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ON n-FOLD IMPLICATIVE FILTERS OF LATTICE
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Abstract. We introduce the notion of n-fold implicative filters and n-fold implicative
lattice implication algebras. We give characterizations of n-fold implicative filters and n-
fold implicative lattice implication algebras. Finally, we construct an extension property
for n-fold implicative filter.
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1. Introduction. In order to research the logical system whose propositional value

is given in a lattice, Xu [2] proposed the concept of lattice implication algebras, and

discussed some of their properties. Xu and Qin [3] introduced the notions of filter and

implicative filter in a lattice implication algebra, and investigated their properties. The

author of this paper [1] gave an equivalent condition of a filter, and provided some

equivalent conditions for a filter to be an implicative filter in a lattice implication al-

gebra. In this paper, we discuss the foldness of implicative filters in lattice implication

algebras.

2. Preliminaries

Definition 2.1 (see [2]). By a lattice implication algebra we mean a bounded lattice

(L,∨,∧,0,1) with order-reversing involution “′” and a binary operation “→” satisfying

the following axioms:

x �→ (y �→ z)=y �→ (x �→ z), (2.1)

x �→ x = 1, (2.2)

x �→y =y ′ �→ x′, (2.3)

x �→y =y �→ x = 1 �⇒ x =y, (2.4)

(x �→y) �→y = (y �→ x) �→ x, (2.5)

(x∨y) �→ z = (x �→ z)∧(y �→ z), (2.6)

(x∧y) �→ z = (x �→ z)∨(y �→ z), (2.7)

for all x,y,z ∈ L.

Example 2.2 (see [3]). Let L := {0,a,b,c,1}. Define the partially-ordered relation on

L as 0<a< b < c < 1, and define

x∧y :=min{x,y}, x∨y :=max{x,y}, (2.8)
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Table 2.1.

x x′

0 1

a c
b b
c a
1 0

→ 0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b b c 1 1 1

c a a c 1 1

1 0 a b c 1

for all x,y ∈ L and “′” and “→” as in Table 2.1. Then (L,∨,∧,′,→) is a lattice impli-

cation algebra.

In what follows, the binary operation “→” will be denoted by juxtaposition. We can

define a partial ordering “≤” on a lattice implication algebra L by x ≤y if and only if

xy = 1.

In a lattice implication algebra L, the following hold (see [2]):

0x = 1, 1x = x, x1= 1, (2.9)

xy ≤ (yz)(xz), (2.10)

x ≤y implies yz ≤ xz, zx ≤ zy. (2.11)

In what follows, L will denote a lattice implication algebra, unless otherwise speci-

fied.

Definition 2.3 (see [3]). A subset F of L is called a filter of L if it satisfies for all

x,y ∈ L the following:

1∈ F, (2.12)

x ∈ F, xy ∈ F imply y ∈ F. (2.13)

Definition 2.4 (see [3]). A subset F of L is called an implicative filter of L if it

satisfies (2.12) and

x(yz)∈ F, xy ∈ F imply xz ∈ F, ∀x,y,z ∈ L. (2.14)

Proposition 2.5 (see [1, Proposition 3.2]). Every filter F of L has the property

x ≤y, x ∈ F imply y ∈ F. (2.15)

3. n-fold implicative filters. For any elements x and y of L and any positive

integern, let xny denote x(···(x(xy))···) in which x occursn times, and x0y =y .

Definition 3.1. Let n be a positive integer. A subset F of L is called an n-fold

implicative filter of L, if it satisfies (2.12) and

xn(yz)∈ F, xny ∈ F imply xnz ∈ F, ∀x,y,z ∈ L. (3.1)

Note that the 1-fold implicative filter is an implicative filter.
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Figure 3.1.

Table 3.1.

x x′

0 1

a c
b d
c a
d b
1 0

(a)

0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1

(b)

Example 3.2. Let L := {0,a,b,c,d,1} be a set with Figure 3.1 as a partial ordering.

