

Next, our first key result is the following.

Theorem 2.2. Every compact Hermitian operator T1 on U gives rise to a compact

Hermitian operator T on U⊗p V having the properties that ‖T1‖ = ‖T‖ and sp(T1) =
sp(T).
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Proof. We prove the result in different steps.

Step 1. One can define a map T :U⊗p V →U⊗p V by the rule

T
(∑

i
ui⊗vi

)
=
∑
i

(
T1ui

)⊗vi ∀a=
∑
i
ui⊗vi ∈U⊗p V. (2.5)

It is easy to show that the map is well defined. Moreover, the linearity of T follows

immediately from its definition.

Next we aim at proving the bound of T . For any arbitrary element a ∈ U⊗p V and

ε > 0, the definition of the projective norm provides a finite representation
∑n
i=1ui⊗vi

such that

‖a‖p+ε >
n∑
i=1

∥∥ui∥∥∥∥vi∥∥. (2.6)

For this representation of a we obtain

‖Ta‖p =
∥∥∥∥∥
n∑
i=1

(
T1ui

)⊗vi
∥∥∥∥∥
p
≤ ∥∥T1

∥∥ n∑
i=1

∥∥ui∥∥∥∥vi∥∥< ∥∥T1

∥∥(‖a‖p+ε). (2.7)

Since ε is arbitrary, it follows that ‖Ta‖p ≤ ‖T1‖‖a‖p for each a∈U⊗p V .

Consequently, T is bounded. Furthermore, the compactness of T can be proved

without much difficulty.

Step 2. Our next attempt is to show that T is Hermitian. T1 is given to be Hermitian

and therefore limα→0+(1/α){‖I1+iαT1‖−1} = 0, where α is real and I1 is the identity

map on U . Let I be the identity map on U⊗p V , ε > 0, and let
∑n
i=1ui⊗vi be a finite

representation of a such that ‖a‖p+ε >
∑n
i=1‖ui‖‖vi‖. Then we can obtain

∥∥(I+iαT)a∥∥p ≤ ∥∥I1+iαT1

∥∥‖a‖p ∀a∈U⊗p V. (2.8)

This gives ‖(I+iαT)‖ ≤ ‖I1+iαT1‖.
On the other hand, let u ∈ U with ‖u‖ = 1. Choose v ∈ V such that ‖v‖ = 1. Then

‖u⊗v‖p = 1.

Now,

∥∥(I+iαT)∥∥= sup
{∥∥(I+iαT)a‖p : ‖a‖p = 1

}
≥ ∥∥(I+iαT)(u⊗v)∥∥p
= ∥∥u⊗v+(iαT1u

)⊗v∥∥p
= ∥∥[(I1+iαT1

)
u
]⊗v∥∥p

= ∥∥(I1+iαT1
)
u
∥∥‖v‖

= ∥∥(I1+iαT1
)
u
∥∥.

(2.9)

Thus, ‖I+iαT‖ ≥ ‖(I1+iαT1)u‖, for all u ∈ U with ‖u‖ = 1. This yields ‖I+iαT‖ ≥
‖I1+iαT1‖ and so ‖I+iαT‖ = ‖I1+iαT1‖.

Therefore, limα→0+((‖I + iαT‖ − 1)/α) = limα→0+((‖I1 + iαT1‖ − 1)/α) = 0 and

hence T is Hermitian.
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Step 3. From Step 1 we can obtain that ‖Ta‖p ≤ ‖T1‖‖a‖p , for each a∈U⊗p V .

This implies that ‖T‖ ≤ ‖T1‖. The converse inequality ‖T1‖ ≤ ‖T‖ can also be estab-

lished without much difficulty. This establishes that ‖T‖ = ‖T1‖.
Step 4. We now concentrate on the result sp(T1)= sp(T).
Let

λ1 ∈ sp
(
T1
)
�⇒ T1−λ1I1 is singular

�⇒∃ a nonzero vector u∈U such that
(
T1−λ1I1

)
u= 0.

(2.10)

Let v ∈ V be a vector with v �= 0. Then u⊗v ∈U⊗p V with u⊗v �= 0.

Now, (
T −λ1I

)
(u⊗v)= T(u⊗v)−λ1I(u⊗v)

= (
T1u

)⊗v−(λ1u
)⊗v

= (
T1−λ1I1

)
u⊗v = 0.

