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Bogin [1] proved a fixed point theorem for a nonexpansive type self-map on a com-

plete metric space. While Rhoades obtained a generalization of it (see [8, Theorem 1])

by replacing the constant coefficients in the governing inequality of the map with

nonnegative real-valued functions of the independent variables, Ćirić [3] obtained a

generalization by further weakening the governing inequality without allowing the co-

efficients to vary. Chandra et al. obtained a coincidence point theorem (see [2, Theo-

rem 2.1]) for a pair of self-maps on a metric space unifying the results of Rhoades

and Ćirić. They also obtained a corresponding version for multimaps (see [2, Theo-

rem 2.2]). In this paper, we obtain proper generalizations of Theorems 2.1 and 2.2 of

Chandra et al. [2].

Throughout, unless otherwise stated, (X,d) is a metric space, K(X) is the collec-

tion of all nonempty compact subsets of X, CL(X) is the collection of all nonempty

closed subsets of X, H is the extended Hausdorff metric on CL(X), F is a map-

ping from X into CL(X), f , S are self-maps on X, I is the identity map on X, for

any self-map h on X, �(h) = {hx : x ∈ X}, R+ is the set of all nonnegative real

numbers, N is the set of all positive integers, Ω : (R+)5 → R+ is monotonically in-

creasing in each coordinate variable, for any t1, t2, t3, t4, t5 ∈ R+, Ω(t+1 , t
+
2 , t

+
3 , t

+
4 , t

+
5 )

= inf{Ω(s1,s2,s3,s4,s5) : sj ∈ (tj,+∞) for all j = 1,2,3,4,5}, Ω(t1, t+2 , t+3 , t+4 , t+5 ) =
inf{Ω(t1,s2,s3,s4,s5) : sj ∈ (tj,+∞) for all j = 2,3,4,5}, σj : R+ → R+ (j = 1,2) and

ζ :R+ →R+ are defined as

σ1(t)=Ω
(
0+,0+, t+, t+, t+

)
, σ2(t)=Ω

(
t,0+,0+, t+,0+

)
,

ζ(t)=max
{
σ1(t),σ2(t)

}
,

(1)

for all t ∈R+, α, D are functions from X×X to R+ defined as

α(x,y)=Ω(d(Sx,fx),d(Sy,fy),d(Sx,Sy),d(fx,Sy),d(Sx,fy)),
D(x,y)=Ω(d(Sx,Fx),d(Sy,Fy),d(Sx,Sy),d(Sy,Fx),d(Sx,Fy)), (2)

for all x,y in X.
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Definition 1. We say that (f ,S) has property A if there is a sequence {xn}∞n=0 in

X such that Sxn+1 = fxn (=yn, say) for all n= 0,1,2 . . . .

Lemma 2. Suppose that (f ,S) has property A, {d(yn,yn+1)}∞n=0 converges to zero,

σ1(t) < t for all t ∈ (0,∞), and that

d(fx,fy)≤α(x,y) (3)

for all x,y in X. Then {yn} is Cauchy.

Proof. If possible, suppose that {yn} is not Cauchy. Then there exists a positive

real number ε with the following property: given N ∈ N there exists m,n ∈ N �m >
n≥N and d(yn,ym)≥ ε. Hence there exist strictly increasing sequences {nk}∞k=1 and

{mk}∞k=1 inN such that k <nk <mk,d(ynk,ymk)≥ ε, andd(ynk,ymk−1) < ε for all k∈
N. Since {d(yn,yn+1)} converges to zero, it follows that {d(ynk,ymk)}∞k=1 converges

to ε and that for any fixed r ,s in {−1,0,1}, the sequence {d(ynk+r ,ymk+s)}∞k=1 also con-

verges to ε. We have α(xnk,xmk+1)=Ω(d(ynk−1,ynk),d(ymk,ymk+1),d(ynk−1,ymk),
d(ynk,ymk),d(ynk−1,ymk+1)) for all k ∈ N. We note that the limit superior of

{α(xnk,xmk+1)}∞k=1 is less than or equal to Ω(0+,0+,ε+,ε+,ε+) (= σ1(ε)). We also

note that {d(fxnk,fxmk+1)}∞k=1 converges to ε. From (3) we have

d
(
fxnk,fxmk+1

)≤α(xnk,xmk+1
)

(4)

for all k ∈ N. By taking limit superiors on both sides of (4) as k → +∞ we obtain

ε ≤ σ1(ε). This is a contradiction since σ1(t) < t for all t ∈ (0,∞) and ε > 0. Hence

{yn} is Cauchy.

Definition 3. We say that Ω has property A if Ω(t,s,t,0, t+s) < s for all s,t ∈R+
with t < s.

Definition 4. We say that Ω has property B if there exist (i) a monotonically in-

creasing function ϕ : R+ → R+ with ϕ(t+) < t for all t ∈ (0,∞), and (ii) for each

t ∈R+ a nonempty index set It and nonnegative real numbers βi, γi (i∈ It) such that

sup{γi : i ∈ It} < 1, Ω(t,t,2t,t,t+ s) ≤ sup{(1+βi)t+γis : i ∈ It} for all s ∈ [t,2t],
Ω(t,t,t,0,λtt)≤ϕ(t), where λt = sup{(1+βi)/(1−γi) : i∈ It}.

Lemma 5. Suppose that (f ,S) has property A, Ω has properties A and B, and that

inequality (3) is true for all x,y in X. Then {d(yn,yn+1)}∞n=0 converges to zero.

