A CHARACTERIZATION OF HARMONIC FOLIATIONS BY THE VOLUME PRESERVING PROPERTY OF THE NORMAL GEODESIC FLOW

HOBUM KIM

Received 22 July 2001

We prove that a Riemannian foliation with the flat normal connection on a Riemannian manifold is harmonic if and only if the geodesic flow on the normal bundle preserves the Riemannian volume form of the canonical metric defined by the adapted connection.

2000 Mathematics Subject Classification: 53C12, 53D25.

1. Introduction. Let (M, g_M) be a Riemannian manifold. A foliation \mathcal{F} on M is *Riemannian* and g_M bundle-like if all the leaves are locally equi-distant to each other. Such a foliation is characterized by the property that a geodesic orthogonal to the foliation at one point is orthogonal everywhere. For a Riemannian foliation, considerable efforts have been made to give global characterizations of the property that it is harmonic, that is, all of its leaves are minimal submanifolds. For examples, a Riemannian foliation is harmonic if and only if either one of the following conditions holds: (1) it is an extremal of the energy functional for special variations (see [2]); (2) it is an extremal of the energy of the foliation under certain variations of the Riemannian metric of the manifold (see [1]). In this paper, we give a dynamical characterization is the sense of Oshikiri [4].

Let \mathcal{F} be a Riemannian foliation of dimension p and codimension q on a Riemannian manifold M of dimension n (p + q = n) with bundle-like metric g_M . Throughout, we work in the smooth category and the following notations are used:

- *TM* is the tangent bundle of *M*.
- *L* and L^{\perp} are the tangent bundle and the normal bundle of \mathcal{F} , respectively.
- ΓTM , ΓL , and ΓL^{\perp} are the spaces of sections of TM, L, and L^{\perp} , respectively.
- π : $TM \to L^{\perp}$, π^{\perp} : $TM \to L$, and $P_{\mathcal{F}} : L^{\perp} \to M$ are the canonical projections.
- ∇^M is the Levi-Civita connection associated with g_M .

Since \mathscr{F} is Riemannian, there exists a unique torsion-free metric connection ∇ on L^{\perp} which is called *adapted* and given as follows (see [2]): for $Z \in \Gamma L^{\perp}$,

$$\nabla_X Z = \begin{cases} \pi[X, Z] & \text{for } X \in \Gamma L, \\ \pi(\nabla_X^M Z) & \text{for } X \in \Gamma L^{\perp}. \end{cases}$$
(1.1)

Associated with the above connection there is a bundle map $C_{\mathcal{F}}: TL^{\perp} \to L^{\perp}$ called the

HOBUM KIM

connection map associated with \mathcal{F} given as follows. For $\xi \in T_Z L^{\perp}$ with $(dP_{\mathcal{F}})(\xi) \neq 0$,

$$C_{\mathscr{F}}(\xi) = \nabla_{\dot{\sigma}(0)} Z, \tag{1.2}$$

where *Z* is a curve in L^{\perp} such that $d/dt|_{t=0}Z = \xi$ and $\sigma(t) = P_{\mathcal{F}}(Z(t))$. This map gives a metric \tilde{g} on L^{\perp} defined by

$$\tilde{g}(\xi,\eta) = g_M((dP_{\mathcal{F}})_Z(\xi), (dP_{\mathcal{F}})_Z(\eta)) + g_M(C_{\mathcal{F}}(\xi), C_{\mathcal{F}}(\eta))$$
(1.3)

for $\xi, \eta \in T_Z L^{\perp}$. We denote the Riemannian volume form on L^{\perp} associated with \tilde{g} by $\tilde{\mu}$.

We define a local flow ϕ_t on L^{\perp} , called the *normal geodesic flow* of \mathcal{F} as follows. For $z \in L^{\perp}$, let γ be a geodesic with initial velocity z. Since \mathcal{F} is Riemannian, $\dot{\gamma}(t) \in L^{\perp}$ for each t in the domain of γ . We put $\phi_t(z) = \dot{\gamma}(t)$ for $z \in L^{\perp}$ and t in the domain of γ .

A foliation \mathcal{F} is said to *have the flat normal connection* if the normal bundle L^{\perp} of \mathcal{F} admits an orthonormal frame field $\{E_{p+1}, \ldots, E_n\}$ such that $g_M(\nabla_Z^M E_{\alpha}, E_{\beta}) = 0$ for all $\alpha, \beta = p + 1, \ldots, n$ and all $Z \in \Gamma L^{\perp}$.

The purpose of this paper is to prove the following theorem.

