
IJMMS 28:6 (2001) 367–373
PII. S0161171201006196

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON SOME PROPERTIES OF THE LÜROTH-TYPE
ALTERNATING SERIES REPRESENTATIONS
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Abstract. We investigate some properties connected with the alternating Lüroth-type se-
ries representations for real numbers, in terms of the integer digits involved. In particular,
we establish the analogous concept of the asymptotic density and the distribution of the
maximum of the first n denominators, by applying appropriate limit theorems.
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1. Introduction. Let x be any number in the interval I := (0,1). Then by using a

general alternating series algorithm introduced by Knopfmacher and Knopfmacher

[6, 7], analogous to a positive one of Oppenheim [8], we may prove that x has a unique

finite or infinite representation in the form

x = 1
α1
− 1(
α1+1

)
α1

1
α2
+ 1(
α1+1

)
α1
(
α2+1

)
α2

1
α3
−···

= ((α1,α2, . . . ,αn, . . .
))
,

(1.1)

where αn ≥ 1, n≥ 1.

Representation (1.1) is called Lüroth-type alternating expansion, while the positive

integers α1,α2, . . . ,αn, . . . are called the digits (or the denominators) of the above men-

tioned expansion. It is obvious that the digits αn are functions αn(x) of x; therefore,

it can be easily seen that the αn’s may be considered as random variables defined

almost surely on I with respect to any probability measure on the σ -algebra BI (in

particular, with respect to the Lebesgue measure λ).

A lot of research has been carried out into the ergodic properties of the denomina-

tors in the Lüroth expansions of real numbers in (0,1). In particular, it was studied in-

dependently by Šalát [9] and Jager and de Vroedt [3] not only the stochastic behaviour

of the digits dn (which are independent random variables on a probability space S,

where the basic set is the unit interval (0,1) and the probability is the Lebesgue mea-

sure) but some other important metric properties concerning the sequence {dn}n.

Similar further results were derived later by Kalpazidou, Knopfmacher, and

Knopfmacher (see [4, 5]), for the alternating Lüroth-type series.

The aim of the present paper is to give some sharper properties for the alternating

Lüroth-type expansions related with the order of magnitude of the digits αn. For the

ordinary Lüroth expansions, an analogous problem has been investigated by Šalát [9].
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2. Preliminaries. Let

In ≡ In
(
k1, . . .kn

)
= {x ∈ I |α1(x)= k1, . . . ,αn(x)= kn

}
, for any k1,k2, . . . ,kn ∈N∗,

(2.1)

be the set of all x ∈ I which have a unique expansion of the form (1.1) such that the

digits α1(x), . . . ,αn(x) have the concrete values k1, . . . ,kn.

Then according to a result of [5] concerning the stochastic behaviour of the αn’s,

we have the following proposition.

Proposition 2.1. The digitsαn(·),n∈N∗, are stochastically independent and iden-

tically distributed random variables with respect to Lebesgue measure λ, with

λ
(
αn = k

)= 1
k(k+1)

, k∈N∗. (2.2)

Evidently the mean value of the digits αn is given by

E
(
αn
)=

+∞∑
k=1

kλ
(
αn = k

)=
+∞∑
k=1

1
k+1

=+∞, (2.3)

which means that the usual limit theorems do not apply.

Then, according to an interesting result which is a kind of converse to the strong

law of large numbers due to Chow and Robbins [1], it may be obtained that, for a.a. x,

limsup

(
α1+α2+···+αn

)
n

=+∞. (2.4)

It is obvious that if we take the functionsu(αn) ofαn for which
∑+∞
k=1u(αn)/k(k+1) <

+∞, then we can apply the usual theorems, obtaining strong laws and asymptotic

normality.

In Section 3, we investigate some sharper results for the digits αn of the alternating

Lüroth-type series following the spirit of Šalát [9], while in Section 4, we investigate

the asymptotic behaviour of Mn =Mn(x)=max(α1, . . . ,αn) by using Proposition 2.1.