Proof. We haveα(xn,xn+1)=Ω(d(yn−1,yn),d(yn,yn+1),d(yn−1,yn),0,d(yn−1,
yn+1)) for all n∈N. From inequality (3) we have

d
(
yn,yn+1

)≤α(xn,xn+1
)

(5)

for alln∈N. If d(ym−1,ym) < d(ym,ym+1) for somem∈N, then since d(yn−1,yn+1)
≤ d(yn−1,yn)+d(yn,yn+1), Ω is increasing in each coordinate variable and Ω has

property A, it follows from (5) that d(ym,ym+1) < d(ym,ym+1) which is a contradic-

tion. Hence d(yn,yn+1)≤ d(yn−1,yn) for all n∈N.

From (3) we have

d
(
yn,yn+2

)≤α(xn,xn+2
)

(6)
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for all n∈N. But

α
(
xn,xn+2

)=Ω(d(yn−1,yn
)
,d
(
yn+1,yn+2

)
,d
(
yn−1,yn+1

)
,

d
(
yn,yn+1

)
,d
(
yn−1,yn+2

))
≤Ω(d(yn−1,yn

)
,d
(
yn+1,yn+2

)
,d
(
yn−1,yn

)+d(yn,yn+1
)
,

d
(
yn,yn+1

)
,d
(
yn−1,yn

)+d(yn,yn+2
))

≤Ω(d(yn−1,yn
)
,d
(
yn−1,yn

)
,2d

(
yn−1,yn

)
,d
(
yn−1,yn

)
,

d
(
yn−1,yn

)+d(yn,yn+2
))

(7)

since the sequence {d(yk−1,yk)} is monotonically decreasing and Ω is increasing

in each coordinate variable. Since Ω has property B, there exist (i) a monotonically

increasing function ϕ : R+ → R+ with ϕ(t+) < t for all t ∈ (0,∞) and (ii) for each

t ∈R+ a nonempty index set It and nonnegative real numbers βi, γi (i∈ It) such that

sup{γi : i∈ It}< 1,Ω(t,t,2t,t,t+s)≤ sup{(1+βi)t+γis : i∈ It} for all s ∈ [t,2t], and

Ω(t,t,t,0,λtt) ≤ϕ(t), where λt = sup{(1+βi)/(1−γi) : i ∈ It}. Since d(yn,yn+2) ≤
d(yn,yn+1)+d(yn+1,yn+2)≤ 2d(yn−1,yn), we have

Ω
(
d
(
yn−1,yn

)
,d
(
yn−1,yn

)
,2d

(
yn−1,yn

)
,d
(
yn−1,yn

)
,d
(
yn−1,yn

)+d(yn,yn+2
))

≤ sup
{(

1+βi
)
d
(
yn−1,yn

)+γid(yn,yn+2
)

: i∈ Ir
} (8)

provided d(yn−1,yn)≤ d(yn,yn+2), where r = d(yn−1,yn). We assume that d(yn−1,
yn)≤ d(yn,yn+2). Then, from (6), (7), and (8), we have

d
(
yn,yn+2

)≤ sup
{(

1+βi
)
d
(
yn−1,yn

)+γid(yn,yn+2
)

: i∈ Ir
}
. (9)

Hence given ε > 0 there exists j ∈ Ir such that

d
(
yn,yn+2

)≤ (1+βj)d(yn−1,yn
)+γjd(yn,yn+2

)+ε. (10)

Hence in view of the hypothesis that 1> sup{γi : i∈ Ir} (= µ, say), we have

d
(
yn,yn+2

)≤ (1+βj
1−γj

)
d
(
yn−1,yn

)+( ε
1−γj

)
≤ λrd

(
yn−1,yn

)+( ε
1−µ

)
. (11)

Since ε > 0 is arbitrary, from (11) it follows that

d
(
yn,yn+2

)≤ λrd(yn−1,yn
)
. (12)

Since λr ≥ 1, (12) is evidently true if d(yn−1,yn) > d(yn,yn+2). Hence (12) is true for

all n∈N. Hence we have

α
(
xn+1,xn+2

)=Ω(d(yn,yn+1
)
,d
(
yn+1,yn+2

)
,d
(
yn,yn+1

)
,0,d

(
yn,yn+2

))
≤Ω(d(yn−1,yn

)
,d
(
yn−1,yn

)
,d
(
yn−1,yn

)
,0,d

(
yn,yn+2

))
≤Ω(d(yn−1,yn

)
,d
(
yn−1,yn

)
,d
(
yn−1,yn

)
,0,λrd

(
yn−1,yn

))
≤ϕ(d(yn−1,yn

))
(13)



20 S. VENKATA RATNAM NAIDU

for all n∈N. Hence from (3) we have

d
(
yn+1,yn+2

)≤ϕ(d(yn−1,yn
))

(14)

for alln∈N. Sinceϕ is monotonically increasing onR+, by repeatedly using inequality

(14) we obtain

d
(
y2n,y2n+1

)≤ϕn(d(y0,y1
))
, d

(
y2n+1,y2n+2

)≤ϕn(d(y1,y2
))

(15)

for all n ∈ N. Since ϕ is monotonically increasing on R+ and ϕ(t+) < t for all t ∈
(0,∞), {ϕn(t)} converges to zero for all t in R+. Hence from (15) it follows that

{d(yn,yn+1)} converges to zero.

Definition 6 (see [5]). A pair (f1,f2) of self-maps on (X,d) is said to be compatible

(co.) if {d(f1f2xn,f2f1xn)} converges to zero whenever {xn} is a sequence in X such

that {f1xn} and {f2xn} are convergent in X and have the same limit.

