PYTHAGOREAN IDENTITY FOR POLYHARMONIC POLYNOMIALS

ALLAN FRYANT and MURALI KRISHNA VEMURI

Received 13 May 1999

Polyharmonic polynomials in n variables are shown to satisfy a Pythagorean identity on the unit hypersphere. Application is made to establish the convergence of series of polyharmonic polynomials.

2000 Mathematics Subject Classification: 31B99.

1. Introduction. Let L_{n}^{k} denote the vector space of real homogeneous polynomial solutions of degree k of Laplace's equation

$$
\begin{equation*}
\Delta u=0, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}} \tag{1.2}
\end{equation*}
$$

Such polynomials are called spherical harmonics. As shown in [9, pages 140-141],

$$
\begin{equation*}
\operatorname{dim} L_{n}^{k}=d_{n}^{k}=(n+k-2) \frac{(n+2 k-3)!}{k!(n-2)!} \tag{1.3}
\end{equation*}
$$

Suppose that $\left\{y_{j}^{k}(x)\right\}_{j=1}^{d_{n}^{k}}$ is an orthonormal basis for L_{n}^{k}, where orthonormality is with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle=\int_{\sum_{1}} f(x) g(x) d x \tag{1.4}
\end{equation*}
$$

on the unit sphere $\sum_{1}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. It is well known (cf. [9, page 144]) that for all $s \in \sum_{1}$,

$$
\begin{equation*}
\sum_{j=1}^{d_{n}^{k}}\left[y_{k}^{j}(s)\right]^{2}=\omega_{n} d_{n}^{k}, \tag{1.5}
\end{equation*}
$$

where ω_{n} is the surface area of the unit sphere \sum_{1} in \mathbb{R}^{n}. We call (1.5) the Pythagorean identity for spherical harmonics, since it generalizes the Pythagorean theorem

$$
\begin{equation*}
\sin ^{2} \theta+\cos ^{2} \theta=1 \tag{1.6}
\end{equation*}
$$

Solutions of partial differential equation

$$
\begin{equation*}
\Delta^{m} u=0 \tag{1.7}
\end{equation*}
$$

where Δ is the Laplacian (1.2) and m is a positive integer, are called polyharmonic functions. In the case $m=2$, such functions are called biharmonic and are used to model the bending of thin plates (for a brief history of this application, see [7, pages 416 and 432-443]).

We show here that homogeneous polyharmonic polynomials satisfy a Pythagorean identity on \sum_{1} and use this identity to establish the convergence of polyharmonic polynomial series.
2. Pythagorean identity. Let J_{n}^{k} denote the vector space of real homogeneous polynomial solutions of the partial differential equation (1.7). Since Δ^{m} is a homogeneous differential operator of order $2 m$, using a standard argument (cf. [5, Theorem 1]) we find that

$$
\begin{equation*}
\operatorname{dim} J_{n}^{K}=b_{n}^{k}=\binom{n-1+k}{k}-\binom{n-1+k-2 m}{k-2 m} \tag{2.1}
\end{equation*}
$$

In the vector space J_{n}^{k}, we introduce the Calderón inner product [1]

$$
\begin{equation*}
(p, q)=p\left(\frac{\partial}{\partial x}\right) q(x) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial x}=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right), \quad p\left(\frac{\partial}{\partial x}\right)=p\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right) . \tag{2.3}
\end{equation*}
$$

Theorem 2.1. Suppose that $\left\{Q_{k}^{j}(x)\right\}_{j=1}^{b_{n}^{k}}$ is an orthonormal basis for the vector space J_{n}^{k} of homogeneous polyharmonic polynomials of degree k, where orthonormality is with respect to the inner product (2.2). Then for all $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \sum_{1}$, the unit sphere in \mathbb{R}^{n},

$$
\begin{equation*}
\sum_{j=1}^{b_{n}^{k}}\left[Q_{k}^{j}(s)\right]^{2}=\gamma_{n}^{k} \tag{2.4}
\end{equation*}
$$

where γ_{n}^{k} is a constant depending only on n and k.
Proof. A modification in the argument used for spherical harmonics suffices: fix a point $y \in \mathbb{R}^{n}$ and consider the linear functional $L: J_{n}^{k} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
L(p)=p(y) \tag{2.5}
\end{equation*}
$$

Since J_{n}^{K} is a finite-dimensional inner product space, there exists a unique $Z_{y} \in J_{n}^{k}$ such that

$$
\begin{equation*}
L(p)=\left(p(x), Z_{y}(x)\right) \tag{2.6}
\end{equation*}
$$

for all $p \in J_{n}^{k}$ (i.e., all finite-dimensional inner product spaces are self-dual). Further, since $\left\{Q_{k}^{j}(x)\right\}_{j=1}^{b_{n}^{k}}$ is an orthonormal basis for J_{n}^{k},

$$
\begin{equation*}
Z_{y}(x)=\sum_{j=1}^{b_{n}^{k}}\left(Z_{y}(x), Q_{k}^{j}(x)\right) Q_{k}^{j}(x) \tag{2.7}
\end{equation*}
$$

