NONCOMPLETE AFFINE STRUCTURES ON LIE ALGEBRAS OF MAXIMAL CLASS

E. REMM and MICHEL GOZE

Received 29 January 2001

Every affine structure on Lie algebra g defines a representation of g in $\operatorname{aff}(\mathbb{R}^n)$. If g is a nilpotent Lie algebra provided with a complete affine structure then the corresponding representation is nilpotent. We describe noncomplete affine structures on the filiform Lie algebra L_n . As a consequence we give a nonnilpotent faithful linear representation of the 3-dimensional Heisenberg algebra.

2000 Mathematics Subject Classification: 53Cxx, 17Bxx.

1. Affine structure on a nilpotent Lie algebra

1.1. Affine structure on nilpotent Lie algebras

DEFINITION 1.1. Let \mathfrak{g} be an *n*-dimensional Lie algebra over \mathbb{R} . An affine structure is given by a bilinear mapping

$$\nabla: \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g} \tag{1.1}$$

satisfying

$$\nabla(X,Y) - \nabla(Y,X) = [X,Y],$$

$$\nabla(X,\nabla(Y,Z)) - \nabla(Y,\nabla(X,Z)) = \nabla([X,Y],Z),$$
(1.2)

for all $X, Y, Z \in \mathfrak{g}$.

If g is provided with an affine structure, then the corresponding connected Lie group *G* is an affine manifold such that every left translation is an affine isomorphism of *G*. In this case, the operator ∇ is nothing but the connection operator of the affine connection on *G*.

Let \mathfrak{g} be a Lie algebra with an affine structure ∇ . Then the mapping

$$f: \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g}), \tag{1.3}$$

defined by

$$f(X)(Y) = \nabla(X, Y), \tag{1.4}$$

is a linear representation (non faithful) of g satisfying

$$f(X)(Y) - f(Y)(X) = [X, Y].$$
(1.5)

REMARK 1.2. The adjoint representation \widetilde{f} of g satisfies

$$\widetilde{f}(X)(Y) - \widetilde{f}(Y)(X) = 2[X, Y]$$
(1.6)

and cannot correspond to an affine structure.

1.2. Classical examples of affine structures. (i) Let \mathfrak{g} be the *n*-dimensional abelian Lie algebra. Then the representation

$$f: \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g}), \quad X \longmapsto f(X) = 0$$
 (1.7)

defines an affine structure.

(ii) Let g be a 2p-dimensional Lie algebra endowed with a symplectic form

$$\theta \in \Lambda^2 \mathbf{g}^*$$
 such that $d\theta = 0$ (1.8)

with

$$d\theta(X,Y,Z) = \theta(X,[Y,Z]) + \theta(Y,[Z,X]) + \theta(Z,[X,Y]).$$
(1.9)

For every $X \in \mathfrak{g}$ we can define a unique endomorphism ∇_X by

$$\theta(\operatorname{ad} X(Y), Z) = -\theta(Y, \nabla_X(Z)). \tag{1.10}$$

Then $\nabla(X, Y) = \nabla_X(Y)$ is an affine structure on **g**.

(iii) Following the work of Benoist [1] and Burde [2, 3, 4], we know that there exists a nilpotent Lie algebra without affine structures.

1.3. Faithful representations associated to an affine structure. Let ∇ be an affine structure on an *n*-dimensional Lie algebra g. We consider the (n + 1)-dimensional linear representation given by

$$\rho: \mathfrak{g} \longrightarrow \operatorname{End}\left(\mathfrak{g} \bigoplus \mathbb{R}\right) \tag{1.11}$$

given by

$$\rho(X): (Y,t) \longmapsto (\nabla(X,Y) + tX,0). \tag{1.12}$$

It is easy to verify that ρ is a faithful representation of dimension n + 1.

We can note that this representation gives also an affine representation of g

$$\psi : \mathfrak{g} \longrightarrow \operatorname{aff} \left(\mathbb{R}^n \right), \quad X \longmapsto \begin{pmatrix} A(X) & X \\ 0 & 0 \end{pmatrix},$$
(1.13)

where A(X) is the matrix of the endomorphisms $\nabla_X : Y \to \nabla(X, Y)$ in a given basis.

DEFINITION 1.3. We say that the representation ρ is nilpotent if the endomorphisms $\rho(X)$ are nilpotent for every *X* in g.

PROPOSITION 1.4. Suppose that g is a complex non-abelian indecomposable nilpotent Lie algebra and let ρ be a faithful representation of g. Then there exists a faithful nilpotent representation of the same dimension.

