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Abstract. We prove a result on the value distribution of differential polynomials which
improves some earlier results.

2000 Mathematics Subject Classification. 30D35.

1. Introduction and definitions. Let f be a transcendental meromorphic function

in the open complex plane. The problem of possible Picard values of derivatives of

f reduces to the problem of whether certain polynomials in a meromorphic function

and its derivatives necessarily have zeros. We do not explain the standard definitions

and notations of value distribution theory as those are available in [6].

Definition 1.1. A meromorphic function “a” is said to be a small function of f if

T(r ,a)= S(r ,f ).

Definition 1.2 (see [1, 4, 10]). Let n0j ,n1j , . . . ,nkj be nonnegative integers. The

expression Mj[f]= (f )n0j (f (1))n1j ···(f (k))nkj is called a differential monomial gen-

erated by f of degree γMj =
∑k
i=0nij and weight ΓMj =

∑k
i=0(i+1)nij .

The sum P[f] = ∑l
i=1bjMj[f] is called a differential polynomial generated by f

of degree γP = max{γMj : 1 ≤ j ≤ l} and weight ΓP = max{ΓMj : 1 ≤ j ≤ l}, where

T(r ,bj)= S(r ,f ) for j = 1,2, . . . , l.
The numbers γP =min{γMj : 1≤ j ≤ l} and k (the highest order of the derivative of

f in P[f]) are called, respectively, the lower degree and order of P[f].
P[f] is said to be homogeneous if γP = γP .

Also P[F] is called a quasi differential polynomial generated by f if, instead of as-

suming T(r ,bj)= S(r ,f ), we just assume that m(r,bj)= S(r ,f ) for the coefficients

bj(j = 1,2, . . . , l).

Definition 1.3. Letm be a positive integer. We denote by N(r ,a;f | ≤m) (N(r ,a;

f | ≥m)) the counting function of those a-points of f whose multiplicities are not

greater (less) than m, where each a-point is counted according to its multiplicity.

In a similar manner, we define N(r ,a;f |<m) and N(r ,a;f |>m).
Also N(r ,a;f | ≤ m), N(r ,a;f | ≥ m), N(r ,a;f | < m), and N(r ,a;f | > m) are

defined similarly, where in counting the a-points of f we ignore the multiplicities.

Finally, we agree to takeN(r ,a;f | ≤∞)≡N(r ,a;f) andN(r ,a;f | ≤∞)≡N(r ,a;f).

Definition 1.4. For two meromorphic functions f , g and positive integer m, we

denote by N(r ,a;f |g = b,>m) the counting function of those a-points of f , counted
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with proper multiplicities, which are the b-points of g with multiplicities greater

than m.

Definition 1.5 (see [2]). Let m be a positive integer. We denote by Nm(r ,a;f) the

counting function of a-points of f , where an a-point of multiplicity µ is counted µ
times if µ ≤m and m times if µ >m.

As the standard convention, we mean byN(r ,f ) andN(r ,f ) the counting functions

N(r ,∞;f) and N(r ,∞;f), respectively.

Hayman [5] proved the following theorems.

Theorem 1.6. If f is a transcendental meromorphic function and n (≥ 5) is a posi-

tive integer, then ψ= f ′ −afn assumes all finite values infinitely often.

Theorem 1.7. If f is a transcendental meromorphic function and n (≥ 3) is a pos-

itive integer, then ψ = f ′fn assumes all finite values, except possibly zero, infinitely

often.

When f is transcendental, entire conclusions of Theorems 1.6 and 1.7 hold, respec-

tively for n≥ 3 (cf. [5]) and n≥ 1 (cf. [3]).

To study the value distribution of differential polynomials Yang [7] proved the fol-

lowing results.

Theorem 1.8. Let f be a transcendental meromorphic function with N(r ,f ) =
S(r ,f ), and let ψ = fn + P[f], where n (≥ 2) is an integer and P[f] is a differen-

tial polynomial generated by f with γP ≤n−2. Then δ(a;ψ) < 1 for a≠ 0,∞.