Definition 7 (see [4]). A pair (f1,f2) of self-maps on an arbitrary set E is said to

be weakly compatible (w.co.) if f1f2x = f2f1x whenever x ∈ E is such that f1x = f2x.

Remark 8. If (f ,S) is co. then it is w.co.

Definition 9 (see [7]). A pair (f1,f2) of self-maps on (X,d) is said to be recipro-

cally continuous on X if {f1f2xn} converges to f1u and {f2f1xn} converges to f2u
whenever {xn} is a sequence in X such that {f1xn} and {f2xn} converge to u for

some u∈X.

Definition 10. A pair (f1,f2) of self-maps on (X,d) is said to be reciprocally

continuous at u ∈ X if {f1f2xn} converges to f1u and {f2f1xn} converges to f2u
whenever {xn} is a sequence in X such that {f1xn} and {f2xn} converge to u.

Lemma 11. Suppose that (f ,S) has property A, {yn} converges to an element z of

X and that (3) is true for all x,y in X. Then the following statements are true:

(i) If σ1(t) < t for all t ∈ (0,∞) and fp = Sp for some p ∈ X, then fp = z. In

particular, f and S cannot have a common fixed point or coincidence value other than

z if σ1(t) < t for all t ∈ (0,∞).
(ii) If σ2(t) < t for all t ∈ (0,∞) and z ∈ �(S), then there exists w ∈ X such that

fw = Sw = z.

(iii) If ζ(t) < t for all t ∈ (0,∞), z ∈�(S) and (f ,S) is w.co., then fz = Sz = z.

(iv) If σ1(t) < t for all t ∈ (0,∞), S is continuous at z and (f ,S) is co., then Sz = z.

(v) If σ1(t) < t for all t ∈ (0,∞), f is continuous at z and (f ,S) is co., then fz = z.

(vi) If σ1(t) < t for all t ∈ (0,∞), (f ,S) is co. and reciprocally continuous at z, then

fz = Sz = z.

Proof. (i) Suppose that σ1(t) < t for all t ∈ (0,∞) and fp = Sp for some p ∈ X.

We have

α
(
p,xn+1

)=Ω(0,d(yn,yn+1
)
,d
(
fp,yn

)
,d
(
fp,yn

)
,d
(
fp,yn+1

))
(16)

for all n∈N. We note that the limit superior of the sequence {α(p,xn+1)} is less than
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or equal toΩ(0,0+,d(fp,z)+,d(fp,z)+,d(fp,z)+)which in turn is less than or equal

to σ1(d(fp,z)). From (3) we have

d
(
fp,yn+1

)≤α(p,xn+1
)

(17)

for all n ∈ N. By taking limit superiors on both sides of (17) as n → +∞ we obtain

d(fp,z)≤ σ1(d(fp,z)). Since σ1(t) < t for all t ∈ (0,∞), we have d(fp,z)= 0. Hence

fp = z. Hence f and S cannot have a common fixed point other than z. If p,q ∈X are

such that fp = Sp and fq = Sq, then we have fp = z = fq. Hence f and S cannot

have a coincidence value other than z.

(ii) Suppose that σ2(t) < t for all t ∈ (0,∞) and z ∈ �(S). Then there exists w ∈
X � Sw = z. We have

α
(
w,xn+1

)=Ω(d(z,fw),d(yn,yn+1
)
,d
(
z,yn

)
,d
(
fw,yn

)
,d
(
z,yn+1

))
(18)

for all n ∈ N. We note that the limit superior of the sequence {α(w,xn+1)} is less

than or equal to Ω(d(fw,z),0+,0+,d(fw,z)+,0+) which in turn is less than or equal

to σ2(d(fw,z)). From (3) we have

d
(
fw,yn+1

)≤α(w,xn+1
)

(19)

for all n ∈ N. By taking limit superiors on both sides of (19) as n → +∞ we obtain

d(fw,z)≤ σ2(d(fw,z)). Hence d(fw,z)= 0. Hence fw = z.

(iii) Suppose that ζ(t) < t for all t ∈ (0,∞), z ∈ �(S) and (f ,S) is w.co. From

statement (ii) it follows that there exists w ∈X � fw = Sw = z. Hence from the weak

compatibility of (f ,S) we have fz = fSw = Sfw = Sz. We have

α
(
z,xn+1

)=Ω(d(Sz,fz),d(yn,yn+1
)
,d
(
Sz,yn

)
,d
(
fz,yn

)
,d
(
Sz,yn+1

))
(20)

for all n∈N. We note that the limit superior of the sequence {α(z,xn+1)} is less than

or equal to Ω(0,0+,d(fz,z)+,d(fz,z)+,d(fz,z)+) which in turn is less than or equal

to σ1(d(fz,z)). From (3) we have

d
(
fz,yn+1

)≤α(z,xn+1
)

(21)

for all n ∈ N. By taking limit superiors on both sides of (21) as n → +∞ we obtain

d(fz,z)≤ σ1(d(fz,z)). Since σ1(t) < t for all t ∈ (0,∞), we have d(fz,z)= 0. Hence

fz = z. Hence Sz = z.

(iv) Suppose that σ1(t) < t for all t ∈ (0,∞), S is continuous at z and (f ,S) is

co. Since {yn} converges to z and S is continuous at z, {Syn} converges to Sz.

