ON AN INFINITE SERIES FOR $(1+1 / x)^{x}$ AND ITS APPLICATION

HONGWEI CHEN

Received 20 May 2001

An infinite series for $(1+1 / x)^{x}$ is deduced. As an application, a refinement of Carleman's inequality is achieved.

2000 Mathematics Subject Classification: 26D15.

The well-known Carleman's inequality states that if $a_{n} \geq 0, n=1,2, \ldots$, and $0<$ $\sum_{n=1}^{\infty} a_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n} . \tag{1}
\end{equation*}
$$

Recently, Yang and Debnath [4] improved (1) to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\frac{1}{2(n+1)}\right) a_{n} . \tag{2}
\end{equation*}
$$

In [3], a further refinement of (2) is presented as follows:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1+\frac{1}{n+1 / 5}\right)^{-1 / 2} a_{n} . \tag{3}
\end{equation*}
$$

The key step in the establishment of inequalities (2) and (3) is aimed at estimates of $(1+1 / x)^{x}$. In this note, we derive an equality for $(1+1 / x)^{x}$ in terms of an infinite series. As an application, we further strengthen inequality (3). The main results of this note are presented as follows.

Theorem 1. For any $x>0$,

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{n=1}^{\infty} \frac{b_{n}}{(1+x)^{n}}\right) \tag{4}
\end{equation*}
$$

where $b_{n}>0$ and satisfies the recurrence relation

$$
\begin{equation*}
b_{1}=\frac{1}{2}, \quad b_{n+1}=\frac{1}{(n+1)(n+2)}-\frac{1}{n+1} \sum_{i=1}^{n} \frac{b_{i}}{n-i+2} . \tag{5}
\end{equation*}
$$

Carleman's inequality (1) is correspondingly refined as follows.

THEOREM 2. If $a_{n} \geq 0, n=1,2, \ldots$, and $0<\sum_{n=1}^{\infty} a_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{m} \frac{b_{k}}{(1+n)^{k}}\right) a_{n} \tag{6}
\end{equation*}
$$

where m is any positive integer and $b_{k}>0$ is given by (5).
To prove Theorem 1, we now introduce three lemmas.
Lemma 3. For $x>0, t=1 /(1+x)$,

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e \exp \left(-\sum_{n=1}^{\infty} \frac{t^{n}}{n(n+1)}\right) \tag{7}
\end{equation*}
$$

Proof. For $x>0,0<t=1 /(1+x)<1$, we have

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=\left(\frac{1}{1-t}\right)^{(1-t) / t}=\exp \left(-\frac{1-t}{t} \ln (1-t)\right) \tag{8}
\end{equation*}
$$

Using the power series

$$
\begin{equation*}
\ln (1-t)=-\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1} \tag{9}
\end{equation*}
$$

which converges for $0<t<1$, we have

$$
\begin{align*}
\left(1+\frac{1}{x}\right)^{x} & =\exp \left((1-t) \sum_{n=0}^{\infty} \frac{t^{n}}{n+1}\right) \\
& =\exp \left(1-\sum_{n=1}^{\infty} \frac{t^{n}}{n(n+1)}\right) \tag{10}\\
& =e \exp \left(-\sum_{n=1}^{\infty} \frac{t^{n}}{n(n+1)}\right)
\end{align*}
$$

This proves (7) as desired.
Lemma 4. For $0<t<1$,

$$
\begin{equation*}
\exp \left(-\sum_{n=1}^{\infty} \frac{t^{n}}{n(n+1)}\right)=1-\sum_{n=1}^{\infty} b_{n} t^{n} \tag{11}
\end{equation*}
$$

where b_{n} satisfies the recurrence relation (5).
Proof. Set

$$
\begin{align*}
& p(t)=-\sum_{n=1}^{\infty} \frac{t^{n}}{n(n+1)}, \\
& f(t)=\exp \left(-\sum_{n=1}^{\infty} \frac{t^{n}}{n(n+1)}\right)=\exp (p(t)) . \tag{12}
\end{align*}
$$

It is clear that the power series of $p(t)$ converges uniformly for $0<t<1$ and $f(0)=$ $\exp (p(0))=1$. Therefore, we can expand $f(t)$ as a power series in the form of (11). To show that the recurrence relation (5) holds, by the chain rule, we have

$$
\begin{equation*}
b_{1}=-f^{\prime}(0)=-f(0) p^{\prime}(0)=\frac{1}{2} \tag{13}
\end{equation*}
$$

