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Polyharmonic polynomials in n variables are shown to satisfy a Pythagorean identity on
the unit hypersphere. Application is made to establish the convergence of series of poly-
harmonic polynomials.
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1. Introduction. Let Lkn denote the vector space of real homogeneous polynomial

solutions of degree k of Laplace’s equation

∆u= 0, (1.1)

where

∆= ∂2

∂x2
1

+ ∂2

∂x2
2

+···+ ∂2

∂x2
n
. (1.2)

Such polynomials are called spherical harmonics. As shown in [9, pages 140–141],

dimLkn = dkn = (n+k−2)
(n+2k−3)!
k!(n−2)!

. (1.3)

Suppose that {ykj (x)}d
k
n
j=1 is an orthonormal basis for Lkn, where orthonormality is

with respect to the inner product

〈f ,g〉 =
∫
∑

1

f(x)g(x)dx (1.4)

on the unit sphere
∑

1 : x2
1+x2

2+···+x2
n = 1. It is well known (cf. [9, page 144]) that

for all s ∈∑1,

dkn∑
j=1

[
yjk(s)

]2 =ωndkn, (1.5)

whereωn is the surface area of the unit sphere
∑

1 in Rn. We call (1.5) the Pythagorean

identity for spherical harmonics, since it generalizes the Pythagorean theorem

sin2θ+cos2θ = 1. (1.6)

Solutions of partial differential equation

∆mu= 0, (1.7)
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where ∆ is the Laplacian (1.2) and m is a positive integer, are called polyharmonic

functions. In the case m = 2, such functions are called biharmonic and are used to

model the bending of thin plates (for a brief history of this application, see [7, pages

416 and 432–443]).

We show here that homogeneous polyharmonic polynomials satisfy a Pythagorean

identity on
∑

1 and use this identity to establish the convergence of polyharmonic

polynomial series.

2. Pythagorean identity. Let Jkn denote the vector space of real homogeneous poly-

nomial solutions of the partial differential equation (1.7). Since ∆m is a homogeneous

differential operator of order 2m, using a standard argument (cf. [5, Theorem 1]) we

find that

dimJKn = bkn =
(
n−1+k

k

)
−
(
n−1+k−2m

k−2m

)
. (2.1)

In the vector space Jkn, we introduce the Calderón inner product [1]

(p,q)= p
(
∂
∂x

)
q(x), (2.2)

where

∂
∂x

=
(
∂
∂x1

,
∂
∂x2

, . . . ,
∂
∂xn

)
, p

(
∂
∂x

)
= p

(
∂
∂x1

,
∂
∂x2

, . . . ,
∂
∂xn

)
. (2.3)

Theorem 2.1. Suppose that {Qj
k(x)}b

k
n
j=1 is an orthonormal basis for the vector space

Jkn of homogeneous polyharmonic polynomials of degree k, where orthonormality is

with respect to the inner product (2.2). Then for all s = (s1,s2, . . . ,sn) ∈
∑

1, the unit

sphere in Rn,

bkn∑
j=1

[
Qj
k(s)

]2 = γkn, (2.4)

where γkn is a constant depending only on n and k.

Proof. A modification in the argument used for spherical harmonics suffices: fix

a point y ∈Rn and consider the linear functional L : Jkn→R defined by

L(p)= p(y). (2.5)

Since JKn is a finite-dimensional inner product space, there exists a unique Zy ∈ Jkn
such that

L(p)= (p(x),Zy(x)), (2.6)

for all p ∈ Jkn (i.e., all finite-dimensional inner product spaces are self-dual). Further,

since {Qj
k(x)}b

k
n
j=1 is an orthonormal basis for Jkn,

Zy(x)=
bkn∑
j=1

(
Zy(x),Q

j
k(x)

)
Qj
k(x). (2.7)
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But, by the defining property of Zy ,

(
Zy(x),Q

j
k(x)

)=Qj
k(y). (2.8)

Hence

Zy(x)=
bkn∑
j=1

Qj
k(y)Q

j
k(x). (2.9)

Since the choice of y ∈ Rn was arbitrary, Zy(x) is a function of the two variables

x,y ∈Rn; thus, we write

Z(x,y)= Zy(x)=
bkn∑
j=1

Qj
k(x)Q

j
k(y). (2.10)

The Calderón inner product (2.2) is invariant with respect to rotations; that is, if

O :Rn→Rn is a rotation, then (f (x),g(Ox))= (f (O−1x),g(x)). Suppose p(x)∈ Jkn.