Hence the sequences {SSxn} and {Sfxn} converge to Sz. Since (f ,S) is co., and

{fxn} and {Sxn} are convergent sequences having the same limit z, it follows that

{d(Sfxn,fSxn)} converges to zero. Since {Sfxn} converges to Sz, it follows that

{fSxn} also converges to Sz. We have

α
(
Sxn,xn+1

)=Ω(d(SSxn,fSxn),d(yn,yn+1
)
,d
(
SSxn,yn

)
,

d
(
fSxn,yn

)
,d
(
SSxn,yn+1

)) (22)
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for all n ∈ N. We note that the limit superior of the sequence {α(Sxn,xn+1)} is less

than or equal to Ω(0+,0+,d(Sz,z)+,d(Sz,z)+,d(Sz,z)+)= σ1(d(Sz,z)). From (3) we

have

d
(
fSxn,yn+1

)≤α(Sxn,xn+1
)

(23)

for all n ∈ N. By taking limit superiors on both sides of (23) as n → +∞ we obtain

d(Sz,z)≤ σ1(d(Sz,z)). Hence d(Sz,z)= 0. Hence Sz = z.

(v) Suppose that σ1(t) < t for all t ∈ (0,∞), f is continuous at z and (f ,S) is

co. Since {yn} converges to z and f is continuous at z, {fyn} converges to fz.

Hence the sequences {ffxn} and {fSxn} converge to fz. Since (f ,S) is co., and

{fxn} and {Sxn} are convergent sequences having the same limit z, it follows that

{d(Sfxn,fSxn)} converges to zero. Since {fSxn} converges to fz, it follows that

{Sfxn} also converges to fz. We have

α
(
fxn,xn+1

)=Ω(d(Sfxn,ffxn),d(yn,yn+1
)
,d
(
Sfxn,yn

)
,

d
(
ffxn,yn

)
,d
(
Sfxn,yn+1

)) (24)

for all n ∈ N. We note that the limit superior of the sequence {α(fxn,xn+1)} is less

than or equal toΩ(0+,0+,d(fz,z)+,d(fz,z)+,d(fz,z)+)= σ1(d(fz,z)). From (3) we

have

d
(
ffxn,yn+1

)≤α(fxn,xn+1
)

(25)

for all n ∈ N. By taking limit superiors on both sides of (25) as n → +∞ we obtain

d(fz,z)≤ σ1(d(fz,z)). Hence d(fz,z)= 0. Hence fz = z.

(vi) Suppose thatσ1(t) < t for all t ∈ (0,∞), and (f ,S) is co. and reciprocally contin-

uous at z. Since {yn} converges to z, the sequences {fxn} and {Sxn} are convergent

and have the same limit z. Hence from the reciprocal continuity of (f ,S) at z it follows

that {Sfxn} converges to Sz and {fSxn} converges to fz and from the compatibility

of (f ,S) it follows that {d(Sfxn,fSxn)} converges to zero. Hence fz = Sz. We have

α
(
z,xn+1

)=Ω(d(Sz,fz),d(yn,yn+1
)
,d
(
Sz,yn

)
,d
(
fz,yn

)
,d
(
Sz,yn+1

))
(26)

for all n∈N. We note that the limit superior of the sequence {α(z,xn+1)} is less than

or equal to Ω(0,0+,d(fz,z)+,d(fz,z)+,d(fz,z)+) which in turn is less than or equal

to σ1(d(fz,z)). From (3) we have

d
(
fz,yn+1

)≤α(z,xn+1
)

(27)

for alln∈N. By taking limit superiors on both sides of the above inequality asn→+∞
we obtain d(fz,z)≤σ1(d(fz,z)). Hence d(fz,z)=0. Hence fz=z. Hence Sz=z.

Theorem 12. Suppose that (f ,S) has propertyA,Ω has propertiesA and B, σ1(t) <
t for all t ∈ (0,∞) and that inequality (3) is true for all x,y in X. Then {yn} is Cauchy.

Suppose that it converges to an element z of X. Then the following statements are true:

(i) f and S cannot have a common fixed point or coincidence value other than z.

(ii) If S is continuous at z and (f ,S) is co., then Sz = z.

(iii) If f is continuous at z and (f ,S) is co., then fz = z.

(iv) If (f ,S) is co. and reciprocally continuous at z, then fz = Sz = z.
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(v) If σ2(t) < t for all t ∈ (0,∞) and z ∈ �(S), then there exists w ∈ X such that

fw = Sw = z.

(vi) If σ2(t) < t for all t ∈ (0,∞), z ∈�(S) and (f ,S) is w.co., then fz = Sz = z.

Proof. The proof follows from Lemmas 2, 5, and 11.

Corollary 13. Suppose that (f ,S) has propertyA and that there is a monotonically

decreasing function δ :R+ → (0,1/3] such that

d(fx,fy)≤ sup
{
ad(Sx,Sy)+bmax

{
d(Sx,fx),d(Sy,fy)

}
+c[d(fx,Sy)+d(Sx,fy)] : a≥ 0, b ≥ δ(θ(x,y)),
c ≥ δ(θ(x,y)), a+b+2c ≤ 1

} (28)

for all x,y in X, where

θ(x,y)=max
{
d(Sx,Sy),d(Sx,fx),d(Sy,fy),

1
2

[
d(fx,Sy)+d(Sx,fy)]}. (29)

Then {yn} is Cauchy. Suppose that it converges to an element z ofX. Then the following

statements are true:

(i) f and S cannot have a common fixed point or coincidence value other than z.

(ii) If z ∈�(S), then there exists w ∈X such that fw = Sw = z.