Theorem 1.9. Let f be a transcendental meromorphic function with N(r ,f ) =
S(r ,f ), and let ψ = fnP[f], where n (≥ 2) is an integer and P[f] is a differential

polynomial generated by f . Then δ(a;ψ) < 1 for a≠ 0,∞.

Improving all the above results, Yi [9] proved the following theorem.

Theorem 1.10. Let f be a transcendental meromorphic function andQ1[f ],Q2[f ]
be two differential polynomials generated by f such that Q1[f ] �≡ 0, Q2[f ] �≡ 0, and

P[f] = ∑n
j=0ajf j (an �≡ 0), where a1,a2, . . . ,an are small functions of f . If F = P[f]

Q1[f ]+Q2[f ], then

(
n−γQ2

)
T(r ,f )≤N(r ,0;F)+N(r ,0;P[f]

)+(ΓQ2−γQ2+1
)
N(r ,f )+S(r ,f ). (1.1)

In Theorem 1.10 we see that the influence of Q1[f ] on the value distribution of F
is ignored. In this paper, we show that Theorem 1.10 can further be improved if the

influence ofQ1[f ] is taken into consideration. Throughout, we ignore zeros and poles

of any small function of f because the corresponding counting function is absorbed

in S(r ,f ).

2. Lemmas. In this section, we present some lemmas which will be needed in the

sequel.

Lemma 2.1 (see [4]). Let f be a nonconstant meromorphic function andQ∗[f ],Q[f]
denote differential polynomials generated by f with arbitrary meromorphic coefficients
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q∗1 ,q
∗
2 , . . . ,q∗s and q1,q2, . . . ,qt , respectively. Further let P[f]=∑n

j=0ajf j (an �≡ 0) and

γQ ≤n. If P[f]Q∗[f ]=Q[f], then

m
(
r ,Q∗[f ]

)≤
s∑
j=1

m
(
r ,q∗j

)+
t∑
j=1

m
(
r ,qj

)+S(r ,f ). (2.1)

Lemma 2.2. Let Q[f] =∑l
j=1bjMj[f] be a differential polynomial generated by f

of order and lower degree k and γQ, respectively. If z0 is a zero of f with multiplicity µ
(> k) and z0 is not a pole of any of the coefficients bj (j = 1,2, . . . , l), then z0 is a zero

of Q[f] with multiplicity at least (µ−k)γQ.

Proof. Clearly z0 is a zero of Mj[f] with multiplicity

µn0j+(µ−1)n1j+···+(µ−k)nkj
= µγMj −

(
ΓMj −γMj

)= (µ−k)γMj +(k+1)γMj −ΓMj
≥ (µ−k)γMj ≥ (µ−k)γQ.

(2.2)

Since z0 is assumed not to be a pole of the coefficients bj (j = 1,2, . . . , l) we see

that z0 is a zero of Q[f] with multiplicity at least (µ−k)γQ. This proves the lemma.

Lemma 2.3 (see [1]). The following inequality holds:

N
(
r ,P[f ]

)≤ γPN(r ,f )+(ΓP −γP)N(r ,f )+S(r ,f ). (2.3)

Lemma 2.4 (see [7]). Let P[f]=∑n
i=0aif i, where an(�≡ 0),an−1, . . . ,a1,a0 are small

functions of f . Then m(r,P[f])=nm(r,f )+S(r ,f ).

Lemma 2.5 (see [4]). If Q[f] is a differential polynomial generated by f with arbi-

trary meromorphic coefficients qj (1≤ j ≤n), then

m
(
r ,Q[f]

)≤ γQm(r ,f )+
n∑
j=1

m
(
r ,qj

)+S(r ,f ). (2.4)

Lemma 2.6 (see [8]). If P[f] is as in Lemma 2.4, then T(r ,P[f ])=nT(r ,f )+S(r ,f ).