Then

(
p(x),Z(Ox,Oy)

)= (p(O−1x
)
,Z(x,Oy)

)= (q(x),Z(x,Oy)), (2.11)

where q(x)=p(O−1x). Since rotations are invariant transformations for the Laplacian,

it follows that q(x)∈ Jkn. Thus, by the defining property of Z(x,y),
(
q(x),Z(x,Oy)

)= q(Oy). (2.12)

But q(Oy)= p(O−1Oy)= p(y). Thus, we have shown that

(
p(x),Z(Ox,Oy)

)= p(y). (2.13)

From the uniqueness of the representation of linear functionals, it follows that

Z(Ox,Oy)= Z(x,y), (2.14)

for all x,y ∈Rn. In particular,

Z(Ox,Ox)= Z(x,x), (2.15)

for every rotation O. Since every point on the unit sphere
∑

1 is the image under

rotation for some fixed point on
∑

1, the equality (2.15) implies that Z(x,x) is constant

on
∑

1. That is,

bkn∑
j=1

Qj
k(s)Q

j
k(s)= C, (2.16)

a constant, for all s ∈∑1.

3. Polyharmonic polynomial series. Pythagorean identities have been used to es-

tablish the convergence of series of spherical harmonics [4], as well as series of or-

thonormal homogeneous polynomials in several real variables in general [3]. We obtain

here convergence for series of polyharmonic polynomials.
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Theorem 3.1. Suppose that {Qj
k(x)}b

k
n
j=1 are sets of orthonormal polyharmonic poly-

nomials in Rn of degree k, k= 0,1,2, . . . . Then the series

∞∑
k=0

bkn∑
j=1

akjQ
j
k(x) (3.1)

converges absolutely and uniformly on compact subsets of the open ball |x| = (x2
1 +

x2
2+···+x2

n)1/2 <R, where

R−1 = limsup
k→∞

(√
γkn
∥∥ak∥∥)1/k

,
∥∥ak∥∥=

( bkn∑
j=1

a2
kj

)1/2

, (3.2)

and γkn is the Pythagorean constant appearing in (2.4).

Proof. Since each of the polynomials Qj
k is homogeneous of degree k, we have

Qj
k(x)= rkQj

k(x/r), where r = (x2
1+x2

2+···+x2
n)1/2. Thus

∣∣∣∣∣
∞∑
k=0

bkn∑
j=1

akjQ
j
k(x)

∣∣∣∣∣=
∣∣∣∣∣
∞∑
k=0

rk
bkn∑
j=1

akjQ
j
k

(
x
r

)∣∣∣∣∣

≤
∞∑
k=0

rk
∣∣∣∣∣
bkn∑
j=1

akjQ
j
k

(
x
r

)∣∣∣∣∣,
(3.3)

by the Cauchy-Schwarz inequality

∣∣∣∣∣
∞∑
k=0

bkn∑
j=1

akjQ
j
k(x)

∣∣∣∣∣≤
∞∑
k=0

rk
( bkn∑
j=1

a2
kj

)1/2( bkn∑
j=1

Qj
k

(
x
r

))1/2

. (3.4)

Appealing now to the Pythagorean identity (2.4), we find that

∣∣∣∣∣
∞∑
k=0

bkn∑
j=1

akjQ
j
k(x)

∣∣∣∣∣=
∞∑
k=0

rk
∥∥ak∥∥

√
γkn, (3.5)

from which the desired result is immediate.

Let Hk
n denote the vector space of homogeneous polynomials of degree k in Rn.

Since every orthonormal basis of Jkn be extended to an orthonormal basis of Hk
n, it

follows from [2, Theorem 3] that

γkn ≤
1
k!
. (3.6)

Thus,

R−1 = limsup
k→∞

(√
γkn
∥∥ak∥∥)1/2 ≤ limsup

k→∞

(∥∥ak∥∥√
k!

)1/k
= ρ−1, (3.7)
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and appealing to the result of Theorem 3.1 we find that the polyharmonic polynomial

series (3.1) converges absolutely and uniformly on compact subsets of the open ball

|x|< ρ. We predict that the evaluation of the Pythagorean constant γkn will show that

such convergence actually obtains within a somewhat larger ball.

In [11], it was shown that, in the space of homogeneous harmonic polynomials Lkn,

the Calderón inner product (2.2) is a constant multiple of the inner product (1.4).

That is,

(p,q)= ckn〈p,q〉, (3.8)

for all p,q ∈ Lkn, where ckn is a constant depending only on n and k. Thus, the

Pythagorean identity for spherical harmonics (1.5) is a special case (m = 1) of the

result of Theorem 2.1.

The Pythagorean identity for spherical harmonics is also a special case of the ad-

dition formula for spherical harmonics [9, page 149] and [8, page 268]. This leads us

to conjecture that the homogeneous polyharmonic polynomials satisfy a similar ad-

dition formula, from which Theorem 2.1 might follow as an immediate consequence.

Such a development could include a significant generalization of the ultraspherical

polynomials [6, 10].
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