3. Some remarks on the digits of the alternating Lüroth series. Let {cn}n be an

arbitrarily chosen sequence of real numbers and Xn the indicator variable of the fact

{x |αn(x) > cn(x)}, that is,

Xn =



1, if αn > cn,

0, otherwise.
(3.1)

By applying Proposition 2.1 we obtain that Xn are independent random variables

and; moreover,

P
(
Xn = 1

)=
+∞∑

k=[cn]+1

1
k(k+1)

=
+∞∑

k=[cn]+1

(
1
k
− 1
(k+1)

)
= 1[

cn
]+1

,

P
(
Xn = 0

)= 1−P(Xn = 1
)= 1− 1[

cn
]+1

,

(3.2)
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if we assume that cn ≥ 0. (This assumption does not restrict the generality of our

investigation, since from the general alternating series algorithm we have αn ≥ 1, for

all n.) At first we prove the following theorems.

Theorem 3.1. The series
∑
Xn converges a.e. if and only if

∑ 1
cn+1

<+∞. (3.3)

Moreover, if the mean value

EN =
N∑
n=1

1[
cn
]+1

�→+∞, (3.4)

then by setting

ZN =
N∑
n=1

Xn, VN =
N∑
n=1

1[
cn
]+1

·
(

1− 1[
cn
]+1

)
, (3.5)

we take

λ
(
ZN−EN < z

√
VN
)
�→
∫ Z
−∞

1√
2π

·e−t2/2dt (3.6)

as N →+∞, in case VN →+∞.

Proof. The first part of the above theorem is a consequence of the Borel-Cantelli

lemma (see [2]). Furthermore, since

E
(
Xn
)= 1[

cn
]+1

, Var
(
Xn
)= 1[

cn
]+1

·
(

1− 1[
cn
]+1

)
, (3.7)

we may apply the central limit theorem under Lindeberg’s conditions, that is,

λ
(
−∞< ZN−EN√

VN
< z

)
N→+∞
����������������������������������������������������������������������������������������������������������������������������������������������������������→

∫ z
−∞
f(t)dt =

∫ z
−∞

1√
2π

·e−t2/2dt (3.8)

and the proof is complete.

Relation (3.6) implies that ZN converges in probability to EN if both EN and VN
tend to +∞. Although in the general case much more important information may be

derived, we take in a special case the following theorem.

Theorem 3.2. Assume that

lim
N→+∞

EN
N
= c (3.9)

exists and is positive, then for a.a. x in (0,1)

lim
N→+∞

(
X1+X2+···+XN

)
N

= c. (3.10)

The statement holds also in case c = 0.
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Proof. We define the random variables Kn by the relation Kn =Xn−1/([cn]+1).
Consequently, we have

E
(
Kn
)= E(Xn)− 1[

cn
]+1

= 0,

V
(
Kn
)= Var

(
Xn
)= 1[

cn
]+1

·
(

1− 1[
cn
]+1

)
.

(3.11)

By using the Kolmogorov’s theorem [2] we obtain that, for a.a. x in (0,1),

lim
N→+∞

(
K1+···+KN

)
N

= 0, (3.12)

which gives the proof of our theorem.

Theorem 3.2 is related to the concept of asymptotic density, which in the case of

alternating Lüroth-type expansions is defined as follows. Let {bn} be an increasing

sequence of positive integers and let K(M) be the number of elements of the sequence

{bn} for which bt ≤ M . If the limit of K(M)/M as M → +∞ exists, then we may say

that the sequence {bn} has asymptotic density. Theorem 3.2 provides the criterion

for the sequence {n/αn > cn} to have asymptotic density, for a.a. x. This means that

applying Theorem 3.2 with αn = 1, for all n ≥ 1, then with αn = 2, for all n ≥ 1 we

get successively the densities of {n | αn = 1}, {n | αn = 2}, and so on. Note that if

cn→+∞, then by Theorem 3.2, c exists and equals zero.

Using Proposition 2.1 and Borel-Cantelli lemma, we can have a sharper result about

the behaviour of the sequence {αn} according to the following theorem.

Theorem 3.3. Let {cn}n, {dn}n, with 0< cn ≤ dn, be two sequences of real numbers

which tend to +∞. Moreover, assume that

limsup

(
cn+1

)
dn

=u< 1 (3.13)

and that
+∞∑
n=1

1
dn
(
cn+1

) =+∞. (3.14)

Then for a.a. x, the inequalities dn < αn ≤ dn(1+1/(cn+1)) hold for many infinite

values of n.