3. The main result. In this section, we present the main result of the paper.

Theorem 3.1. Let f be a transcendental meromorphic function in the open complex

plane, and Q1[f ] ( �≡ 0), Q2[f ] ( �≡ 0) be two differential polynomials generated by f
such that k and γQ1

be the order and lower degree of Q1[f ], respectively and P[f]=∑n
i=0aif i, where an(�≡ 0), an−1, . . . ,a0 are small functions of f . If

F = P[f]Q1[f ]+Q2[f ], (3.1)

then (
n−γQ2

)
T(r ,f )≤N(r ,0;F)+N(r ,0;P[f]

)+(ΓQ2−γQ2+1
)
N(r ,f )

−γ{N(r ,0;f)−Nk+1(r ,0;f)
}+S(r ,f ), (3.2)

where γ = γQ1
if n≥ γQ2 and γ = 0 if n< γQ2 .
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Proof. If n < γQ2 , the theorem is obvious. So we suppose that n ≥ γQ2 . Differen-

tiating (3.1) we get

F
′ = P ′[f ]Q1[f ]+P[f]Q′

1[f ]+Q
′
2[f ], (3.3)

where P ′[f ]= (d/dz)P[f] and Q
′
i[f ]= (d/dz)Qi[f ] for i= 1,2.

Multiplying (3.1) by (F ′/F), and substituting in (3.3) we get

P[f]Q∗[f ]=Q[f], (3.4)

where

Q∗[f ]=
(
F ′

F
− P

′[f ]
P[f]

)
Q1[f ]−Q′

1[f ], (3.5)

Q[f]=Q′
2[f ]−

(
F ′

F

)
Q2[f ]. (3.6)

First we suppose that Q∗[f ] �≡ 0. By Lemma 2.1, it follows from (3.4) that m(r,
Q∗[f ])= S(r ,f ) because γQ = γQ2 ≤n.

Since P[f]=Q[f]/Q∗[f ], we get by Lemma 2.5 and the first fundamental theorem

m
(
r ,P[f ]

)≤m(r ,Q[f])+m(r ,0;Q∗[f ]
)

≤ γQ2m(r,f )+m
(
r ,Q∗[f ]

)+N(r ,Q∗[f ]
)−N(r ,0;Q∗[f ]

)+S(r ,f )
= γQ2m(r,f )+N

(
r ,Q∗[f ]

)−N(r ,0;Q∗[f ]
)+S(r ,f ).

(3.7)

So by Lemma 2.4

(
n−γQ2

)
m(r,f )≤N(r ,Q∗[f ]

)−N(r ,0;Q∗[f ]
)+S(r ,f ). (3.8)

From (3.5) we see that possible poles of Q∗[f ] occur at the poles of f and zeros

of F and P[f]. Also we note that the zeros of F and P[f] are at most simple poles

of Q∗[f ]. Let z0 be a pole of f with multiplicity µ. Then z0 is a pole of Q[f] with

multiplicity not exceeding (µ−1)γQ2 + ΓQ2 +1 = µγQ2 + ΓQ2 −γQ2 +1 and z0 is a pole

of P[f] with multiplicity nµ. Hence, from (3.4) it follows that z0 is a pole of Q∗[f ]
with multiplicity not exceeding µγQ2+ΓQ2−γQ2+1−nµ = ΓQ2−γQ2+1−(n−γQ2)µ.

Therefore

N
(
r ,Q∗[f ]

)≤N(r ,0;F)+N(r ,0;P[f]
)+(ΓQ2−γQ2+1

)
N(r ,f )

−(n−γQ2

)
N(r ,f )+S(r ,f ).

