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ON AN INFINITE SERIES FOR (1+1/x)* AND ITS APPLICATION

HONGWEI CHEN
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An infinite series for (1+1/x)% is deduced. As an application, a refinement of Carleman’s
inequality is achieved.
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The well-known Carleman’s inequality states that if a,, > 0, n = 1,2,..., and 0 <
Sy an < oo, then

Z aras---an)'M<e > an. 1)
n=1 n=1

Recently, Yang and Debnath [4] improved (1) to

> l/n
n;(“laz”'“" <ez( 2(n+1)> @)

In [3], a further refinement of (2) is presented as follows:

g 1 —-1/2
g araz---an)'" <eZ(1+n+1/5> an. (3)

n=1

The key step in the establishment of inequalities (2) and (3) is aimed at estimates of
(1+1/x)¥. In this note, we derive an equality for (1 + 1/x)¥ in terms of an infinite
series. As an application, we further strengthen inequality (3). The main results of this
note are presented as follows.

THEOREM 1. For any x > 0,

(1+%)X=e(1—1§1(1i’7’;)n), (4)

where b,, > 0 and satisfies the recurrence relation

1 1 o
bi=g =G Dme n+1§ —1+2'

&)

Carleman’s inequality (1) is correspondingly refined as follows.
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THEOREM 2. Ifa, >0,n=1,2,...,and0< >, _a, < o, then

> by
n;(“laZ' an)'’" <eZ(1—2(1+n)k)a

where m is any positive integer and by > 0 is given by (5).
To prove Theorem 1, we now introduce three lemmas.

LEMMA 3. Forx>0,t=1/(1+x),

<1+%>X :eexp(—niln(:liil)).

PROOF. Forx >0,0<t=1/(1+x) <1, we have

1\¥ 1 4o 1-t
()= () e (o)

Using the power series
In(1-t) =- E —
n( ) n

which converges for 0 <t < 1, we have

<1+ §>x = exp ((1

This proves (7) as desired.

LEMMA 4. ForO<t<l1,

exp( Z_:n(n+l)> th"

where b, satisfies the recurrence relation (5).
PROOEF. Set

p(t) = Z

n(n+1)

f(t)=eXp( > (n+l):exp(p(t)).

n=1

(6)

(7)

(8)

(10)

(11)

12)
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It is clear that the power series of p(t) converges uniformly for 0 <t < 1 and f(0) =
exp(p(0)) = 1. Therefore, we can expand f(t) as a power series in the form of (11).
To show that the recurrence relation (5) holds, by the chain rule, we have

7 7 1
by =-f(0)=-f0)p (0)=§- (13)
Next we have, using the Leibniz rule,

k
FED ) = (Foop )P =S (f)f(” ()p* it (x), (14)
i=0

where f( indicates the ith derivative of f(x) for i > 1 and f© = f. By virtue of
the facts

_ fe(0) @ o il kY k!
b =="0 PRO =Ty ) Taaeor (13)

separating the first term in (14) from the summation, we get

1 1 & b

1
= - 1
Brers (k+1)(k+2) k+1izzlk—i+2’ (16)
from which the recurrence relation (5) follows. This proves Lemma 4. O

To find b, in (11), starting with b, = 1/2, and applying the recurrence relation (5)
repeatedly, we obtain

1 1 1

bzfé_gbl ﬂl
1 1 1 1

by =15-gbhi—gh2= 33 17)
1 1 1 1 73

bi= 0160 T 122 8% = 5760

For n > 5, the computation of b, is considerably longer and complicated. Implement-
ing the recurrence relation (5) with Maple, we easily find the next six coefficients as
follows:

1 3625 5525
> 1280° ®~ 580608’ 771161216’ 08
. _ 5233001 . 1212281 p. 927777937
8~ 1393459200’ 97 398131200’ 107 367873228800

Those calculations suggest the following lemma.