Next we have, using the Leibniz rule,

$$
\begin{equation*}
f^{(k+1)}(x)=\left(f(x) p^{\prime}(x)\right)^{(k)}=\sum_{i=0}^{k}\binom{k}{i} f^{(i)}(x) p^{(k-i+1)}(x) \tag{14}
\end{equation*}
$$

where $f^{(i)}$ indicates the i th derivative of $f(x)$ for $i \geq 1$ and $f^{(0)}=f$. By virtue of the facts

$$
\begin{equation*}
b_{k+1}=-\frac{f^{(k+1)}(0)}{(k+1)!}, \quad p^{(i)}(0)=-\frac{i!}{i(i+1)}, \quad\binom{k}{i}=\frac{k!}{i!(k-i)!}, \tag{15}
\end{equation*}
$$

separating the first term in (14) from the summation, we get

$$
\begin{equation*}
b_{k+1}=\frac{1}{(k+1)(k+2)}-\frac{1}{k+1} \sum_{i=1}^{k} \frac{b_{i}}{k-i+2} \tag{16}
\end{equation*}
$$

from which the recurrence relation (5) follows. This proves Lemma 4.
To find b_{n} in (11), starting with $b_{1}=1 / 2$, and applying the recurrence relation (5) repeatedly, we obtain

$$
\begin{align*}
& b_{2}=\frac{1}{6}-\frac{1}{4} b_{1}=\frac{1}{24} \\
& b_{3}=\frac{1}{12}-\frac{1}{9} b_{1}-\frac{1}{6} b_{2}=\frac{1}{48} \tag{17}\\
& b_{4}=\frac{1}{20}-\frac{1}{16} b_{1}-\frac{1}{12} b_{1}-\frac{1}{8} b_{3}=\frac{73}{5760}
\end{align*}
$$

For $n \geq 5$, the computation of b_{n} is considerably longer and complicated. Implementing the recurrence relation (5) with Maple, we easily find the next six coefficients as follows:

$$
\begin{gather*}
b_{5}=\frac{11}{1280}, \quad b_{6}=\frac{3625}{580608}, \quad b_{7}=\frac{5525}{1161216}, \\
b_{8}=\frac{5233001}{1393459200}, \quad b_{9}=\frac{1212281}{398131200}, \quad b_{10}=\frac{927777937}{367873228800} . \tag{18}
\end{gather*}
$$

Those calculations suggest the following lemma.
LemmA 5. If b_{n} satisfies the recurrence relation (5), then $b_{n}>0$ for all $n \geq 1$.

Proof. In view of the recurrence relation (5), we see that $b_{n+1}>0$ is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{b_{i}}{n-i+2}<\frac{1}{n+2} . \tag{19}
\end{equation*}
$$

We make the inductive hypothesis that (19) is true for all positive integers n. This hypothesis is true for $n=1$ as $b_{1}=1 / 2$ and

$$
\begin{equation*}
\frac{b_{1}}{2}=\frac{1}{4}<\frac{1}{3} . \tag{20}
\end{equation*}
$$

Now, by the recurrence relation (5), we have

$$
\begin{align*}
& \frac{1}{k+3}-\sum_{i=1}^{k+1} \frac{b_{i}}{k-i+3} \\
& \quad=\frac{1}{k+3}-\sum_{i=1}^{k} \frac{b_{i}}{k-i+3}-\frac{b_{k+1}}{2} \\
& \quad=\frac{1}{k+3}-\sum_{i=1}^{k} \frac{b_{i}}{k-i+3}-\frac{1}{2(k+1)}\left(\frac{1}{k+2}-\sum_{i=1}^{k} \frac{b_{i}}{k-i+2}\right) \\
& \quad=\frac{2(k+1)(k+2)-(k+3)}{2(k+1)(k+2)(k+3)}-\sum_{i=1}^{k} \frac{2(k+1)(k-i+2)-(k-i+3)}{2(k+1)(k-i+3)} \frac{b_{i}}{k-i+2} \\
& \quad=\frac{2 k^{2}+5 k+1}{2(k+1)(k+3)}\left\{\frac{1}{k+2}-\sum_{i=1}^{k} \frac{[2(k+1)(k-i+2)-(k-i+3)](k+3)}{(k-i+3)[2(k+1)(k+2)-(k+3)]} \frac{b_{i}}{k-i+2}\right\} \\
& \quad>\frac{2 k^{2}+5 k+1}{2(k+1)(k+3)}\left\{\frac{1}{k+2}-\sum_{i=1}^{k} \frac{b_{i}}{k-i+2}\right\} \\
& \quad>0, \tag{21}
\end{align*}
$$

from which (19) holds for $n=k+1$. Here we have used the fact

$$
\begin{align*}
& \frac{[2(k+1)(k-i+2)-(k-i+3)](k+3)}{(k-i+3)[2(k+1)(k+2)-(k+3)]} \tag{22}\\
& \quad=\frac{2(k+1)((k-i+2) /(k-i+3))-1}{2(k+1)((k+2) /(k+3))-1}<1, \quad \text { for } 1 \leq i \leq k
\end{align*}
$$

and the inductive hypothesis for $n=k$. Therefore, the lemma now follows by the principle of mathematical induction.

Now, we turn to the proof of Theorem 1.
Proof of Theorem 1. By virtue of (7) and (11), taking $t=1 /(1+x)$, we have

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e\left(1-\sum_{n=1}^{\infty} \frac{b_{n}}{(1+x)^{n}}\right) \tag{23}
\end{equation*}
$$

By Lemmas 4 and 5, we have that $b_{n}>0$ and satisfies the recurrence relation (5). This proves Theorem 1.