(iii) If z ∈�(S) and (f ,S) is w.co., then fz = Sz = z.

(iv) If S is continuous at z and (f ,S) is co., then fz = Sz = z.

(v) If f is continuous at z and (f ,S) is co., then fz = z.

(vi) If (f ,S) is co. and reciprocally continuous at z, then fz = Sz = z.

Proof. Define Λ : (R+)5 → R+ as Λ(t1, t2, t3, t4, t5) = max{t1, t2, t3,(1/2)(t4+ t5)}.
Define I : R+ → R+ as I(t) = {(a,b,c) ∈ (R+)3 : a ≥ 0, b ≥ δ(t), c ≥ δ(t), and a+b+
2c ≤ 1}. Define Ω : (R+)5 →R+ as

Ω
(
t1, t2, t3, t4, t5

)
= sup

{
at3+bmax

{
t1, t2

}+c(t4+t5) : (a,b,c)∈ I(Λ(t1, t2, t3, t4, t5))} (30)

for all t1, t2, t3, t4, t5 ∈ R+. It is clear that (3) is true for all x,y in X. Since δ is

monotonically decreasing on R+, it is evident that Ω is increasing in each coordi-

nate variable. It can be verified that σ1(t) ≤ [1−δ(t+)]t and σ2(t) ≤ [1−δ(t)]t for

all t ∈ (0,∞) so that ζ(t) < t for all t ∈ (0,∞). It can be seen that Ω(t,s,t,0, t +
s) ≤ t + [1− δ(s)](s − t) < s if 0 ≤ t < s < +∞. Hence Ω has property A. It can

be shown that Ω(t,t,2t,t,t+ s) ≤ sup{(1+a)t+ cs : (a,b,c) ∈ I(2t)} for all t(R)+

and s ∈ [t,2t], (1+ a)/(1− c) ≤ 2−b ≤ 2−δ(2t) for all (a,b,c) ∈ I(2t) and that

Ω(t,t,t,0,λtt) ≤ [1− (2−λt)δ(t)]t ≤ [1−δ(2t)δ(t)]t < t for all t ∈ (0,+∞), where

λt = sup{(1+ a)/(1− c) : (a,b,c) ∈ I(2t)} ≤ 2− δ(2t). Clearly, sup{c : (a,b,c) ∈
I(2t)} ≤ (1/2)[1 − δ(2t)] ≤ 1/2. Define ϕ : R+ → R+ as ϕ(t) = [1 − δ(2t)δ(t)]t
for all t ∈ R+. Since δ is monotonically decreasing on R+, ϕ is monotonically in-

creasing on R+. Clearly, ϕ(t+) < t for all t ∈ (0,+∞) and Ω(t,t,t,0,λtt) ≤ ϕ(t) for

all t ∈ R+. Hence Ω satisfies property B with It = I(2t), βi = a, and γi = c, where

i= (a,b,c)∈ I(2t). Now the corollary is evident from Theorem 12.
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Corollary 14 (see [2, Theorem 2.1]). Suppose that f(X) ⊆ S(X) and that there

are nonnegative real-valued functions a,b,c on X×X such that

d(fx,fy)≤ a(x,y)d(Sx,Sy)+b(x,y)max
{
d(Sx,fx),d(Sy,fy)

}
+c(x,y)[d(fx,Sy)+d(Sx,fy)] (31)

for allx,y inX, inf{b(u,v) :u,v ∈X}> 0, inf{c(u,v) :u,v∈X}> 0, and sup{a(u,v)
+b(u,v)+2c(u,v) : u,v ∈ X} = 1. Suppose also that either (a) X is complete and S
is surjective; or (b) X is complete, S is continuous and (f ,S) is co.; or (c) S(X) is com-

plete: or (d) f(X) is complete. Then f and S have a coincidence point in X. Further, the

coincidence value is unique.

Proof. The proof follows from Corollary 13 by taking δ as a constant function

on R+ with its value in (0,min{1/3,δ1,δ2}], where δ1 = inf{b(u,v) : u,v ∈ X} and

δ2 = inf{c(u,v) :u,v ∈X}.
Corollary 15. Suppose that (f ,S) has property A and that there are a positive

integer N, nonnegative constants a1, . . . ,aN , and positive constants b1, . . . ,bN,c1, . . . ,cN
such that ai+bi+2ci ≤ 1 for all i= 1,2, . . . ,N and

d(fx,fy)≤max
{
aid(Sx,Sy)+bimax

{
d(Sx,fx),d(Sy,fy)

}
+ci

[
d(fx,Sy)+d(Sx,fy)] : i∈ {1,2, . . . ,N}} (32)

for all x,y in X. Then {yn} is Cauchy. Suppose that it converges to an element z of X.

Then statements (i) to (vi) of Corollary 13 are true here also.

Proof. The proof follows from Corollary 13 by taking δ as a constant function

on R+ with its value in (0,min{1/3,δ1,δ2}], where δ1 =min{bk : k = 1,2, . . . ,N} and

δ2 =min{ck : k= 1,2, . . . ,N}.
Corollary 16 (see uniqueness part of [2, Theorem 2.1]). Suppose that (X,d) is

complete and

d(fx,fy)≤ a(max
{
d(x,y),d(x,fx),d(y,fy),

[
d(fx,y)+d(x,fy)]/2})

+b(max
{
d(x,fx),d(y,fy)

})+c[d(fx,y)+d(x,fy)] (33)

for all x,y inX and for some constants a,b,c with a≥ 0, b > 0, c > 0 and a+b+2c = 1.

Then f has a unique fixed point in X.