(3.9)

Now we note that the order of the differential polynomial Q
′
1[f ] is k+1. Let z0 be

a zero of f with multiplicity µ > k+1. Let γQ1
≥ 1. Then by Lemma 2.2, we see that

z0 is a zero of Q1[f ] with multiplicity at least (µ−1)γQ1
. Also z0 may be a pole of

(F ′/F)−P ′[f ]/P[f] with multiplicity not exceeding 1. So z0 is a zero of ((F ′/F)−
P ′[f ]/P[f])Q1[f ] with multiplicity at least (µ−k)γQ1

−1.
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Since the lower degree of Q
′
1[f ] is γQ1

, it follows from Lemma 2.2 that z0 is a zero

of Q
′
1[f ] with multiplicity at least (µ−k−1)γQ1

.

Therefore z0 is a zero of Q∗[f ] with multiplicity at least (µ−k−1)γQ1
. Hence

N
(
r ,0;Q∗[f ]

)
≥N(r ,0;Q∗[f ]|f = 0,> k+1

)

≥ γQ1
N
(
r ,0;f |> k+1

)−γQ1
(k+1)N(r ,0;f > k+1)+S(r ,f )

= γQ1
N(r ,0;f)−γQ1

{
N(r ,0;f | ≤ k+1)+(k+1)N(r ,0;f |> k+1)

}+S(r ,f ).
(3.10)

So

N
(
r ,0;Q∗[f ]

)≥ γQ1

{
N(r ,0;f)−Nk+1(r ,0;f)

}+S(r ,f ). (3.11)

If γQ1
= 0, inequality (3.11) obviously holds. Now from (3.8), (3.9), and (3.11) we get

(
n−γQ2

)
T(r ,f )≤N(r ,0;F)+N(r ,0;P[f]

)+(ΓQ2−γQ2+1
)
N(r ,f )

−γQ1

{
N(r ,0;f)−Nk+1(r ,0;f)

}+S(r ,f ). (3.12)

Next we suppose that Q∗[f ] ≡ 0. Then from (3.4) it follows that Q[f] ≡ 0, and

so using (3.1) we get P[f]Q1[f ] = cQ2[f ], where c is a nonzero constant. Then in a

similar line of calculation for inequalities (3.8), (3.9), and (3.11) we get

(
n−γQ2

)
m(r,f )≤N(r ,Q1[f ]

)−N(r ,0;Q1[f ]
)+S(r ,f ),

N
(
r ,Q1[f ]

)≤ (ΓQ2−γQ2+1
)
N(r ,f )−(n−γQ2

)
N(r ,f )+S(r ,f ),

N
(
r ,0;Q1[f ]

)≥ γQ1

{
N(r ,0;f)−Nk+1(r ,0;f)

}+S(r ,f ).
(3.13)

Now from (3.13) we get

(
n−γQ2

)
T(r ,f )≤N(r ,0;F)+N(r ,0;P[f]

)+(ΓQ2−γQ2+1
)
N(r ,f )

−γQ1

{
N(r ,0;f)−Nk+1(r ,0;f)

}+S(r ,f ). (3.14)

This proves the theorem.

Remark 3.2. The following example shows that Theorem 3.1 is sharp.

Example 3.3. Let f = ez − 2, P[f] = f + 2, Q1[f ] = f , and Q2[f ] = 1. Then

F = P[f]Q1[f ]+Q2[f ]= (ez−1)2 and k= 0, γQ1
= 1, γQ2 = 0, n= 1. Also we see that

(
n−γQ2

)
T(r ,f )=N(r ,0;F)+N(r ,0;P[f]

)+(ΓQ2−γQ2+1
)
N(r ,f )

−γQ1

{
N(r ,0;f)−Nk+1(r ,0;f)

}+S(r ,f ). (3.15)

4. Applications. As applications of Theorem 1.10, Yi [9] proved the following theo-

rems which improve Theorems 1.8 and 1.9.
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Theorem 4.1. Let f be a transcendental meromorphic function and Q1[f ] (�≡ 0),
Q2[f ] (�≡ 0) be two differential polynomials generated by f . Let F = fnQ1[f ]+Q2[f ]
and

limsup
r→∞

N(r ,0;f)+(ΓQ2−γQ2+1
)
N(r ,f )

T(r ,f )
< n−γQ2 . (4.1)

Then Θ(a;F) < 1 for any small function a (�≡ ∞,Q2[f ]) of f .

