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THE SEQUENTIAL APPROACH TO THE PRODUCT
OF DISTRIBUTION
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Abstract. It is well known that the sequential approach is one of the main tools of dealing
with product, power, and convolution of distribution (cf. Chen (1981), Colombeau (1985),
Jones (1973), and Rosinger (1987)). Antosik, Mikusiński, and Sikorski in 1972 introduced a
definition for a product of distributions using a delta sequence. However, δ2 as a product
of δ with itself was shown not to exist (see Antosik, Mikusiński, and Sikorski (1973)).
Later, Koh and Li (1992) chose a fixed δ-sequence without compact support and used
the concept of neutrix limit of van der Corput to define δk and (δ′)k for some values
of k. To extend such an approach from one-dimensional space to m-dimensional, Li and
Fisher (1990) constructed a delta sequence, which is infinitely differentiable with respect
to x1,x2, . . . ,xm and r , to deduce a non-commutative neutrix product of r−k and �δ. Li
(1999) also provided a modified δ-sequence and defined a new distribution (dk/drk)δ(x),
which is used to compute the more general product of r−k and �lδ, where l ≥ 1, by
applying the normalization procedure due to Gel’fand and Shilov (1964). We begin this
paper by distributionally normalizing �r−k with the help of distribution x−n+ . Then we
utilize several nice properties of the δ-sequence by Li and Fisher (1990) and an identity of
δ distribution to derive the product �r−k ·δ based on the results obtained by Li (2000),
and Li and Fisher (1990).
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1. The distribution �r−k. We start letting r = (x2
1+···+x2

m)1/2 and consider the

functional �r−k (where � denotes the Laplacian) defined by

(�r−k,φ)= (r−k,�φ)=
∫
Rm
r−k�φ(x)dx, (1.1)

where k < m and φ(x) ∈ �m, the space of infinitely differentiable functions of the

variable x = (x1,x2, . . . ,xm) with compact support. Because r−k is locally summable,

�r−k is a regular distribution.

By Green’s theorem for m≥ 3, it particularly follows from [5] that

1
(2−m)Ωm

�r 2−m = δ(x), (1.2)

where Ωm = 2πm/2/Γ(m/2) is the hypersurface area of the unit sphere imbedded in

Euclidean space of m-dimension.

A similar calculation for dimension m= 2 leads to the result

1
2π

� lnr = δ(x). (1.3)
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On making substitution of spherical coordinates in (1.1), we come to

(�r−k,φ)=
∫∞

0
r−k

{∫
r=1

�φ(ω)dω
}
rm−1dr, (1.4)

where dω is the hypersurface element on the unit sphere. The integral appearing in

the above integrand can be written in the form
∫
r=1

�φ(ω)dω=ΩmS�φ(r), (1.5)

where S�φ(r) is the mean value of �φ on the sphere of radius r .

It could be proved by the well-known Pizetti’s formula in [4] that S�φ(r) is infinitely

differentiable for r ≥ 0, has bounded support, and that

S�φ(r)=�φ(0)+ 1
2!
S′′�φ(0)r

2+···+ 1
(2k)!

S(2k)�φ (0)r
2k+···

=
∞∑
k=0

�k+1φ(0)r 2k

2kk!m(m+2)···(m+2k−2)
.

(1.6)

Note that when k= 0, the first term of the above series is defined as �φ(0).
From (1.4) and (1.5), we obtain

(�r−k,φ)=Ωm
∫∞

0
r−k+m−1S�φ(r)dr

=Ωm
∫ 1

0
r−k+m−1S�φ(r)dr +Ωm

∫∞
1
r−k+m−1S�φ(r)dr

�= I1+I2.

(1.7)

It obviously follows that

I2 =Ωm
∫∞

1
r−k+m−1S�φ(r)dr (1.8)

is well defined for any positive integer k.

In order to normalize I1 for k≥m, we need the following equation (see [6]):

(
x−n[0,1],φ

)
=
n−1∑
j=1

φ(j−1)(0)
(j−1)!(−n+j)

+
∫ 1

0
x−n

[
φ(x)−φ(0)−xφ′(0)−···− xn−1

(n−1)!
φ(n−1)(0)

]
dx,

(1.9)

where n≥ 1.