Proof. The proof follows from Corollary 15 by taking S = I, N = 3, a1 = a, b1 =
b3 = b, c1 = c2 = c, a2 = a3 = 0, b2 = a+b, c3 = (1/2)a+c.

Corollary 17. Let ϕ : R+ → R+ be a monotonically increasing map such that

ϕ(t+) < t for all t ∈ (0,∞). Suppose that (f ,S) has property A and

d(fx,fy)

≤ϕ
(

max
{
d(Sx,Sy),d(Sx,fx),d(Sy,fy),

1
2

[
d(fx,Sy)+d(Sx,fy)]}) (34)
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for all x,y in X. Then {yn} is Cauchy. Suppose that it converges to an element z of X.

Then statements (i) to (vi) of Corollary 13 are true here also.

Proof. Define Ω : (R+)5 →R+ as

Ω
(
t1, t2, t3, t4, t5

)=ϕ(max
{
t1, t2, t3,

1
2

(
t4+t5

)})
(35)

for all t1, t2, t3, t4, t5 ∈ R+. It is clear that Ω is increasing in each coordinate variable,

ζ(t) < t for all t ∈ (0,∞),Ω has propertyA and that (3) is true for all x,y in X. Clearly,

Ω(t,t,2t,t,t+s)=ϕ(2t)≤ 2t if t ∈ R+ and t ≤ s ≤ 2t. Also Ω(t,t,t,0,2t)=ϕ(t) for

all t ∈R+. Hence Ω satisfies property B with It being a singleton, βi = 1, γi = 0 (i∈ It)
and λt = 2 for all t ∈R+. Now the corollary is evident from Theorem 12.

Remark 18. Example 19 shows that Corollary 17 cannot be deduced from Corollary

13 and therefore from Corollary 14 also. In particular, it follows that Theorem 12 is a

proper generalization of [2, Theorem 2.1].

Example 19. Define f : [0,1]→ [0,1] as f(x)= x/(1+x) for all x ∈ [0,1] and ϕ :

R+ →R+ as ϕ(t)= t/(1+t) for all t ∈R+. Then ϕ is a strictly increasing continuous

function on R+,ϕ(t) < t for all t ∈ (0,∞) and |fx−fy| ≤ϕ(|x−y|) for all x,y in X.

For x,y ∈ [0,1] let θ(x,y)=max{|x−y|, max{|x−fx|,|y−fy|}, (1/2)[|fx−y|+
|x−fy|]}. Let δ : R+ → (0,1/3] be a monotonically decreasing function. For t ∈ R+
let I(t) = {(a,b,c) ∈ (R+)3 : a ≥ 0, b ≥ δ(t), c ≥ δ(t) and a+b+2c ≤ 1}. If possible,

suppose that

|fx−fy| ≤ sup
{
a|x−y|+bmax

{|x−fx|,|y−fy|}
+c[|fx−y|+|x−fy|] : (a,b,c)∈ I(θ(x,y))} (36)

for all x,y in [0, 1]. Then, since I(1)⊇ I(θ(x,y)) for all x,y in [0, 1], we have

|fx−fy| ≤ sup
{
a|x−y|+bmax

{|x−fx|,|y−fy|}
+c[|fx−y|+|x−fy|] : (a,b,c)∈ I(1)} (37)

for all x,y in [0, 1]. Hence for x ∈ (0,(1/2)δ(1)] and y = 0 we have

x
1+x ≤ sup

{
ax+b x2

1+x +c
[
x

1+x +x
]

: (a,b,c)∈ I(1)
}

(38)

so that we have

1≤ sup
{
a(1+x)+bx+c(2+x) : (a,b,c)∈ I(1)}

= sup
{
a+2c+x(a+b+c) : (a,b,c)∈ I(1)}

≤ sup
{
a+2c+x : (a,b,c)∈ I(1)}

≤ sup
{
a+2c+ 1

2
δ(1) : (a,b,c)∈ I(1)

}

≤ sup
{
a+b+2c : (a,b,c)∈ I(1)}− 1

2
δ(1)

= 1− 1
2
δ(1) < 1

(39)

which is a contradiction.
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Definition 20. We say that Ω has property C if there exist (i) a monotonically

increasing functionϕ :R+ →R+ with
∑∞
n=1ϕn(t) <+∞ for all t ∈R+, and (ii) for each

t ∈R+ a nonempty index set It and nonnegative real numbers βi, γi (i∈ It) such that

sup{γi : i ∈ It} < 1, Ω(t,t,2t,t,t+ s) ≤ sup{(1+βi)t+γis : i ∈ It} for all s ∈ [t,2t],
Ω(t,t,t,0,λtt)≤ϕ(t), where λt = sup{(1+βi)/(1−γi) : i∈ It}.

Definition 21. We say that (F,S) has property A if there is a sequence {un}∞n=0

in X such that Sun+1 ∈ Fun and d(Sun,Fun) = d(Sun,Sun+1) for all n = 0,1,2 . . . .
(Let vn stand for Sun+1.)

Lemma 22. Suppose that (F,S) has property A, Ω has properties A and C , and

H(Fx,Fy)≤Ω(d(Sx,Fx),d(Sy,Fy),d(Sx,Sy),d(Sy,Fx),d(Sx,Fy)) (40)

for all x,y in X. Then {vn}∞n=1 is Cauchy.