But, by the defining property of Z_{y},

$$
\begin{equation*}
\left(Z_{y}(x), Q_{k}^{j}(x)\right)=Q_{k}^{j}(y) \tag{2.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
Z_{y}(x)=\sum_{j=1}^{b_{n}^{k}} Q_{k}^{j}(y) Q_{k}^{j}(x) \tag{2.9}
\end{equation*}
$$

Since the choice of $y \in \mathbb{R}^{n}$ was arbitrary, $Z_{y}(x)$ is a function of the two variables $x, y \in \mathbb{R}^{n}$; thus, we write

$$
\begin{equation*}
Z(x, y)=Z_{y}(x)=\sum_{j=1}^{b_{n}^{k}} Q_{k}^{j}(x) Q_{k}^{j}(y) \tag{2.10}
\end{equation*}
$$

The Calderón inner product (2.2) is invariant with respect to rotations; that is, if $O: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a rotation, then $(f(x), g(O x))=\left(f\left(O^{-1} x\right), g(x)\right)$. Suppose $p(x) \in J_{n}^{k}$. Then

$$
\begin{equation*}
(p(x), Z(O x, O y))=\left(p\left(O^{-1} x\right), Z(x, O y)\right)=(q(x), Z(x, O y)) \tag{2.11}
\end{equation*}
$$

where $q(x)=p\left(O^{-1} x\right)$. Since rotations are invariant transformations for the Laplacian, it follows that $q(x) \in J_{n}^{k}$. Thus, by the defining property of $Z(x, y)$,

$$
\begin{equation*}
(q(x), Z(x, O y))=q(O y) \tag{2.12}
\end{equation*}
$$

But $q(O y)=p\left(O^{-1} O y\right)=p(y)$. Thus, we have shown that

$$
\begin{equation*}
(p(x), Z(O x, O y))=p(y) \tag{2.13}
\end{equation*}
$$

From the uniqueness of the representation of linear functionals, it follows that

$$
\begin{equation*}
Z(O x, O y)=Z(x, y) \tag{2.14}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}$. In particular,

$$
\begin{equation*}
Z(O x, O x)=Z(x, x) \tag{2.15}
\end{equation*}
$$

for every rotation O. Since every point on the unit sphere Σ_{1} is the image under rotation for some fixed point on \sum_{1}, the equality (2.15) implies that $Z(x, x)$ is constant on \sum_{1}. That is,

$$
\begin{equation*}
\sum_{j=1}^{b_{n}^{k}} Q_{k}^{j}(s) Q_{k}^{j}(s)=C \tag{2.16}
\end{equation*}
$$

a constant, for all $s \in \sum_{1}$.
3. Polyharmonic polynomial series. Pythagorean identities have been used to establish the convergence of series of spherical harmonics [4], as well as series of orthonormal homogeneous polynomials in several real variables in general [3]. We obtain here convergence for series of polyharmonic polynomials.

THEOREM 3.1. Suppose that $\left\{Q_{k}^{j}(x)\right\}_{j=1}^{b_{n}^{k}}$ are sets of orthonormal polyharmonic polynomials in \mathbb{R}^{n} of degree $k, k=0,1,2, \ldots$. Then the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sum_{j=1}^{b_{n}^{k}} a_{k j} Q_{k}^{j}(x) \tag{3.1}
\end{equation*}
$$

converges absolutely and uniformly on compact subsets of the open ball $|x|=\left(x_{1}^{2}+\right.$ $\left.x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}<R$, where

$$
\begin{equation*}
R^{-1}=\limsup _{k \rightarrow \infty}\left(\sqrt{\gamma_{n}^{k}}\left\|a_{k}\right\|\right)^{1 / k}, \quad\left\|a_{k}\right\|=\left(\sum_{j=1}^{b_{n}^{k}} a_{k j}^{2}\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

and γ_{n}^{k} is the Pythagorean constant appearing in (2.4).
Proof. Since each of the polynomials Q_{k}^{j} is homogeneous of degree k, we have $Q_{k}^{j}(x)=r^{k} Q_{k}^{j}(x / r)$, where $r=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Thus

$$
\begin{align*}
\left|\sum_{k=0}^{\infty} \sum_{j=1}^{b_{n}^{k}} a_{k j} Q_{k}^{j}(x)\right| & =\left|\sum_{k=0}^{\infty} r^{k} \sum_{j=1}^{b_{n}^{k}} a_{k j} Q_{k}^{j}\left(\frac{x}{r}\right)\right| \tag{3.3}\\
& \leq \sum_{k=0}^{\infty} r^{k}\left|\sum_{j=1}^{b_{n}^{k}} a_{k j} Q_{k}^{j}\left(\frac{x}{r}\right)\right|,
\end{align*}
$$

by the Cauchy-Schwarz inequality

$$
\begin{equation*}
\left|\sum_{k=0}^{\infty} \sum_{j=1}^{b_{n}^{k}} a_{k j} Q_{k}^{j}(x)\right| \leq \sum_{k=0}^{\infty} r^{k}\left(\sum_{j=1}^{b_{n}^{k}} a_{k j}^{2}\right)^{1 / 2}\left(\sum_{j=1}^{b_{n}^{k}} Q_{k}^{j}\left(\frac{x}{r}\right)\right)^{1 / 2} \tag{3.4}
\end{equation*}
$$