Remark 6. As an added bonus, taking $x=n$ in (23), we have

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}=e\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(1+n)^{k}}\right) \tag{24}
\end{equation*}
$$

Thus, for any positive integer $m \geq 1$, we obtain

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}<e\left(1-\sum_{k=1}^{m} \frac{b_{k}}{(1+n)^{k}}\right) \tag{25}
\end{equation*}
$$

On the other hand, noticing that $b_{k} \leq 1 / k(k+1)$ from (5), we have

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}>e\left(1-\sum_{k=1}^{\infty} \frac{1}{k(k+1)(1+n)^{k}}\right) . \tag{26}
\end{equation*}
$$

Combining inequalities (24) and (26), we deduce that

$$
\begin{equation*}
e\left(1-\sum_{k=1}^{\infty} \frac{1}{k(k+1)(1+n)^{k}}\right)<\left(1+\frac{1}{n}\right)^{n}<e\left(1-\sum_{k=1}^{m} \frac{b_{k}}{(1+n)^{k}}\right) . \tag{27}
\end{equation*}
$$

This improves Kloosterman's inequality [2, pages 324-325] and [4, inequality (2.7)].
Next, we prove Theorem 2 by modifying the approach used to prove Hardy's inequality [1].

Proof of Theorem 2. For any positive sequence $\left\{c_{n}\right\}$, using the arithmeticgeometric average inequality, we have

$$
\begin{equation*}
\left(\prod_{k=1}^{n} c_{k} a_{k}\right)^{1 / n} \leq \frac{1}{n} \sum_{k=1}^{n} c_{k} a_{k} \tag{28}
\end{equation*}
$$

So that

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & =\sum_{n=1}^{\infty}\left(\frac{\prod_{k=1}^{n} c_{k} a_{k}}{\prod_{k=1}^{n} c_{k}}\right)^{1 / n} \\
& \leq \sum_{n=1}^{\infty}\left(\prod_{k=1}^{n} c_{k}\right)^{-1 / n}\left(\frac{1}{n} \sum_{k=1}^{n} c_{k} a_{k}\right) . \tag{29}
\end{align*}
$$

Exchanging the order of the summation in the last inequality, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \sum_{k=1}^{\infty} c_{k} a_{k} \sum_{n=k}^{\infty} \frac{1}{n}\left(\prod_{k=1}^{n} c_{k}\right)^{-1 / n} \tag{30}
\end{equation*}
$$

Set

$$
\begin{equation*}
c_{k}=\left(1+\frac{1}{k}\right)^{k} k, \quad k=1,2, \ldots, \tag{31}
\end{equation*}
$$

we have

$$
\begin{equation*}
\prod_{k=1}^{n} c_{k}=(1+n)^{n} \tag{32}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{n=k}^{\infty} \frac{1}{n}\left(\prod_{k=1}^{n} c_{k}\right)^{-1 / n}=\sum_{n=k}^{\infty} \frac{1}{n(n+1)}=\frac{1}{k} \tag{33}
\end{equation*}
$$

Thus, by virtue of (30), we deduce that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \sum_{k=1}^{\infty} \frac{1}{k} c_{k} a_{k}=\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} a_{n} . \tag{34}
\end{equation*}
$$

Taking $x=n$ in Theorem 1, we have refined Carleman's inequality (1) as

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & \leq e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{\infty} \frac{b_{k}}{(1+n)^{k}}\right) a_{n} \\
& <e \sum_{n=1}^{\infty}\left(1-\sum_{k=1}^{m} \frac{b_{k}}{(1+n)^{k}}\right) a_{n} \tag{35}
\end{align*}
$$

where m is any positive integer. This proves Theorem 2 as required.
Remark 7. It is clear that (2) is the special case of (35) at $m=1$. Furthermore, by the binomial series, we have

$$
\begin{equation*}
\left(1+\frac{1}{n+1 / 5}\right)^{-1 / 2}>1-\frac{1}{2(n+1)}-\frac{1}{24(n+1)^{2}}, \quad \text { for } n=1,2, \ldots . \tag{36}
\end{equation*}
$$

Therefore, when $m=2$, (35) strengthens (3).

References

[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952.
[2] D. S. Mitrinović, Analytic Inequalities, Die Grundlehren der mathematischen Wisenschaften, vol. 1965, Springer-Verlag, New York, 1970.
[3] P. Yan and G. Sun, A strengthened Carleman's inequality, J. Math. Anal. Appl. 240 (1999), no. 1, 290-293.
[4] B. Yang and L. Debnath, Some inequalities involving the constant e, and an application to Carleman's inequality, J. Math. Anal. Appl. 223 (1998), no. 1, 347-353.

Hongwei Chen: Department of Mathematics, Christopher newport University, Newport News, VA 23606, USA

E-mail address: hchen@pcs.cnu.edu