Setting n= 1,2 in (1.9), we have

(
x−1
[0,1],φ

)
=
∫ 1

0
x−1[φ(x)−φ(0)]dx,

(
x−2
[0,1],φ

)
=−φ(0)+

∫ 1

0
x−2[φ(x)−φ(0)−xφ′(0)]dx,

(1.10)

respectively.
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Using (1.9), we normalize I1 for k≥m by

I1 =Ωm
∫ 1

0
r−k+m−1S�φ(r)dr

=Ωm
k−m∑
j=1

S(j−1)
�φ (0)

(j−1)!(−k+m−1+j)

+Ωm
∫ 1

0
r−k+m−1

[
S�φ(r)−S�φ(0)−rS′�φ(0)

−···− rk−m

(k−m)!S
(k−m)
�φ (0)

]
dr.

(1.11)

In particular for k=m, we obtain

(�r−m,φ)=Ωm
∫ 1

0
r−1

[
S�φ(r)−S�φ(0)

]
dr +Ωm

∫∞
1
r−1S�φ(r)dr . (1.12)

2. The product r−k ·�lδ. The following δ-sequence was used by Fisher around

1969. Let ρ(x) be a fixed infinitely differentiable function defined on R with the fol-

lowing properties:

(i) ρ(x)≥ 0,

(ii) ρ(x)= 0 for |x| ≥ 1,

(iii) ρ(x)= ρ(−x),
(iv)

∫ 1
−1ρ(x)dx = 1.

The function δn(x) is defined by δn(x) = nρ(nx) for n = 1,2, . . . . It follows that

{δn(x)} is a regular sequence of infinitely differentiable functions converging to the

Dirac delta-function δ(x).
Now let � be the space of infinitely differentiable functions of a single variable with

compact support and let �′ be the space of distributions defined on �. Then if f is

an arbitrary distribution in �′, we define

fn(x)=
(
f ∗δn

)
(x)= (f(t),δn(x−t)) (2.1)

for n= 1,2, . . . . It follows that {fn(x)} is a regular sequence of infinitely differentiable

functions converging to the distribution f(x) in �′.
The following definition for the non-commutative neutrix product f ·g of two dis-

tributions f and g in �′ was given by Fisher in [1].

Definition 2.1. Let f and g be distributions in �′ and let gn = g∗δn. We say that

the neutrix product f ·g of f and g exists and is equal to h if

N- lim
n→∞

(
fgn,φ

)= (h,φ) (2.2)

for all functions φ in �, where N is the neutrix (see [9]) having domain N′ = {1,2, . . .}
and range N′′, the real numbers, with negligible functions that are finite linear sums

of the functions

nλ lnr−1n, lnr n (λ > 0, r = 1,2, . . .) (2.3)
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and all functions of n which converge to zero in the normal sense as n tends to

infinity.

With Definition 2.1, a lot of products of distributions have been computed by Fisher

and Al-Sirehy (see [1, 2]), such as

xλ+ ·x−λ−r− = (−1)r−1xλ− ·x−λ−r+ = −π csc(πλ)
2(r −1)!

δ(r−1)(x),

(x+i0)λ ·(x+i0)−λ−r = x−r + (−1)r iπ
(r −1)!

δ(r−1)(x)= (x+i0)−r ,

|x|λ ·|x|−λ−2r = x−2r ,

(2.4)

for a noninteger λ and r = 1,2, . . . .

Remark 2.2. The product of Definition 2.1 is not symmetric and hence f ·g ≠ g·f
in general. Furthermore, it is nonassociative since

(
x−1 ·x)·δ(x)= 1·δ(x)= δ(x) �= 0= x−1 ·0= x−1 ·(x ·δ(x)). (2.5)

In order to give a definition for a neutrix product f ·g of two distributions in �′
m,

the space of distributions defined �m. We may attempt to define a δ-sequence in �m

by simply putting (see [3])

δn
(
x1, . . . ,xm

)= δn(x1
)···δn(xm), (2.6)

where δn is defined as above. However, this definition is very difficult to use for distri-

butions in �′
m which are functions of r . We therefore consider the following approach

(see [8]).

Let ρ(s) be a fixed infinitely differentiable function defined on R+ = [0,∞) having

the following properties:

(i) ρ(s)≥ 0,

(ii) ρ(s)= 0 for s ≥ 1,

(iii)
∫
Rm δn(x)dx = 1,

where δn(x)= cmnmρ(n2r 2) and cm is the constant satisfying (iii).

It follows that {δn(x)} is a regular δ-sequence of infinitely differentiable functions

converging to δ(x) in �′
m.