Proof. It is known that

λ
(
u<αn ≤w

)= λ(u<αn)−λ(w <αn
)
. (3.15)

Then from (3.2) we have

λ
(
dn <αn ≤ dn+ dn

cn+1

)
= 1[

dn
]+1

− 1[
dn+dn/

(
cn+1

)]+1

≥ 1
dn+1

− 1
dn+dn/

(
cn+1

)

≥ 1−(cn+1
)
/dn

3dn
(
cn+1

) ≥ a
dn
(
cn+1

) ,

(3.16)
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where a is a suitable constant, which in view of (3.13), for n sufficiently large, can be

chosen arbitrarily close to 1−u, hence a> 0. Now by using Proposition 2.1, the Borel-

Cantelli lemma is applicable. So (3.14) and (3.16) imply the statement of Theorem 3.3,

and the proof is complete.

Theorem 3.3 states that if for a sequence dn tending to +∞, there is a sequence cn
such that (3.13) and (3.14) hold, then for a.a. x, infinitely often αn ∼ dn.

This raises the problem whether Mn = max(α1,α2, . . . ,αn) follows an asymptotic

law. We will deal with this problem in the next section.

4. The distribution of the maximum of the first n digits. If Mn is the maximum

of the first n digits, then we take the following theorem.

Theorem 4.1. For any fixed y > 0,

lim
n→∞λ

(
Mn

n
≤y

)
= exp

(
− 1
y+1

)
. (4.1)

Proof. We define the events Ai = {x |αi/n≤y}, 1≤ i≤n. It is obvious that

{
x
∣∣∣∣Mn

n
≤y

}
=

n⋂
i=1

Ai, (4.2)

and therefore by using Proposition 2.1 and (3.2), we have

λ
(
Mn

n
≤y

)
=

n∏
i=1

λ
(
Ai
)=

n∏
i=1

λ
(
αi
n
≤y

)
=

n∏
i=1

[
1−λ

(
αi
n
>y

)]
. (4.3)

But

λ
(
αi
n
>y

)
= λ(αi > ny)=

+∞∑
k=[ny]+1

1
k(k+1)

= 1
[ny]+1

. (4.4)

So

λ
(
Mn

n
≤y

)
=

n∏
i=1

[
1− 1

[ny]+1

]
=
(

1− 1
[ny]+1

)n
. (4.5)

Using a well-known characteristic limit relation, the proof is complete.

Hence we can obtain the following corollary.

Corollary 4.2. Let Kn be a random variable defined on the probability space

(I,BI ,λ), and assume that Kn converges in probability to 1. Then

lim
n→+∞λ

(
Kn
Mn

<y
)
= 1−e−y/(y+1). (4.6)

Proof. We may write

Kn
Mn

= Kn
n
· n
Mn

= n
Mn

+ n
Mn

(
Kn
n
−1
)
. (4.7)
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Using (4.7) we have only to show that the second term tends in probability to 0,

since then using a well-known result of Cramer we may obtain the statement of

Corollary 4.2.

More precisely we have to show that, for any positive real number u,

lim
n→+∞λ

(∣∣∣∣ nMn
·
(
Kn
n
−1
)∣∣∣∣≥u

)
= 0. (4.8)

If we apply this relation, for any fixed U , then we obtain

λ
(∣∣∣∣ nMn

·
(
Kn
n
−1
)∣∣∣∣≥u

)
≤ λ

(
n
Mn

>U
)
+λ
(∣∣∣∣Knn −1

∣∣∣∣≥ uU
)
. (4.9)

From (4.9) we get that the first and the second terms are smaller than any prescribed

real number by using Theorem 4.1 and the assumption on Kn, respectively. So the

proof is complete.

From the occurrence of the exponential distribution in Theorem 4.1 and Corollary

4.2 it can be derived that the number of terms of the sequence {αn}, which are of

the same order as Mn, follows a Poisson distribution. This is given in the following

theorem.

Theorem 4.3. Let Yn denote the number of terms in the sequence {αn} for which

αn >y . Then its asymptotic probability function is given by

lim
n→+∞λ

(
Yn =K

)= e−1(y+1)

K!(y+1)K
. (4.10)

Proof. Using Proposition 2.1 and relation (3.2) we have that the random vari-

ables ZN follow a binomial distribution with parameters n and 1/([ny]+1). Since

n/([ny]+1)→ 1/(y+1), as n→∞, by the result known as “Poisson approximation

to the binomial distribution” (see [2]), we obtain that the distribution of Yn is Poisson

with parameter 1/(y+1). So the proof is complete.
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