(2.11)

Consequently, λ1 ∈ sp(T) and thus sp(T1)⊆ sp(T). On the other hand, let λ∈ sp(T).
Then there exists a nonzero vector a=∑k

j=1uj⊗ej ∈U⊗p V , such that

(T −λI)a= 0 �⇒ T

 k∑
j=1

uj⊗ej

−λ k∑

j=1

uj⊗ej = 0

�⇒
k∑
j=1

(
T1uj

)⊗ej−
k∑
j=1

(
λuj

)⊗ej = 0

�⇒
k∑
j=1

(
T1−λI1

)
uj⊗ej = 0

�⇒ (
T1−λI1

)
uj = 0 ∀j = 1,2, . . . ,k.

(2.12)

Since u �= 0, there exists at least one j such that uj �= 0. Hence, λ is an eigenvalue

of T1. So, sp(T)⊆ sp(T1). Ultimately we have sp(T)= sp(T1).

Remark 2.3. (i) If both U and V are infinite-dimensional Banach algebras, then the

compactness of T1 may not imply that of T . For example, choose a sequence {vn}
in V with ‖vn‖ = 1 so that {vn} has no convergent subsequence. (To wit, let v = 12,

vn = en, where en is a sequence with nth place equal to 1 and 0 elsewhere. Then {en}
cannot have a convergent subsequence.)

Let u ∈ U with ‖u‖ = 1. Then {u⊗vn} is a bounded sequence in U ⊗p V . Now,

T(u⊗vn)= T1u⊗vn and

∥∥T(u⊗vn)−T(u⊗vm)∥∥p = ∥∥T1u⊗vn−T1u⊗vm
∥∥
p =

∥∥T1u
∥∥∥∥vn−vm∥∥. (2.13)

Equation (2.13) shows that {T(u⊗vn)} has a convergent subsequence only if the se-

quence {vn} has a convergent subsequence. This ascertains that T cannot be compact.

So, we are forced to consider V to be finite dimensional.

(ii) Although sp(T) is, in general, a larger set than sp(T1), the result sp(T)= sp(T1),
indicates that many eigenvalues of T repeat the same eigenvalue. For the sake of

completeness, we illustrate the situation with an example.
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Let � be the Banach algebra of 2×2 real square matrices with ‖A‖ =max{|ui| : i=
1,2,3,4}, where

A=
[
u1 u2

u3 u4

]
∈�. (2.14)

Let U = V =�. Put

e1 =
[

1 0

0 0

]
, e2 =

[
0 1

0 0

]
, e3 =

[
0 0

1 0

]
, e4 =

[
0 0

0 1

]
. (2.15)

Then β= {e1,e2,e3,e4} is a basis of �.

Define a map T1 : �→� by

T1A=




4∑
i=1

αiui
4∑
i=1

βiui

4∑
i=1

γiui
4∑
i=1

δiui



. (2.16)

Then it is evident that T1 is a linear operator on � and the matrix representation of

T1 with respect to the basis β is

[
T1
]
β =



α1 α2 α3 α4

β1 β2 β3 β4

γ1 γ2 γ3 γ4

δ1 δ2 δ3 δ4


 . (2.17)

Next, {ei⊗ej : i,j = 1,2,3,4} is a basis for �⊗p�. If we define an operator T : �⊗p�→
�⊗p � by T(

∑
i ui ⊗vi) =

∑
i(T1ui)⊗vi, then the matrix representation of T is a

16×16 square matrix, that is, exhibited below:




a1 0 0 0 a2 0 0 0 a3 0 0 0 a4 0 0 0

0 a1 0 0 0 a2 0 0 0 a3 0 0 0 a4 0 0

0 0 a1 0 0 0 a2 0 0 0 a3 0 0 0 a4 0

0 0 0 a1 0 0 0 a2 0 0 0 a3 0 0 0 a4

b1 0 0 0 b2 0 0 0 b3 0 0 0 b4 0 0 0

0 b1 0 0 0 b2 0 0 0 b3 0 0 0 b4 0 0

0 0 b1 0 0 0 b2 0 0 0 b3 0 0 0 b4 0

0 0 0 b1 0 0 0 b2 0 0 0 b3 0 0 0 b4

c1 0 0 0 c2 0 0 0 c3 0 0 0 c4 0 0 0

0 c1 0 0 0 c2 0 0 0 c3 0 0 0 c4 0 0

0 0 c1 0 0 0 c2 0 0 0 c3 0 0 0 c4 0

0 0 0 c1 0 0 0 c2 0 0 0 c3 0 0 0 c4

d1 0 0 0 d2 0 0 0 d3 0 0 0 d4 0 0 0

0 d1 0 0 0 d2 0 0 0 d3 0 0 0 d4 0 0

0 0 d1 0 0 0 d2 0 0 0 d3 0 0 0 d4 0

0 0 0 d1 0 0 0 d2 0 0 0 d3 0 0 0 d4




.