Definition 2.3. Let f and g be distributions in �′
m and let

gn(x)=
(
g∗δn

)
(x)= (g(x−t),δn(t)), (2.7)

where t = (t1, t2, . . . , tm). We say that the neutrix product f ·g of f and g exists and

is equal to h if

N- lim
n→∞

(
fgn,φ

)= (h,φ), (2.8)

where φ∈�m and the N-limit is defined as above.
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By Definition 2.3, Li and Fisher [6, 8] showed that the noncommutative neutrix prod-

uct r−k ·�lδ exists and

r−2k ·�lδ= l!
2k(l+k)!(m+2l)(m+2l+2)···(m+2l+2k−2)

�l+kδ,

r 1−2k ·�lδ= 0,
(2.9)

where k and l are nonnegative integers.

It immediately follows from l= 0,1 that

r−2k ·δ= �kδ
2kk!m(m+2)···(m+2k−2)

,

r 1−2k ·δ= 0,
(2.10)

r−2k ·�δ= �1+kδ
2k(k+1)!(m+2)(m+4)···(m+2k)

,

r 1−2k ·�δ= 0.
(2.11)

3. Main results. The following two lemmas will play an important role in obtaining

the product �r−k ·δ as well as others.

Lemma 3.1. Let Di = ∂/∂xi. Then for k≥ 0,

m∑
i=1

�k(xiDiφ)= 2k�kφ+
m∑
i=1

xiDi
(�kφ

)
, (3.1)

where φ∈�m.

Proof. We use an inductive method to show the lemma. It is obviously true for

k= 0. Assuming k= 1, we have

�(xiDiφ)= 2
∂2

∂x2
i
φ+xiDi(�φ) (3.2)

simply by calculating the left-hand side. As for the sum,

m∑
i=1

�(xiDiφ)= 2�φ+
m∑
i=1

xiDi(�φ). (3.3)

By the inductive hypothesis, equation (3.1) holds for the case of k−1, that is,

m∑
i=1

�k−1(xiDiφ)= 2(k−1)�k−1φ+
m∑
i=1

xiDi
(�k−1φ

)
. (3.4)
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Hence, it follows that

m∑
i=1

�k(xiDiφ)=�
m∑
i=1

�k−1(xiDiφ)=�
{

2(k−1)�k−1φ+
m∑
i=1

xiDi
(�k−1φ

)}

= 2(k−1)�kφ+
m∑
i=1

�(xiDi(�k−1φ
))

= 2(k−1)�kφ+
m∑
i=1

{
2
∂2

∂x2
i
�k−1φ+xiDi

(�kφ
)}

= 2(k−1)�kφ+2�kφ+
m∑
i=1

xiDi
(�kφ

)

= 2k�kφ+
m∑
i=1

xiDi
(�kφ

)
.

(3.5)

This completes the proof of Lemma 3.1.

Lemma 3.2.
m∑
i=1

Di
(
xi�kδ

)=−2k�kδ, (3.6)

where k≥ 0.

Proof. Applying (3.1), we have
 m∑
i=1

Di
(
xi�kδ

)
,φ


=

(
δ,−

m∑
i=1

�k(xiDiφ)
)

=
(
δ,−

{
2k�kφ+

m∑
i=1

xiDi
(�kφ

)})

=−2k�kφ(0)

= (−2k�kδ,φ
)
.

(3.7)

Therefore, we have reached our conclusion in Lemma 3.2.

Theorem 3.3. The noncommutative neutrix product �r−k ·δ exists. Furthermore,

�r−2k ·δ= k(2k+2−m)
2k(k+1)!m(m+2)···(m+2k)

�k+1δ,

�r 1−2k ·δ= 0,
(3.8)

where k is any positive integer.

Proof. We note that r−k is a locally summable function on Rm for k = 1,2, . . . ,
m−1. With Definition 2.3, we naturally consider

I = (�r−k ·δn,φ)= (r−k,�(δnφ))

= (r−k,�δnφ)+(r−k,δn�φ)+2
m∑
i=1

(
r−k,DiδnDiφ

)
= I1+I2+I3.

(3.9)



THE SEQUENTIAL APPROACH TO THE PRODUCT OF DISTRIBUTION 749

Clearly, (
r−k ·�δ,φ)=N- lim

n→∞I1 =N- lim
n→∞

(
r−k,�δnφ

)
(3.10)

and using (2.11), we obtain

(
r−2k ·�δ,φ)=

(�k+1δ,φ
)

2k(k+1)!(m+2)(m+4)···(m+2k)
,

(
r 1−2k ·�δ,φ)= 0,

(3.11)

which indeed hold for any positive integer k.

It follows from [6, 8] that

N- lim
n→∞I2 =N- lim

n→∞
(
r−k,δn�φ

)= S
(k)
�φ(0)
k!