Theorem 4.2. Let F = fnQ[f], where Q[f] is a differential polynomial generated

by f and Q[f] �≡ 0. If

limsup
r→∞

N(r ,0;f)+N(r ,f )
T(r ,f )

< n, (4.2)

then Θ(a;F) < 1, where a (�≡ 0,∞) is a small function of f .

Considering the following examples, Yi [9] claimed that Theorems 4.1 and 4.2 are

sharp.

Example 4.3. Let f = (e4z+1)/(e4z−1), Q1[f ] = 1, Q2[f ] = f ′ − 1, and F =
f 4Q1[f ]+Q2[f ]. Then n= 4, γQ2 = 1, ΓQ2 = 2, and

limsup
r→∞

N(r ,0;f)+(ΓQ2−γQ2+1
)
N(r ,f )

T(r ,f )
=n−γQ2 . (4.3)

Also we see that Θ(0;F)= 1.

Example 4.4. Let f = (ez−1)/(ez+1), Q1[f ]= 1, F = fnQ1[f ], where n= 2. It is

easy to verify that

limsup
r→∞

N(r ,0;f)+N(r ,f )
T(r ,f )

=n (4.4)

and Θ(1;F)= 1.

The following examples suggest that some improvements of Theorems 4.1 and 4.2

are possible.

Example 4.5. Let f = ((ez−1)/(ez+1))2,Q1[f ]= f ,Q2[f ]= 1, and F = fQ1[f ]+
Q2[f ]. Then n= 1, γQ1

= 1, γQ2 = 0, ΓQ2 = 0, and the order of the differential polyno-

mial Q1[f ] is zero. Clearly

limsup
r→∞

N(r ,0;f)+(ΓQ2−γQ2+1
)
N(r ,f )

T(r ,f )
=n−γQ2 . (4.5)

Also we see that Θ(1;F)=Θ(∞;F)= 3/4, Θ(2;F)= 1/2 and so, by Nevanlinna’s three

small functions theorem (cf. [6, page 47]), Θ(a;F)≤ 2−3/4−1/2= 3/4 for any small

function a (�≡ 1,2,∞). However, we note that

limsup
r→∞

N(r ,0;f | ≤ 1)+(ΓQ2−γQ2+1
)
N(r ,f )

T(r ,f )
= 1

2
<n−γQ2 . (4.6)
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Example 4.6. Let f = ((ez−1)/(ez+1))2, Q[f] = f , and F = fQ[f]. Then n = 1,

γQ = 1, and the order of the differential polynomial Q[f] is zero. Clearly

limsup
r→∞

N(r ,0;f)+N(r ,f )
T(r ,f )

=n (4.7)

and Θ(a;F) < 1 for any small function a of f . We note that

limsup
r→∞

N(r ,0;f | ≤ 1)+N(r ,f )
T(r ,f )

= 1
2
<n. (4.8)

The following two theorems improve Theorems 4.1 and 4.2.

Theorem 4.7. Let f be a transcendental meromorphic function and Q1[f ], Q2[f ]
be two differential polynomials generated by f which are not identically zero. Let F =
fnQ1[f ]+Q2[f ]. If

limsup
r→∞

N
(
r ,0;f | ≤ χQ1

)+(ΓQ2−γQ2+1
)
N(r ,f )

T(r ,f )
< n−γQ2 , (4.9)

then Θ(a;F) < 1 for any small function a (�≡ ∞,Q2[f ]) of f , where

χQ1 =



1+k if γQ1
≥ 1,

∞ if γQ1
= 0,

(4.10)

and k is the order of the differential polynomial Q1[f ].

Theorem 4.8. Let f be a transcendental meromorphic function and Q[f] (�≡ 0) be

a differential polynomial generated by f . If F = fnQ[f] and

limsup
r→∞

N
(
r ,0;f | ≤ χQ

)+N(r ,f )
T(r ,f )

< n, (4.11)

then Θ(a;F) < 1 for every small function a (�≡ 0,∞) of f , where

χQ =



1+k if γQ ≥ 1,

∞ if γQ = 0,
(4.12)

and k is the order of the differential polynomial Q[f].