72

PROOF. Consider the g-module *M* associated to ρ . Then, as g is nilpotent, *M* can be decomposed as

$$M = \bigoplus_{i=1}^{k} M_{\lambda_i}, \tag{1.14}$$

where M_{λ_i} is a g-submodule, and the λ_i are linear forms on g. For all $X \in \mathfrak{g}$, the restriction of $\rho(X)$ to M_i is in the following form:

$$\begin{pmatrix} \lambda_i(X) & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & \lambda_i(X) \end{pmatrix}.$$
(1.15)

Let \mathbb{K}_{λ_i} be the one-dimensional g-module defined by

$$\mu: X \in \mathfrak{g} \longrightarrow \mu(X) \in \operatorname{End} \mathbb{K}$$
(1.16)

with

$$\mu(X)(a) = \rho(X)(a) = \lambda_i(X)a. \tag{1.17}$$

The tensor product $M_{\lambda_i} \otimes \mathbb{K}_{-\lambda_i}$ is the g-module associated to

$$X \cdot (Y \otimes a) = \rho(X)(Y) \otimes a - Y \otimes \lambda_i(X)a.$$
(1.18)

Then $\widetilde{M} = \bigoplus (M_{\lambda_i} \otimes K_{-\lambda_i})$ is a nilpotent g-module. We prove that \widetilde{M} is faithful. Recall that a representation ρ of g is faithful if and only if $\rho(Z) \neq 0$ for every $Z \neq 0 \in Z(\mathfrak{g})$. Consider $X \neq 0 \in Z(\mathfrak{g})$. If $\widetilde{\rho}(X) = 0$, then $\rho(X)$ is a diagonal endomorphism. By hypothesis $\mathfrak{g} \neq Z(\mathfrak{g})$ and there is $i \geq 1$ such that $X \in \mathscr{C}^i(\mathfrak{g})$, we have

$$X = \sum_{j} a_j [Y_j, Z_j] \tag{1.19}$$

with $Y_j \in \mathscr{C}^{i-1}(\mathfrak{g})$ and $Z_j \in \mathfrak{g}$. The endomorphisms $\rho(Y_j)\rho(Z_j) - \rho(Z_j)\rho(Y_j)$ are nilpotent and the eigenvalues of $\rho(X)$ are 0. Thus $\rho(X) = 0$ and ρ is not faithful. Then $\tilde{\rho}(X) \neq 0$ and $\tilde{\rho}$ is a faithful representation.

2. Affine structures on Lie algebra of maximal class

2.1. Definition

DEFINITION 2.1. An *n*-dimensional nilpotent Lie algebra \mathfrak{g} is called of maximal class if the smallest *k* such that $\mathscr{C}^k\mathfrak{g} = \{0\}$ is equal to n-1.

In this case the descending sequence is

$$\mathfrak{g} \supset \mathscr{C}^1 \mathfrak{g} \supset \cdots \supset \mathscr{C}^{n-2} \mathfrak{g} \supset \{0\} = \mathscr{C}^{n-1} \mathfrak{g}$$

$$(2.1)$$

and we have

$$\dim \mathscr{C}^{1}\mathfrak{g} = n-2,$$

$$\dim \mathscr{C}^{i}\mathfrak{g} = n-i-1, \quad \text{for } i = 1, \dots, n-1.$$
(2.2)

EXAMPLE 2.2. The *n*-dimensional nilpotent Lie algebra L_n defined by

$$[X_1, X_i] = X_{i+1} \quad \text{for } i \in \{2, \dots, n-1\}$$
(2.3)

is of maximal class.

We can note that any Lie algebra of maximal class is a linear deformation of L_n [5].

2.2. On non-nilpotent affine structure. Let \mathfrak{g} be an n-dimensional Lie algebra of maximal class provided with an affine structure ∇ . Let ρ be the (n + 1)-dimensional faithful representation associated to ∇ and we note that $M = \mathfrak{g} \bigoplus \mathbb{C}$ is the corresponding complex \mathfrak{g} -module. As \mathfrak{g} is of maximal class, its decomposition has one of the following forms

$$M = M_0$$
, *M* is irreducible, (2.4)

or

$$M = M_0 \bigoplus M_\lambda, \quad \lambda \neq 0. \tag{2.5}$$

For a general faithful representation, we call characteristic the ordered sequence of the dimensions of the irreducible submodules. In the case of maximal class we have $c(\rho) = (n + 1)$ or (n, 1) or (n - 1, 1, 1) or (n - 1, 2). In fact, the maximal class of \mathfrak{g} implies that there exists an irreducible submodule of dimension greater than or equal to n - 1. More generally, if the characteristic sequence of a nilpotent Lie algebra is equal to $(c_1, \ldots, c_p, 1)$ (see [5]) then for every faithful representation ρ we have $c(\rho) = (d_1, \ldots, d_q)$ with $d_1 \ge c_1$.

THEOREM 2.3. Let g be the Lie algebra of the maximal class L_n . Then there are faithful g-modules which are not nilpotent.