(3.12)

and applying Pizetti’s formula, we have

N- lim
n→∞

(
r−2k,δn�φ

)= ( �k+1δ
2kk!m(m+2)···(m+2k−2)

,φ
)
,

N- lim
n→∞

(
r 1−2k,δn�φ

)= (0,φ),
(3.13)

which are again true for any positive integer k.

Putting ψi = xiDiφ, we deduce that

I3 = 4cmnm+2Ωm
m∑
i=1

∫ 1/n

0
rm−k−1ρ′

(
n2r 2)Sψi(r)dr (3.14)

and by Taylor’s formula, we obtain

Sψi(r)=
k+1∑
j=0

S(j)ψi (0)
j!

r j+ S
(k+2)
ψi (0)
(k+2)!

rk+2+ S
(k+3)
ψi (ζr)
(k+3)!

rk+3, (3.15)

where 0< ζ < 1. Hence

I3 = 4cmΩmnm+2
m∑
i=1

k+1∑
j=0

S(j)ψi (0)
j!

∫ 1/n

0
rm−k−1ρ′

(
n2r 2)r j dr

+4cmΩmnm+2
m∑
i=1

∫ 1/n

0
rm−k−1ρ′

(
n2r 2)S(k+2)

ψi (0)
(k+2)!

rk+2 dr

+4cmΩmnm+2
m∑
i=1

∫ 1/n

0
rm−k−1ρ′

(
n2r 2)S(k+3)

ψi (ζr)
(k+3)!

rk+3 dr

= I′1+I′2+I′3,

(3.16)

respectively. Employing the substitution t =nr , we get

I′1 = 4cmΩm
m∑
i=1

k+1∑
j=0

nk+2−j S
(j)
ψi (0)
j!

∫ 1

0
tm+j−k−1ρ′

(
t2)dt (3.17)
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whence

N- lim
n→∞I

′
1 = 0 (3.18)

as for

I′2 = 4cmΩm
m∑
i=1

S(k+2)
ψi (0)
(k+2)!

∫ 1

0
tm+1ρ′

(
t2)dt (3.19)

integrating by parts, we have

4cmΩm
∫ 1

0
tm+1ρ′

(
t2)dt = 2cmΩm

∫ 1

0
tmdρ

(
t2)

=−2cmΩm ·m
∫ 1

0
tm−1ρ

(
t2)dt

=−2m
∫
Rm
δn(x)dx =−2m.

(3.20)

Hence

I′2 =−2m
m∑
i=1

S(k+2)
ψi (0)
(k+2)!

=− 2m
(k+2)!

m∑
i=1

S(k+2)
ψi (0). (3.21)

Putting

M = sup
{∣∣∣S(k+3)

ψi (r)
∣∣∣ : r ∈R+ and 1≤ i≤m

}
, (3.22)

we obtain

∣∣I′3∣∣≤ 4cmΩm
mM

n(k+3)!

∫ 1

0
tm+2

∣∣ρ′(t2)∣∣dt �→ 0 as n �→∞. (3.23)

Hence it follows from above that

N- lim
n→∞I3 = I

′
2 =−

2m
(k+2)!

m∑
i=1

S(k+2)
ψi (0) (3.24)

which can be extended to the case k≥m by utilizing the normalization procedure of

µ(x)xλ+ (see [7]) and (1.11) in Section 1.

On using Pizetti’s formula and Lemma 3.2, we come to

− 2m
(2k+2)!

m∑
i=1

S(2k+2)
ψi (0)= −2m

∑m
i=1�k+1ψi(0)

2k+1(k+1)!m(m+2)···(m+2k)

= 2m
∑m
i=1

(
Di
(
xi�k+1δ

)
,φ
)

2k+1(k+1)!m(m+2)···(m+2k)

= −4m(k+1)
(�k+1δ,φ

)
2k+1(k+1)!m(m+2)···(m+2k)

(3.25)

by substituting ψi = xiDiφ back and obviously

− 2m
(2k+1)!

m∑
i=1

S(2k+1)
ψi (0)= 0. (3.26)

Therefore Theorem 3.3 follows from (3.11), (3.13), (3.25), and (3.26).



THE SEQUENTIAL APPROACH TO THE PRODUCT OF DISTRIBUTION 751

In particular for k= 1,2, we have the following:

�r−2 ·δ= 4−m
4m(m+2)

�2δ, �1
r
·δ= 0,

�r−4 ·δ= (6−m)
12m(m+2)(m+4)

�3δ, � 1
r 3
·δ= 0,

(3.27)

where m is the dimension.
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