Appealing now to the Pythagorean identity (2.4), we find that

$$
\begin{equation*}
\left|\sum_{k=0}^{\infty} \sum_{j=1}^{b_{n}^{k}} a_{k j} Q_{k}^{j}(x)\right|=\sum_{k=0}^{\infty} r^{k}\left\|a_{k}\right\| \sqrt{\gamma_{n}^{k}} \tag{3.5}
\end{equation*}
$$

from which the desired result is immediate.
Let H_{n}^{k} denote the vector space of homogeneous polynomials of degree k in \mathbb{R}^{n}. Since every orthonormal basis of J_{n}^{k} be extended to an orthonormal basis of H_{n}^{k}, it follows from [2, Theorem 3] that

$$
\begin{equation*}
\gamma_{n}^{k} \leq \frac{1}{k!} . \tag{3.6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
R^{-1}=\limsup _{k \rightarrow \infty}\left(\sqrt{y_{n}^{k}}\left\|a_{k}\right\|\right)^{1 / 2} \leq \limsup _{k \rightarrow \infty}\left(\frac{\left\|a_{k}\right\|}{\sqrt{k!}}\right)^{1 / k}=\rho^{-1}, \tag{3.7}
\end{equation*}
$$

and appealing to the result of Theorem 3.1 we find that the polyharmonic polynomial series (3.1) converges absolutely and uniformly on compact subsets of the open ball $|x|<\rho$. We predict that the evaluation of the Pythagorean constant γ_{n}^{k} will show that such convergence actually obtains within a somewhat larger ball.
In [11], it was shown that, in the space of homogeneous harmonic polynomials L_{n}^{k}, the Calderón inner product (2.2) is a constant multiple of the inner product (1.4). That is,

$$
\begin{equation*}
(p, q)=c_{n}^{k}\langle p, q\rangle \tag{3.8}
\end{equation*}
$$

for all $p, q \in L_{n}^{k}$, where c_{n}^{k} is a constant depending only on n and k. Thus, the Pythagorean identity for spherical harmonics (1.5) is a special case ($m=1$) of the result of Theorem 2.1.

The Pythagorean identity for spherical harmonics is also a special case of the addition formula for spherical harmonics [9, page 149] and [8, page 268]. This leads us to conjecture that the homogeneous polyharmonic polynomials satisfy a similar addition formula, from which Theorem 2.1 might follow as an immediate consequence. Such a development could include a significant generalization of the ultraspherical polynomials [6, 10].

References

[1] A. P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas [Singular Integrals and their Applications to Hyperbolic Differential Equations], Cursos y Seminarios de Matemática, Fasc. 3. Universidad de Buenos Aires, Buenos Aires, 1960 (Spanish).
[2] A. Fryant, Multinomial expansions and the Pythagorean theorem, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2001-2004.
[3] A. Fryant, A. Naftalevich, and M. K. Vemuri, Orthogonal homogeneous polynomials, Adv. in Appl. Math. 22 (1999), no. 3, 371-379.
[4] A. Fryant and H. Shankar, Bounds on the maximum modulus of harmonic functions, Math. Student 55 (1987), no. 2-4, 103-116 (1989).
[5] A. Fryant and M. K. Vemuri, Wave polynomials, Tamkang J. Math. 28 (1997), no. 3, 205209.
[6] A. J. Fryant, Ultraspherical expansions and pseudo analytic functions, Pacific J. Math. 94 (1981), no. 1, 83-105.
[7] V. Maz'ya and T. Shaposhnikova, Jacques Hadamard, a Universal Mathematician, History of Mathematics, vol. 14, American Mathematical Society, Rhode Island, 1998.
[8] G. Sansone, Orthogonal Functions, Pure and Applied Mathematics, vol. 9, Interscience Publishers, New York, 1959.
[9] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, no. 32, Princeton University Press, New Jersey, 1971.
[10] G. Szegö, Orthogonal Polynomials, 3rd ed., American Mathematical Society Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1967.
[11] M. K. Vemuri, A simple proof of Fryant's theorem, SIAM J. Math. Anal. 26 (1995), no. 6, 1644-1646.

Allan Fryant: 603F Simpson Street, Greensboro, NC 27401, USA
Murali Krishna Vemuri: Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA

E-mail address: mkvemuri@math.syr.edu