THEOREM 1.1. Let \mathcal{F} be a Riemannian foliation on a Riemannian manifold which has a flat normal connection and $\tilde{\mu}$ the Riemannian volume form on L^{\perp} corresponding to \tilde{g} . Then \mathcal{F} is harmonic if and only if (ϕ_t) preserves $\tilde{\mu}$.

2. The proof. Let ζ be a vector field on L^{\perp} generated by the geodesic flow. It suffices to show that \mathscr{F} is harmonic if and only if $(\Theta_{\zeta} \tilde{\mu})(z) = 0$ at any given point $z \in L^{\perp}$, where Θ_{ζ} denotes the Lie derivative. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space of M at the point $m = P_{\mathscr{F}}(z)$ such that $e_i \in L_m$ for $i = 1, \ldots, p$ and $e_\alpha \in L_m^{\perp}$ for $\alpha = p + 1, \ldots, n$. In a neighborhood of m, we may choose a frame $\{E_\alpha : \alpha = p + 1, \ldots, n\}$ of L^{\perp} , called an *adapted frame*, satisfying the following properties: $E_\alpha(m) = e_\alpha$, $\alpha = p + 1, \ldots, n$, $\nabla_{e_\alpha} E_\beta = \pi(\nabla_{e_\alpha}^M E_\beta) = 0$ and $\nabla_X E_\alpha = \pi([X, E_\alpha]) = 0$ for any smooth section X of L on U (see [3]). Since \mathscr{F} has the flat normal connection, we may choose E_α so that $\nabla_{E_\alpha} E_\beta = 0$ for $\alpha, \beta = p + 1, \ldots, n$. Completing this frame by an orthonormal frame $\{E_i : i = 1, \ldots, p\}$ of L with $E_i(m) = e_i$, we get a local orthonormal frame $\{E_1, \ldots, E_n\}$ of TM on a neighborhood U of m with $E_A(m) = e_A$ for $A = 1, \ldots, n$. Let E_A^H for $A = 1, \ldots, n$ be the *horizontal lift* of E_A to TL^{\perp} , that is, the unique vector field on a neighborhood of z such that $dP_{\mathscr{F}}(E_A^H) = E_A$ and $C_{\mathscr{F}}(E_A^H) = 0$, and E_α^V for $\alpha = p + 1, \ldots, n$ the vertical lift of E_α on TL^{\perp} , that is, the vector field on a neighborhood of z such that $dP(E_\alpha^V) = E_\alpha$. We put $E_A^H(z) = e_A^H$ and $E_\alpha^V(z) = e_\alpha^V$. Now we compute

$$\begin{split} [(\Theta_{\zeta}\tilde{\mu})(z)](e_{1}^{H},...,e_{n}^{H},e_{p+1}^{V},...,e_{n}^{V}) \\ &= -\sum_{i=1}^{p}\tilde{\mu}(e_{1}^{H},...,[\zeta,E_{i}^{H}](z),...,e_{p}^{H},e_{p+1}^{H},...,e_{n}^{H},e_{p+1}^{V},...,e_{n}^{V}) \\ &- \sum_{\alpha=p+1}^{n}\tilde{\mu}(e_{1}^{H},...,e_{p}^{H},e_{p+1}^{H},...,[\zeta,E_{\alpha}^{H}](z),...,e_{n}^{H},e_{p+1}^{V},...,e_{n}^{V}) \\ &- \sum_{\alpha=p+1}^{n}\tilde{\mu}(e_{1}^{H},...,e_{n}^{H},e_{p+1}^{V},...,[\zeta,E_{\alpha}^{V}](z),...,e_{n}^{V}). \end{split}$$
(2.1)

$$\begin{split} \tilde{\mu}(e_{1}^{H},...,[\zeta,E_{i}^{H}](z),...,e_{p}^{H},e_{p+1}^{H},...,e_{n}^{H},e_{p+1}^{V},...,e_{n}^{V}) \\ &= \tilde{g}([\zeta,E_{i}^{H}](z),e_{i}^{H}) = g_{M}((dP_{\mathcal{F}})[\zeta,E_{i}^{H}](m),e_{i}), \\ \tilde{\mu}(e_{1}^{H},...,e_{p}^{H},e_{p+1}^{H},...,[\zeta,E_{\alpha}^{H}](z),...,e_{n}^{H},e_{p+1}^{V},...,e_{n}^{V}) \\ &= g_{M}((dP_{\mathcal{F}})([\zeta,E_{\alpha}^{H}](z)),e_{\alpha}), \end{split}$$
(2.2)

where $m = P_{\mathcal{F}}(z)$ and α is the second fundamental form of \mathcal{F} (see [2]).