Remark 4.9. Theorem 4.7 improves Theorems 1.8 and 4.1, and Theorem 4.8 im-

proves Theorems 1.9 and 4.2.

Remark 4.10. The following examples show that Theorems 4.7 and 4.8 are sharp.

Example 4.11. Let f = ez −1, Q1[f ] = f ′ −f , Q2[f ] = 2f ′ , and F = f 2Q1[f ]+
Q2[f ]. Then n= 2, k= 1, ΓQ2 = 2, γQ2 = 1, and

limsup
r→∞

N(r ,0;f | ≤ 2)+(ΓQ2−γQ2+1
)
N(r ,f )

T(r ,f )
=n−γQ2 . (4.13)

Also we see that Θ(1;F)= 1.
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Example 4.12. Let f = ez+1, Q[f] = f −f ′ , and F = fQ[f]. Then γQ = 1, k = 1,

n= 1, and

limsup
r→∞

N(r ,0;f | ≤ 2)+N(r ,f )
T(r ,f )

=n. (4.14)

Also we see that Θ(1;F)= 1.

As other applications of Theorem 3.1, we obtain the following results which im-

prove Theorems 1.6 and 1.7.

Theorem 4.13. Let f be a transcendental meromorphic function, and F = f ′ −afn,

where a (�≡ 0) is a small function of f . If n (≥ 5) is an integer, then Θ(b;F)≤ 4/n for

any small function b (�≡ ∞) of f .

Theorem 4.14. Let f be a transcendental meromorphic function. If F = fnf ′ and

n (≥ 3) is an integer, then Θ(a;F)≤ 4/(n+2) for any small function a (�≡ 0,∞) of f .

We prove Theorems 4.8 and 4.14 only.

Proof of Theorem 4.8. First we treat the case γQ ≥ 1. Then by Theorem 3.1

we get

nT(r ,f )≤N(r ,a;F)+N(r ,0;P[f]
)+N(r ,f )

−γQ
{
N(r ,0;f)−Nk+1(r ,0;f)

}+S(r ,f )
≤N(r ,a;F)+N(r ,0;f)−N(r ,0;f)

+Nk+1(r ,0;f)+N(r ,f )+S(r ,f ),

(4.15)

that is,

nT(r ,f )≤N(r ,a;F)+N(r ,0;f | ≤ k+1)+N(r ,f )+S(r ,f ). (4.16)

Now we treat the case γQ = 0. Then from Theorem 3.1 we get

nT(r ,f )≤N(r ,a;F)+N(r ,0;f)+N(r ,f )+S(r ,f ). (4.17)

Combining (4.16) and (4.17), we obtain

nT(r ,f )≤N(r ,a;F)+N(r ,0;f | ≤ χQ
)+N(r ,f )+S(r ,f ) (4.18)

from which the theorem follows.

Proof of Theorem 4.14. Proceeding in the line of the proof of Theorem 4.8 we

get

nT(r ,f )≤N(r ,a;f)+N(r ,0;f | ≤ k+1)+N(r ,f )+S(r ,f ), (4.19)

that is,

(n−2)T(r ,f )≤N(r ,a;F)+S(r ,f ). (4.20)
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Now by Lemmas 2.3 and 2.5 we see that

T(r ,F)≤ (n+2)T(r ,f )+S(r ,f ). (4.21)

If possible let Θ(a;F) > 4/(n+2). Then there exits an ε (> 0) such that for all large

values of r
N(r ,a;F) <

(
n−2
n+2

−ε
)
T(r ,F). (4.22)

From (4.20), (4.21), and (4.22) we get

ε(n+2)T(r ,f )≤ S(r ,f ), (4.23)

which is a contradiction. This proves the theorem.
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