Proof. We have D(un,un+1) ≤ Ω(d(vn−1,vn),d(vn,vn+1),d(vn−1,vn),0,d(vn−1,
vn+1)) for alln∈N sinceΩ is increasing in each coordinate variable. From (40) we have

d
(
vn,vn+1

)= d(Sun+1,Fun+1
)≤H(Fun,Fun+1

)≤D(un,un+1
)

(41)

for alln∈N. Now proceeding as in the proof of Lemma 5 it can be seen thatd(vn,vn+1)
≤ d(vn−1,vn) for all n∈N. From (40) we have

d
(
vn,Fun+2

)= d(Sun+1,Fun+2
)≤H(Fun,Fun+2

)≤D(un,un+2
)

(42)

for all n∈N. But

D
(
un,un+2

)≤Ω(d(vn−1,vn
)
,d
(
vn+1,vn+2

)
,d
(
vn−1,vn+1

)
,

d
(
vn,vn+1

)
,d
(
vn−1,Fun+2

))
≤Ω(d(vn−1,vn

)
,d
(
vn+1,vn+2

)
,d
(
vn−1,vn

)+d(vn,vn+1
)
,

d
(
vn,vn+1

)
,d
(
vn−1,vn

)+d(vn,Fun+2
))

≤Ω(d(vn−1,vn
)
,d
(
vn−1,vn

)
,2d

(
vn−1,vn

)
,d
(
vn−1,vn

)
,

d
(
vn−1,vn

)+d(vn,Fun+2
))

(43)

since the sequence {d(vk−1,vk)} is monotonically decreasing and Ω is increasing in

each coordinate variable. Since Ω has property C , there exist (i) a monotonically in-

creasing function ϕ : R+ → R+ with
∑∞
n=1ϕn(t) < +∞ for all t ∈ R+ and (ii) for

each t ∈ R+ a nonempty index set It and nonnegative real numbers βi, γi (i ∈ It)
such that sup{γi : i ∈ It} < 1, Ω(t,t,2t,t,t+ s) ≤ sup{(1+βi)t+γis : i ∈ It} for all

s ∈ [t,2t], and Ω(t,t,t,0,λtt) ≤ϕ(t), where λt = sup{(1+βi)/(1−γi) : i ∈ It}. Since

d(vn,Fun+2)≤ d(vn,vn+2)≤ d(vn,vn+1)+d(vn+1,vn+2)≤ 2d(vn−1,vn), we have

Ω
(
d
(
vn−1,vn

)
,d
(
vn−1,vn

)
,2d

(
vn−1,vn

)
,d
(
vn−1,vn

)
,d
(
vn−1,vn

)+d(vn,Fun+2
))

≤ sup
{(

1+βi
)
d
(
vn−1,vn

)+γid(vn,Fun+2
)

: i∈ Ir
} (44)
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provided d(vn−1,vn) ≤ d(vn,Fun+2), where r = d(vn−1,vn). Hence from (42), (43),

and (44) we have

d
(
vn,Fun+2

)≤ sup
{(

1+βi
)
d
(
vn−1,vn

)+γid(vn,Fun+2
)

: i∈ Ir
}

(45)

provided d(vn−1,vn)≤ d(vn,Fun+2). Now proceeding as in the proof of Lemma 5, it

can be shown that

d
(
vn,Fun+2

)≤ λrd(vn−1,vn
)

(46)

for all n∈N. Hence we have

D
(
un+1,un+2

)=Ω(d(vn,vn+1
)
,d
(
vn+1,vn+2

)
,d
(
vn,vn+1

)
,0,d

(
vn,Fun+2

))
≤Ω(d(vn−1,vn

)
,d
(
vn−1,vn

)
,d
(
vn−1,vn

)
,0,d

(
vn,Fun+2

))
≤Ω(d(vn−1,vn

)
,d
(
vn−1,vn

)
,d
(
vn−1,vn

)
,0,λrd

(
vn−1,vn

))
≤ϕ(d(vn−1,vn

))
(47)

for all n∈N. Hence from (40) we have

d
(
vn+1,vn+2

)= d(Sun+2,Fun+2
)

≤H(Fun+1,Fun+2
)≤D(un+1,un+2

)≤ϕ(d(vn−1,vn
))
,

(48)

that is,

d
(
vn+1,vn+2

)≤ϕ(d(vn−1,vn
))

(49)

for all n∈N. Since ϕ is monotonically increasing on R+, by repeatedly using (49) we

obtain

d
(
v2n,v2n+1

)≤ϕn(d(v0,v1
))
, d

(
v2n+1,v2n+2

)≤ϕn(d(v1,v2
))
, (50)

for alln∈N. Since
∑∞
n=1ϕn(t) <+∞ for all t ∈R+, from (50) it follows that

∑∞
n=1d(vn,

vn+1) is convergent. Hence {vn}∞n=1 is Cauchy.

Theorem 23. Suppose that (F,S) has property A, Ω has properties A and C and

that (40) is true for all x,y in X. Then {vn} is Cauchy. Suppose that it converges

to an element z of S(X) and σ2(t) < t for all t ∈ (0,∞). Then Sw ∈ Fw for any

w ∈X � Sw = z.

Proof. The proof that {vn} is Cauchy follows from Lemma 22. Suppose that it

converges to an element z of S(X). Let w ∈X be such that z = Sw. We have

D
(
w,un+1

)=Ω(d(z,Fw),d(vn,vn+1
)
,d
(
z,vn

)
,d
(
vn,Fw

)
,d
(
z,Fun+1

))
(51)

for all n ∈ N. We note that the limit superior of the sequence {D(w,un+1)} is less

than or equal to Ω(d(z,Fw),0+,0+,d(z,Fw)+,0+) which in turn is less than or equal

to σ2(d(z,Fw)). From (40) we have

d
(
vn+1,Fw

)≤H(Fw,Fun+1
)≤D(w,un+1

)
(52)
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for all n ∈ N. By taking limit superiors on both sides of (52) as n → +∞ we obtain

d(z,Fw) ≤ σ2(d(z,Fw)). Since σ2(t) < t for all t ∈ (0,∞), we have d(z,Fw) = 0.