Let W_i be any vector field on M satisfying $W_i(\varphi_t^i m) = \tilde{\varphi}_t^i z$ for the local flows (φ_t^i) of E_i and $(\tilde{\varphi}_t^i)$ of E_i^H . From $dP_{\mathcal{F}} \circ E_i^H = E_i \circ P_{\mathcal{F}}$, we have $P_{\mathcal{F}} \circ \tilde{\varphi}_t^i = \varphi_t^i \circ P_{\mathcal{F}}$ for any t. Therefore,

$$dP_{\mathcal{F}}([\zeta, E_{i}^{H}](z)) = \frac{d}{dt}|_{t=0} (dP_{\mathcal{F}} \circ d\tilde{\varphi}_{-t}^{i})(\zeta(\tilde{\varphi}_{t}^{i}(z)))$$

$$= \frac{d}{dt}|_{t=0} (d\varphi_{-t}^{i} \circ dP_{\mathcal{F}})(\zeta(\tilde{\varphi}_{t}^{i}(z)))$$

$$= \frac{d}{dt}|_{t=0} (d\varphi_{-t}^{i} \circ \tilde{\varphi}_{t}^{i})(z)$$

$$= \frac{d}{dt}|_{t=0} (d\varphi_{-t}^{i})(W_{i}(\varphi_{t}^{i}(m)))$$

$$= [W_{i}, E_{i}](m).$$

$$(2.3)$$

Hence we have

$$g_M(dP_{\mathcal{F}}([\zeta, E_i^H](z)), E_i(z)) = g_M([W_i, E_i], E_i)(m)$$

$$= g_M(W_i, \nabla_{E_i}^M E_i)(m)$$

$$= g_M(W_i(m), \alpha(E_i, E_i)(m))$$

$$= g_M(z, \alpha(E_i(m), E_i(m))).$$
(2.4)

Thus, we have

$$-\sum_{i=1}^{p} \tilde{\mu}(e_{1}^{H},...,[\zeta, E_{i}^{H}](z),...,e_{p}^{H},e_{p+1}^{H},...,e_{n}^{H},e_{p+1}^{V},...,e_{n}^{V})$$

$$= -g_{M}\left(z,\sum_{i=1}^{p} \alpha(E_{i}(m),E_{i}(m))\right)$$

$$= -g_{M}(z,\tau(m)),$$
(2.5)

where $\tau(m)$ is the mean curvature vector of \mathcal{F} at m (see [2]).

On the other hand, we have

$$g_M((dP_{\mathscr{F}}[\zeta, E^H_{\alpha}])(m), e_{\alpha}) = g_M([W_{\alpha}, E_{\alpha}](m), e_{\alpha}), \tag{2.6}$$

HOBUM KIM

where W_{α} is any vector field on M satisfying $W_{\alpha}(\varphi_t^{\alpha}m) = \tilde{\varphi}_t^{\alpha}z$ for the local flows φ_t^{α} of E_{α} and $\tilde{\varphi}_t^{\alpha}$ of E_{α}^H , $\alpha = p + 1, ..., n$. Since $W_{\alpha}(\varphi_t^{\alpha}m)$ is an integral curve of E_{α}^H , we have $\pi(\nabla_{E_{\alpha}}^M W_{\alpha}) = C_{\mathcal{F}}(E_{\alpha}^H) = 0$. Moreover, by the choice of $\{E_{\alpha}\}$, we have $\pi(\nabla_{W_{\alpha}}^M E_{\alpha})(m) = 0$. Therefore,

$$g_M((dP_{\mathcal{F}}[\zeta, E^H_{\alpha}])(m), e_{\alpha}) = g_M((\nabla^M_{W_{\alpha}} E_{\alpha})(m) - (\nabla^M_{E_{\alpha}} W_{\alpha})(m), e_{\alpha}) = 0.$$
(2.7)

Thus, to complete the proof, it suffices to show that

$$\tilde{\mu}(e_1^H, \dots, e_n^H, e_{p+1}^V, \dots, [\zeta, E_{\alpha}^V](z), \dots, e_n^V) = 0,$$
(2.8)

that is,

$$g_M(C_{\mathscr{F}}([\zeta, E^V_\alpha](z)), e_\alpha) = 0.$$
(2.9)

For this purpose, we introduce a local coordinate system around a point $z \in L^{\perp}$ as follows: let $(x^A)_{A=1,...,n} : U \to \mathbb{R}^n$ be a distinguished chart on a neighborhood U of $m \in M$. To $z \in P_{\mathcal{F}}^{-1}(U)$ with $P_{\mathcal{F}}(z) = m$, we assign $(x^1(m),...,x^n(m),z^{p+1}(m),...,z^n(m))$ as its coordinates, where $z = \sum_{\alpha=p+1}^n z^{\alpha}(m)E_{\alpha}(m)$. Let y be a geodesic orthogonal to the leaves of \mathcal{F} and $(x^A(t) : A = 1,...,n)$ its local coordinates.