LEMMA 5. If b, satisfies the recurrence relation (5), then b,, > 0 for alln > 1.
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PROOF. In view of the recurrence relation (5), we see that b, > 0 is equivalent to

n
b; 1
< —. 19
l,:zln—i+2 n+2 (19)

We make the inductive hypothesis that (19) is true for all positive integers n. This
hypothesis is true for n =1 as b; = 1/2 and

b,

1
> _Z< (20)

wl»—l

Now, by the recurrence relation (5), we have

1 k+1

b;
k+3_izz1 k—i+3

1 7& bi b
k+3 Sk-i+3 2

St

1 i b; 1
T k+3 Zk-i+3 2(k+1) k+

_2(k+1)(k+2)7(k+3)722(k+1(k71+2)7(k71+3) b;
T o2(k+1)(k+2)(k+3) 2(k+1)(k—i+3) k—i+2

i=1

M=

_ 2k?+5k+1 1
C2(k+1)(k+3) | k+2

2k? +5k+1 i
2(k+1)(k+3) k+2 —l+2

i=1

[2(k+1)(k—i+2)—(k—i+3)](k+3) b, }

(k—i+3)[2(k+1)(k+2)—(k+3)] k—i+2

i=1

>0,
(21)

from which (19) holds for n = k + 1. Here we have used the fact

[2(k+1)(k—i+2)— (k—i+3)](k+3)
(k—i+3)[2(k+1)(k+2)—(k+3)]

C2(k+1D)((k—i+2)/(k—i+3)) -1
o 2(k+D)((k+2)/(k+3)) -1

(22)

<1, forl=<i<k

and the inductive hypothesis for n = k. Therefore, the lemma now follows by the
principle of mathematical induction. O

Now, we turn to the proof of Theorem 1.

PROOF OF THEOREM 1. By virtue of (7) and (11), taking ¢t = 1/(1 +x), we have

1\* o~  ban
(1+;) :e(lgl(ux)n)' (23)
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By Lemmas 4 and 5, we have that b,, > 0 and satisfies the recurrence relation (5). This
proves Theorem 1. O

REMARK 6. As an added bonus, taking x = n in (23), we have

1\" o by
1+—) =e|ll-> ———|. (24)
( n) ( I;(1+n)’<>

Thus, for any positive integer m > 1, we obtain

(1+l)"<e -3 b (25)
n o (L+m)k )
On the other hand, noticing that by < 1/k(k+1) from (5), we have
1\" > 1
(1+3) >e<l_k§k(k+1)(1+n)k)' (26
Combining inequalities (24) and (26), we deduce that
> 1 1\" Z by
e(l_kzl—k(k+1)(l+n)k> < (1+%> <e(1—k217(1+n)k). (27)

This improves Kloosterman’s inequality [2, pages 324-325] and [4, inequality (2.7)].

Next, we prove Theorem 2 by modifying the approach used to prove Hardy’s in-
equality [1].

PROOF OF THEOREM 2. For any positive sequence {c,}, using the arithmetic-
geometric average inequality, we have

1/n
n 1 n
1_[ Crak — Z CrQak.- (28)
k=1 TL k=1

So that

(29)

Exchanging the order of the summation in the last inequality, we have

[ <] e} n ~l/n
S(@az---an)" < Z ckak Y. % (]‘[ ck> : (30)
k=1 n=k k=1

n=1
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Set
1 k
ck:(l+E> K, k=1,2,..., 31)

we have

n

nck: (1+n)", (32)

k=1
and hence

-1/n
Zn(ﬂck) =3 == (33)

Thus, by virtue of (30), we deduce that

[

> 1 1\"
Z (ara; - - -an)l/" < z Eckak = z <1+ E) an. (34)
n=1

k=1 n=1

Taking x = n in Theorem 1, we have refined Carleman’s inequality (1) as

ANE
B
Q
no
8
T

2
IA
[

Me

RS

—

|
[Me
_

+ |
:k‘
=

S~
3

(35)
=] m bk
<e> [1-> ) n
n—l( k=1 (1+n)k
where m is any positive integer. This proves Theorem 2 as required. |

REMARK 7. Itis clear that (2) is the special case of (35) at m = 1. Furthermore, by
the binomial series, we have

)*1/2 1 1

1_2(n+1)_24(n+1)2= forn=1,2,.... (36)

(1+n+1/5

Therefore, when m = 2, (35) strengthens (3).
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