(2.18)
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For the matrix representation of T1 and T , we found that if T1 is a Hermitian oper-

ator, that is, T1 has a diagonal matrix representation, then so is T . Moreover, putting

different values of αi’s, βi’s, γi’s, and δ1’s, we can see that T1 and T have the same

eigenvalues. For instance, if we substitute

α1 = 1, α2 =−1, α3 = 2, α4 =−2;

β1 =−1, β2 = 2, β3 = 3, β4 =−3;

γ1 = 2, γ2 = 3, γ3 = 3, γ4 = 1;

δ1 =−2, δ2 =−3, δ3 = 1, δ4 = 4;

(2.19)

then the eigenvalues of T1 are 4.456658, 6.930083, 2.234990, and −3.621735 (correct

up to six decimal places). Then the eigenvalues of T are also the same each repeating

four times (verified by computer).

To show some applications of Theorem 2.2, we want to concentrate on the study of

the Hermitian approximation property and compact analytic semigroups on U ⊗p V .

We first recall some definitions.

(I) A Banach space X is said to have the Hermitian approximation property (HAP),
if for each compact subset C of X and every ε > 0, there is a compact Hermitian

operator H on X such that ‖Hx−x‖< ε for every x ∈ C , and ‖H‖ ≤ 1.

To wit, the spaces 12, c0, and so forth have the HAP.

If X is separable, HAP is equivalent to the existence of a sequence {hm} with

‖hm‖ ≤ 1, for every m∈N of compact Hermitian operators on X such that

∥∥hmx−x∥∥ �→ 0 as m �→∞ ∀x ∈X. (2.20)

(II) Let Sα = {z ∈ C : Re(z) > 0 and |Arg(z)| < α} be a sector in C, where α lies

in (0,π/2]. An analytic semigroup Tz on X is a family of bounded linear operators

Tz :X →X defined for z ∈ Sα, where α is fixed, satisfying the following conditions:

(i) Tz1Tz2 = Tz1+z2 for all z1,z2 in Sα;

(ii) Tz is an analytic-valued function of z ∈ Sα;

(iii) if x ∈X and ε > 0, then limz→0Tzx = x provided z remains within Sα−ε.
We define the generator Z of Tz by Zx = limt↑0 t−1(T tx − x) where t > 0 and

Dom(Z) is the set of x for which the limit exists. If all Tz are compact operators,

then we call it a compact analytic semigroup on X. In the following, C+ denotes the

right-hand half plane of the complex plane, KL(X) the algebra of compact operators on

X and “−” the closure of a set. As a first shot, a little but interesting lemma is set forth.

Lemma 2.4. If U and V are arbitrary separable Banach algebras, then U ⊗p V is

also separable.

Proof. The proof is straightforward.

The principal theorem in this section is the following.

Theorem 2.5. If U and V are separable Banach algebras, then the following results

are true:

(i) if U has the HAP, then U⊗p V has the HAP,
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(ii) if there is a compact analytic semigroup

z �→ Tz1 : C+ �→ KL(U) (2.21)

such that (
Tz1U

)− =U, ∥∥Tz1 ∥∥≤ 1 ∀z ∈ C+, (2.22)

then there exists a compact analytic semigroup

z �→ Tz : C+ �→ KL
(
U⊗p V

)
(2.23)

having the same kind of properties, viz,

(
Tz
(
U⊗p V

))− =U⊗p V, ∥∥Tz∥∥≤ 1 ∀z ∈ C+. (2.24)

Proof. (i) Let U have the Hermitian approximation property. Then there exists a

sequence {T 1
m} with ‖T 1

m‖ ≤ 1 for all m ∈ N of a compact Hermitian operators on U
such that ‖T 1

mu−u‖→ 0 for all u∈U . Then as usual for every m∈N, define

Tm :U⊗p V �→U⊗p V by Tm

(∑
i
ui⊗vi

)
=
∑
i

(
T 1
mui

)⊗vi. (2.25)