Write

$$\dot{\gamma}(t) = \sum_{\alpha=p+1}^{n} z^{\alpha}(t) E_{\alpha}(\gamma(t)).$$
(2.10)

By the choice of $\{E_{\alpha}\}$, we get

$$\frac{d}{dt}z^{\alpha} = 0 \tag{2.11}$$

for $\alpha = p + 1, ..., n$. Moreover, if we express E_{α} as $E_{\alpha} = \sum_{A=1}^{n} f_{\alpha}^{A} (\partial/\partial x^{A})$, where f_{α}^{A} is a smooth function on *U*, we have

$$\sum_{A=1}^{n} \left(\frac{d}{dt} x^{A} \right) \frac{\partial}{\partial x^{A}} = \dot{y} = \sum_{\alpha=p+1}^{n} z^{\alpha} E_{\alpha} = \sum_{\alpha=p+1}^{n} \sum_{A=1}^{n} z^{\alpha} f_{\alpha}^{A} \frac{\partial}{\partial x^{A}}.$$
 (2.12)

Equations (2.10) and (2.11) imply that $(x^A(t), z^{\alpha}(t))$ satisfy

$$\frac{d}{dt}x^{A} = \sum_{\alpha=p+1}^{n} z^{\alpha} f_{\alpha}^{A}, \qquad \frac{d}{dt} z^{\alpha} = 0.$$
(2.13)

It follows that ζ can be locally expressed as

$$\zeta = \sum_{\alpha,A} z^{\alpha} f^{A}_{\alpha} \frac{\partial}{\partial x^{A}}.$$
(2.14)

A simple computation using the above expression of ζ gives

$$[\zeta, E^V_{\alpha}] = -\sum_{A} \left(f^A_{\alpha} + \sum_{\beta} z^{\beta} E_{\alpha}(f^A_{\beta}) \right) \frac{\partial}{\partial x^A}.$$
 (2.15)

576

It is easy to show that for a vector field $\xi = \sum_A \xi^A (\partial/\partial x^A) + \sum_\alpha \tilde{\xi}^\alpha (\partial/\partial z^\alpha)$, $C_{\mathcal{F}}(\xi)$ is given by

$$C_{\mathcal{F}}(\xi) = \sum_{\alpha} \left(\tilde{\xi}^{\alpha} + \sum_{\beta,A} \Gamma^{\alpha}_{\beta A} z^{\beta} \xi^{A} \right) E_{\alpha}, \qquad (2.16)$$

where $z = \sum_{\alpha} z^{\alpha} E_{\alpha}$ and $\nabla_{\partial_A} E_{\alpha} = \sum_{\gamma=p+1}^{n} \Gamma_{\alpha A}^{\gamma} E_{\gamma}$. Therefore,

$$C_{\mathcal{F}}([\boldsymbol{\zeta}, E^{V}_{\alpha}]) = -\sum_{\delta, \sigma, A} \left\{ f^{A}_{\alpha} + \sum_{\beta} z^{\beta} E_{\alpha}(f^{A}_{\beta}) \right\} \Gamma^{\delta}_{\sigma A} z^{\sigma} E_{\delta}.$$
(2.17)

But $\Gamma_{\sigma A}^{\delta} = 0$ on *U* for A = 1, ..., n and $\delta, \sigma = p + 1, ..., n$ by the choice of the frame $\{E_A\}$. Hence $C_{\mathcal{F}}([\zeta, E_{\alpha}^V]) = 0$ and the proof is complete.

ACKNOWLEDGMENTS. The present work was supported by the Basic Science Research Institute Program, Ministry of Education, 1995, BSRI-95-1422 and Yonsei University Faculty Grant for 1994.

REFERENCES

- M. D. Hvidsten and P. Tondeur, A characterization of harmonic foliations by variations of the metric, Proc. Amer. Math. Soc. 98 (1986), no. 2, 359–362.
- [2] F. W. Kamber and P. Tondeur, *Harmonic foliations*, Harmonic Maps (New Orleans, La, 1980), Lecture Notes in Math., vol. 949, Springer-Verlag, Berlin, 1982, pp. 87–121.
- [3] F. W. Kamber, P. Tondeur, and G. Tóth, *Transversal Jacobi fields for harmonic foliations*, Michigan Math. J. 34 (1987), no. 2, 261–266.
- [4] G. Oshikiri, Some remarks on minimal foliations, Tôhoku Math. J. (2) 39 (1987), no. 2, 223-229.

HOBUM KIM: DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY, SEOUL 120-749, KOREA *E-mail address*: kimbb@yonsei.ac.kr

577