Since Fw is closed, z ∈ Fw.

Corollary 24 (see [2, Theorem 2.2]). Suppose that F(x) ∈ K(X) for all x ∈ X,

F(x)⊆ S(X) for all x ∈X and that there are nonnegative real-valued functions a,b,c
on X×X such that

H(Fx,Fy)≤ a(x,y)d(Sx,Sy)+b(x,y)max
{
d(Sx,Fx),d(Sy,Fy)

}
+c(x,y)[d(Sy,Fx)+d(Sx,Fy)] (53)

for all x,y in X, inf{b(u,v) : u,v ∈ X} > 0, inf{c(u,v) : u,v ∈ X} > 0, and

sup{a(u,v)+b(u,v)+2c(u,v) :u,v ∈X} = 1. Suppose also that either (a) X is (F,S)
orbitally complete and S is surjective; or (b) S(X) is (F,S) orbitally complete: or (c) F(X)
is (F,S) orbitally complete. Then F and S have a coincidence point in X.

Proof. Let δ = min{1/3,δ1,δ2}, where δ1 = inf{b(u,v) : u, v ∈ X} and δ2 =
inf{c(u,v) :u, v ∈X}. Define Ω : (R+)5 →R+ as

Ω
(
t1, t2, t3, t4, t5

)= sup
{
at3+bmax

{
t1, t2

}+c(t4+t5) :

a≥ 0, b ≥ δ, c ≥ δ, and a+b+2c ≤ 1
}
.

(54)

As in the proof of Corollary 13 it can be seen that Ω has properties A and C and that

σ2(t) < t for all t ∈ (0,∞). Evidently (40) is true for all x,y in X. Since the values of

F are compact and Fx ⊆ S(X) for all x in X, (F,S) has property A. Now the corollary

is evident from Theorem 23.

Corollary 25. Let ϕ : R+ → R+ be a monotonically increasing map such that∑∞
n=1ϕn(t) <+∞ for all t ∈ (0,∞). Suppose that (F,S) has property A and

H(Fx,Fy)

≤ϕ
(

max
{
d(Sx,Sy),d(Sx,Fx),d(Sy,Fy),

1
2

[
d(Sy,Fx)+d(Sx,Fy)]}) (55)

for all x,y in X. Then {yn} is Cauchy. Suppose that it converges to an element z of

S(X). Then Sw ∈ Fw for any w ∈X � Sw = z.

Proof. The hypothesis onϕ ensures thatϕ(t) < t for all t ∈ (0,∞). The corollary

follows from Theorem 23 by defining Ω as in the proof of Corollary 17 and noting

that σ2(t)=ϕ(t) for all t ∈ (0,∞).
Remark 26. Example 27 shows that Corollary 25 cannot be deduced from Corollary

24 and hence Theorem 23 is a proper generalization of [2, Theorem 2.2].

Example 27. Let X = [0,1]. Define F : X → K(X) as F(x) = [0,x/(1+√x)2] for

all x ∈ X and ϕ : R+ → R+ as ϕ(t) = t/(1+√t)2 for all t ∈ R+. Then ϕ is a strictly

increasing continuous function on R+, ϕ(t) < t for all t ∈ (0,∞), ∑∞
n=1ϕn(t) < +∞

for all t ∈ R+ and H(Fx,Fy) ≤ ϕ(|x −y|) for all x,y in X. Let δ ∈ (0,1/3] and
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I = {(a,b,c) ∈ (R+)3 : a ≥ 0, b ≥ δ, c ≥ δ, and a+b+2c ≤ 1}. If possible, suppose

that

H(Fx,Fy)≤ sup
{
a|x−y|+bmax

{
d(x,Fx),d(y,Fy)

}
+c[d(x,Fy)+d(y,Fx)] : (a,b,c)∈ I} (56)

for all x,y in [0,1]. Then for x ∈ (0,δ2/9) and y = 0 we have

x(
1+√x)2 ≤ sup

{
ax+b

[
x− x(

1+√x)2

]
+cx : (a,b,c)∈ I

}
(57)

so that we have

1≤ sup
{
a
(
1+x+2

√
x
)+b(x+2

√
x
)+c(1+x+2

√
x
)

: (a,b,c)∈ I}
= sup

{
a+c+(a+b+c)(x+2

√
x
)

: (a,b,c)∈ I}
≤ sup

{
a+c+(a+b+c)(3√x) : (a,b,c)∈ I}

≤ sup
{
a+c+(a+b+c)δ : (a,b,c)∈ I}

≤ (1−2δ)+(1−δ)δ
= 1−δ−δ2 < 1

(58)

which is a contradiction.

Remark 28. Following the proof of [6, Theorem 1] it can be shown that Corollary 25

remains valid if the condition
′(F,S) has property A′ is replaced with the condi-

tion
′Fx ⊆ S(X) for all x in X′ provided ϕ is subjected to the additional condition

′ϕ(t+) < t for all t ∈ (0,∞)′. With this modification Corollary 25 is a generalization

of [2, Theorem 2.3]. Example 27 shows that the generalization is proper.
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