Then by Theorem 2.2, Tm is a compact Hermitian operator on U⊗p V such that
∥∥Tm∥∥= ∥∥T 1

m
∥∥≤ 1 ∀m∈N. (2.26)

Further,∥∥∥∥∥Tm
(∑

i
ui⊗vi

)
−
∑
i

(
ui⊗vi

)∥∥∥∥∥
p
=
∥∥∥∥∥
∑
i

(
T 1
mui

)⊗vi−∑
i
ui⊗vi

∥∥∥∥∥
p

= ∥∥(T 1
mui−ui

)⊗vi∥∥p
≤
∑
i

∥∥T 1
mui−ui

∥∥∥∥vi∥∥
�→ 0 as m �→∞,

(2.27)

(we can choose ‖vi‖ = 1, for all i as in Lemma 2.1). Since by Lemma 2.4, U ⊗p V is

separable, U⊗p V has the HAP.

(ii) For each z ∈ C+, define

Tz
(∑

i
ui⊗vi

)
=
∑
i

(
Tz1ui

)⊗vi. (2.28)

We first show that Tz is an analytic semigroup.

(1) Let z1,z2 ∈ C+. Then

(
Tz1Tz2

)
a= Tz1

(∑
i

(
Tz2

1 ui
)⊗vi

)
=
∑
i
T z1

1

(
Tz2

1 ui
)⊗vi

=
∑
i
T z1+z2

1 ui⊗vi
(
because T1 is an analytic semigroup

)
= Tz1+z2(a).

(2.29)

So, Tz1Tz2 = Tz1+z2 .
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(2) Let a=∑
i ui⊗vi ∈U⊗p V .

Since Tz1 is analytic,

lim
h→0

Tz+h1 ui−Tz1ui
h

exists for every ui (w.r.t. the norm on U )

�⇒ lim
h→0

(
Tz+h1 −Tz1

h

)
ui⊗vi exists for every pair ui ∈U, vi ∈ V

(
w.r.t. the norm on U⊗p V

)

�⇒
∑
i

[
lim
h→0

(
Tz+h1 −Tz1

h

)]
ui⊗vi exists

�⇒ lim
h→0

(
Tz+h−Tz

h

)
a exists.

(2.30)

So, Tz is an analytic semigroup of z ∈ C+.

Also,

lim
z→0

Tza= lim
z→0

∑
i

(
Tz1ui

)⊗vi =∑
i

(
lim
z→0

Tz1ui
)
⊗vi

=
∑
i

(
ui⊗vi

)
because Tz1 is analytic

= a.

(2.31)

Consequently, Tz is an analytic semigroup. By Theorem 2.2, the compactness of Tz1
implies that of Tz. To show that (Tz(U ⊗p V))− = U ⊗p V , let a = ∑k

j=1uj ⊗ ej by

any element of U ⊗p V and ε >0. (Tz1U)− =U provides an element u′j ∈U such that

‖Tz1u′j−uj‖<ε/k.

Let a′ =∑k
j=1u

′
j⊗ej . Then

∥∥Tza′ −a∥∥p =
∥∥∥∥∥∥

k∑
j=1

T1u′j⊗ej−
k∑
j=1

T1uj⊗ej
∥∥∥∥∥∥
p

≤
k∑
j=1

∥∥T1u′j−uj
∥∥∥∥ej∥∥

< ε.

(2.32)

This guarantees that (Tz(U ⊗p V))− = U ⊗p V , for all z ∈ C+. Further, ‖Tz1 ‖ = ‖Tz‖
ensures that ‖Tz‖ ≤ 1, for all z ∈ C+.

Our next goal is to study the orthogonality of the null space of T with its range.

We again recall some definitions. Let X be a normed linear space and x,y ∈ X. If

‖x−λy‖ ≥ ‖λy‖ for all λ ∈ C, then x is said to be orthogonal to y . Let M and N be

two subspaces of X. If ‖m+n‖ ≥ ‖n‖ for all m∈M and for all n∈N, then M is said

to be orthogonal to N, and then we write M⊥N (for details, see [2]).