PROOF. Consider the following representation given by the matrices $\rho(X_i)$ where $\{X_1, \ldots, X_n\}$ is a basis of g

74

$$\rho(X_2) = \begin{pmatrix}
a & a & 0 & \cdots & \cdots & \cdots & 0 & 0 \\
a & a & 0 & & & \vdots & 1 \\
-1 & 1 & 0 & & & & 0 & 0 \\
0 & 0 & \frac{1}{2} & \ddots & & & & \vdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & & & \vdots & 0 \\
\vdots & & \ddots & \frac{1}{i-2} & \ddots & & \vdots & 0 \\
0 & 0 & & & \ddots & \ddots & \ddots & \vdots & 0 \\
\beta & \alpha & 0 & \cdots & \cdots & \frac{1}{n-2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},$$
(2.6)

and for $j \ge 3$ the endomorphisms $\rho(X_j)$ satisfy

$$\rho(X_j)(e_1) = -\frac{1}{j-1}e_{j+1},$$

$$\rho(X_j)(e_2) = \frac{1}{j-1}e_{j+1},$$

$$\rho(X_j)(e_3) = \frac{1}{j(j-1)}e_{j+2},$$

$$\vdots$$
(2.7)

$$\begin{split} \rho\left(X_{j}\right)\left(e_{i-j+1}\right) &= \frac{(j-2)!(i-j-1)!}{(i-2)!}e_{i}, \quad i=j-2,\dots,n,\\ \rho\left(X_{j}\right)\left(e_{i-j+1}\right) &= 0, \quad i=n+1,\dots,n+j-1,\\ \rho\left(X_{j}\right)\left(e_{n+1}\right) &= e_{j}, \end{split}$$

where $\{e_1, \dots, e_n, e_{n+1}\}$ is the basis given by $e_i = (X_i, 0)$ and $e_{n+1} = (0, 1)$. We easily verify that these matrices describe a nonnilpotent faithful representation.

2.3. Noncomplete affine structure on L_n . The previous representation is associated to an affine structure on the Lie algebra L_n given by

$$\nabla(X_i, Y) = \rho(X_i)(Y, 0), \qquad (2.8)$$

where L_n is identified to the *n*-dimensional first factor of the (n + 1)-dimensional faithful module. This affine structure is complete if and only if the endomorphisms $R_X \in \text{End}(\mathfrak{g})$ defined by

$$R_X(Y) = \nabla(Y, X) \tag{2.9}$$

are nilpotent for all $X \in \mathfrak{g}$ (see [6]). But the matrix of R_{X_1} has the form

(a	а	0	•••	0	• • •	0	0)	
а	а			÷		÷	0	
0	$^{-1}$			÷		÷	0	
0	0	$-\frac{1}{2}$		0		0	1	
÷	÷	0	·			÷	0	(2.10)
0	0	÷	·	$-\frac{1}{j-1}$		÷	0	
α	β	÷		·	·	0	0	
0	0	0	0	0	0	$-\frac{1}{n-2}$	0)	

Its trace is 2a and for $a \neq 0$ it is not nilpotent. We have proved the following proposition.

PROPOSITION 2.4. There exist affine structures on the Lie algebra of maximal class L_n which are noncomplete.

REMARK 2.5. The most simple example is on dim3 and concerns the Heisenberg algebra. We find a nonnilpotent faithful representation associated to the noncomplete affine structure given by

$$\nabla_{X_1} = \begin{pmatrix} a & a & 0 \\ a & a & 0 \\ \alpha & \beta & 0 \end{pmatrix}, \qquad \nabla_{X_2} = \begin{pmatrix} a & a & 0 \\ a & a & 0 \\ \beta - 1 & \alpha + 1 & 0 \end{pmatrix}, \qquad \nabla_{X_3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (2.11)$$

where X_1 , X_2 , and X_3 are a basis of H_3 satisfying $[X_1, X_2] = X_3$ and ∇_{X_i} the endomorphisms of \mathfrak{g} given by

$$\nabla_{X_i}(X_j) = \nabla(X_i, X_j). \tag{2.12}$$

The affine representation is written as

$$\begin{pmatrix} a(x_1+x_2) & a(x_1+x_2) & 0 & x_1 \\ a(x_1+x_2) & a(x_1+x_2) & 0 & x_2 \\ \alpha x_1 + (\beta - 1)x_2 & \beta x_1 + (\alpha + 1)x_2 & 0 & x_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
(2.13)

References

- Y. Benoist, Une nilvariété non affine [A non-affine nilvariety], J. Differential Geom. 41 (1995), no. 1, 21-52 (French).
- [2] D. Burde, Affine structures on nilmanifolds, Internat. J. Math. 7 (1996), no. 5, 599-616.
- [3] _____, Left-invariant affine structures on reductive Lie groups, J. Algebra 181 (1996), no. 3, 884–902.
- [4] _____, Simple left-symmetric algebras with solvable Lie algebra, Manuscripta Math. 95 (1998), no. 3, 397-411.

- [5] M. Goze and Y. Khakimdjanov, *Nilpotent Lie Algebras*, Mathematics and Its Applications, vol. 361, Kluwer Academic Publishers Group, Dordrecht, 1996.
- [6] J. Helmstetter, Radical d'une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, 17–35 (French).

E. Remm: Faculté des Sciences et Techniques, 4, Rue des Frères Lumière, F. 68093 Mulhouse Cedex, France

E-mail address: e.remm@univ-mulhouse.fr

MICHEL GOZE: FACULTÉ DES SCIENCES ET TECHNIQUES, 4, RUE DES FRÈRES LUMIÈRE, F. 68093 MULHOUSE CEDEX, FRANCE

E-mail address: m.goze@univ-mulhouse.fr