Theorem 2.6. (i) If N1 and R1 are the null space and the range of T1, then N =
N1⊗V and R = R1⊗V are the respective null space N and the range R of T .
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(ii) If N1⊥R1, then N⊥R, provided the basis {ej} is chosen in such a way that

‖a‖ =
∥∥∥∥∥∥

k∑
j=1

uj⊗ej
∥∥∥∥∥∥=

k∑
j=1

∥∥uj∥∥ ∀a∈U⊗p V. (2.33)

Proof. It is not so hard to establish the results.

The converse problems. The main objective here is to investigate the possibility

of studying the converse of the above results. To be precise, for a given compact

Hermitian operator T on U⊗pV , can we obtain a compact Hermitian operator T1 on U
such that ‖T‖ = ‖T1‖ and sp(T) = sp(T1)? Some possibilities are highlighted below.

We first state a lemma whose proof is straightforward, and hence omitted.

Lemma 2.7. For each j (j = 1,2, . . . ,k), let Tj be a map from U⊗p V into U defined

by Tj(a) = uj for every element a =∑k
j=1uj⊗ej in U⊗p V . Then Tj ’s are continuous

linear transformation.

Theorem 2.8. Every compact Hermitian bounded operator T on U⊗p V gives rise

to k2 number of linear operators T i,j (i,j = 1,2, . . . ,k) on U such that

(i) T i,j is compact for all i,j.
(ii) If T i,j = 0 for i �= j, then T i,j is Hermitian, ‖T i,j‖ ≤ ‖T‖ for all j = 1,2, . . . ,k and⋃k

j=1 sp(T j,j)= sp(T).

Proof. Let T be a compact Hermitian operator on U ⊗p V . For fixed i,j (i,j =
1,2, . . . ,k), we define an operator T i,j as follows.

Letu be an arbitrary element of U and let T(u⊗ei)=
∑k
�=1u�⊗e�. Then T i,j :U →U

is a map defined by T i,j(u)=uj . Since the expression
∑k
�=1u�⊗e� for every element

a∈U⊗p V is unique, T i,j is well defined.

(1) The linearity of T i,j is obvious.

(2) We wish to show that T i,j is bounded.

Now, for each u ∈ U , T(u⊗ei) =
∑k
�=1T i,�(u)⊗e�. For a fixed j (j = 1,2,3, . . . ,k),

we define a map fj by fj : U⊗p V → U and fj(a) = uj , where a =∑k
�=1u�⊗e�. Then

fj is a bounded linear operator by Lemma 2.7.

So, ∥∥T i,ju∥∥= ∥∥fj(T(u⊗ei))∥∥
≤ ∥∥fj∥∥∥∥T(u⊗ei)∥∥
≤ ∥∥fj∥∥‖T‖∥∥u⊗ei∥∥p
=K‖u‖, where K = ∥∥fj∥∥‖T‖.

(2.34)

Hence, T i,j is bounded.

(i) Next, our purpose is to prove the compactness of T i,j . Let {un} be a sequence

in U with ‖un‖ ≤ 1, for all n. Then for a fixed i (i= 1,2, . . . ,k),
∥∥un⊗ei∥∥p = ∥∥un∥∥∥∥ei∥∥= ∥∥un∥∥≤ 1 ∀n. (2.35)

Hence for a fixed i, {un ⊗ ei}∞n=1 is a bounded sequence in U ⊗p V . The compact-

ness of T yields that {T(un⊗ei)} has a convergent subsequence, say {T(unm ⊗ei)}
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converging to

x =
k∑
�=1

x�⊗e� in U⊗p V. (2.36)

Now,

lim
m→∞

∥∥∥∥∥∥T
(
unm⊗ei

)− k∑
�=1

x�⊗e�
∥∥∥∥∥∥
p

= 0

�⇒ lim
m→∞

∥∥∥∥∥∥
k∑
�=1

(
T i,�unm

)
−

k∑
�=1

x�⊗e�
∥∥∥∥∥∥
p

= 0

�⇒
∥∥∥∥∥∥

k∑
�=1

[(
lim
m→∞T

i,�unm−x�
)
⊗e�

]∥∥∥∥∥∥
p

= 0 because T i,� are continuous

�⇒
k∑
�=1

lim
m→∞

(
T i,�unm−x�

)
⊗e� = 0.

(2.37)

Hence limm→∞T i,�unm = x�, for all � = 1,2, . . . ,k. So, for � = j, we have that T i,j is

compact.

(ii) Now suppose that T i,j = 0 for i �= j.
(I) We want to show that Tj,j is Hermitian for each j = 1,2, . . . ,k.

T is Hermitian and so ‖eiαT‖ = 1, for all α ∈ R. Let u ∈ U with ‖u‖ = 1. Then for

fixed j, ‖u⊗ej‖p = 1.

Now,

1= ∥∥eiαT∥∥= sup
{∥∥eiαTa∥∥p : ‖a‖p = 1

}
≥ ∥∥eiαT (u⊗ej)∥∥p

=
∥∥∥∥∥
[

1+iαT + (iαT)
2

2!
+ (iαT)

3

3!
+···

](
u⊗ej

)∥∥∥∥∥
p

=
∥∥∥∥∥
[
u+iαT i,ju+

(
iαT i,j

)2

2!
u+

(
iαTj,j

)3

3!
u+···

]
⊗ej

∥∥∥∥∥
p

=
∥∥∥eiαTj,ju∥∥∥ because

∥∥ej∥∥= 1.

(2.38)

Thus, ‖eiαTj,ju‖ ≤ 1, for all u ∈ U with ‖u‖ = 1. This gives ‖eiαTj,j‖ ≤ 1. Again,

eiαTj,j e−iαTj,j = I, so, 1= ‖I‖ = ‖eiαTj,j e−iαTj,j‖p ≤ ‖eiαTj,j‖p‖e−iαTj,j‖p .

This yields ‖e−iαTj,j‖ ≥ 1/‖eiαTj,j‖ ≥ 1. Since α ∈ R then −α ∈ R, we can obtain

‖eiαTj,j‖ ≥ 1 and hence ‖eiαTj,j‖ = 1. This implies that Tj,j is Hermitian.

(II) Again for fixed j,

∥∥u⊗ej∥∥p = 1, whenever u∈U, ‖u‖ = 1. (2.39)

Now, T(u⊗ ej) = (T j,ju)⊗ ej . So, ‖T‖ ≥ ‖T(u⊗ ej)‖p = ‖Tj,j(u⊗ ej)‖p = ‖Tj,ju‖.
This gives ‖Tj,j‖ ≤ ‖T‖, j = 1,2, . . . ,k.

(III) We wish to show that
⋃k
j=1 sp(T j,j)= sp(T).
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Let

λ∈
k⋃
j=1

sp
(
Tj,j

)
�⇒ λ∈ sp

(
Tj,j

)
for some j

�⇒ (
Tj,j−λI) is singular

�⇒ there exists a nonzero vector u∈U such that
(
Tj,j−λI)u= 0

�⇒ (
Tj,j−λI)u⊗ej = 0

�⇒ (
T −λI)u⊗ej = 0 because u �= 0, ej �= 0 �⇒u⊗ej �= 0

�⇒ λ∈ sp(T).
(2.40)

This gives
⋃k
j=1 sp(T j,j)⊆ sp(T).

On the other hand,

λ∈ sp(T) �⇒ T −λI is singular

�⇒∃a nonzero vector a=
k∑
�=1

u�⊗e� such that (T −λI)a= 0

�⇒
k∑
�=1

T
(
u�⊗e�

)−λ k∑
�=1

u�⊗e� = 0

�⇒
k∑
�=1

T�,�u�⊗e�−λ
k∑
�=1

u�⊗e� = 0

�⇒
k∑
�=1

(
T�,�−λI)u�⊗e� = 0

�⇒ (
T�,�−λI)u� = 0; ∀� = 1,2, . . . ,k.

(2.41)

Since a �= 0, there exists at least one j such that uj �= 0. For this uj , we have

(
Tj,j−λI)uj = 0 �⇒ λ∈ sp

(
Tj,j

)

�⇒ λ∈
k⋃
j=1

sp
(
Tj,j

)
.

(2.42)

Thus,

k⋃
j=1

sp
(
Tj,j

)= sp(T). (2.43)

This completes the proof of the theorem.

We are now in a position to pose some open problems.

(i) Does the HAP in U⊗p V give the existence of the HAP in U?

(ii) If the null space of T is orthogonal to its range, is the null space T i,j orthog-

onal to its range? What are the orthogonal complements of the null space and the

range of T?
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(iii) Suppose that the operator T is the derivation (for definition of a derivation,

see [5]). Is T i,j a derivation?

(iv) Can we make the analogous study in case of other tensor products, viz, the

injective tensor products, the Haagerup tensor product, and so forth, [1]?
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