Define a unary operation “′” and a binary operation denoted by juxtaposition on L as

in Tables 3.1a and 3.1b, respectively.

Define ∨- and ∧-operations on L as follows:

x∨y := (xy)y, x∧y := ((x′y ′)y ′)′, ∀x,y ∈ L. (3.2)

Then L is a lattice implication algebra. It is easy to check that F := {b,c,1} is an n-fold

implicative filter of L.

Theorem 3.3. Every n-fold implicative filter of L is a filter of L.

Proof. Let F be an n-fold implicative filter of L. Taking x = 1 in (3.1) and using

(2.9), we conclude that yz ∈ F and y ∈ F imply z ∈ F , that is, (2.13) holds. Hence F is

a filter of L.

The converse of Theorem 3.3 is not true. For example, let L be a lattice implication

algebra in Example 3.2. Then {1} is a filter of L, but {1} is not a 1-fold implicative

filter of L because d1(bc)= db = 1 and d1b = 1, but d1c = b 	= 1.

We give conditions for a filter to be an n-fold implicative filter.

Theorem 3.4. Let F be a filter of L. Then the following statements are equivalent:

(i) F is an n-fold implicative filter of L.

(ii) xn+1y ∈ F implies xny ∈ F .

(iii) xn(yz)∈ F implies (xny)(xnz)∈ F .
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Proof. (i)⇒(ii). Assume that F is an n-fold implicative filter of L and let x,y ∈ L
be such that xn+1y ∈ F . Then xn(xy) ∈ F , and since xnx = 1 ∈ F , it follows from

(3.1) that xny ∈ F .

(ii)⇒(iii). Suppose (ii) holds and let x,y,z ∈ L be such that xn(yz) ∈ F. Since

xn(yz)≤ xn((xny)(xnz)), we have

xn+1(xn−1((xny
)
z
))= xn(xn((xny)z))= xn((xny)(xnz))∈ F. (3.3)

It follows from (ii) thatxn+1(xn−2((xny)z))=xn(xn−1((xny)z))∈ F . Using (ii) again,

we get

xn+1(xn−3((xny
)
z
))= xn(xn−2((xny

)
z
))∈ F. (3.4)

Repeating this process, we conclude that (xny)(xnz)= xn((xny)z)∈ F .

(iii)⇒(i). Let x,y,z ∈ L be such that xn(yz) ∈ F and xny ∈ F . It follows from (iii)

that (xny)(xnz) ∈ F and xny ∈ F , so from (2.13), we have xnz ∈ F . Hence F is an

n-fold implicative filter of L.

Definition 3.5. Let n be a positive integer. A lattice implication algebra L is said

to be n-fold implicative if it satisfies the equality xn+1y = xny for all x,y ∈ L.

Corollary 3.6. In an n-fold implicative lattice implication algebra, the notion of

filters and n-fold implicative filters coincide.

We give a characterization of an n-fold implicative lattice implication algebra.

Theorem 3.7. A lattice implication algebra L is n-fold implicative if and only if the

filter {1} of L is n-fold implicative.

Proof. Necessity is by Corollary 3.6. Assume that the filter {1} of L is n-fold im-

plicative. Noticing that xn((xy)y)= 1, and applying Theorem 3.4, we have

(
xn+1y

)(
xny

)= (xn(xy))(xny)= 1. (3.5)

On the other hand, it is clear that (xny)(xn+1y) = 1. Hence xn+1y = xny , as

desired.

The following is a characterization of an n-fold implicative filter.

Theorem 3.8. A nonempty subset F of L is an n-fold implicative filter of L if and

only if it satisfies (2.12) and

x(yn+1z)∈ F, x ∈ F imply ynz ∈ F, ∀x,y,z ∈ L. (3.6)

Proof. Suppose that F is an n-fold implicative filter of L and let x,y,z ∈ L be

such that x(yn+1z)∈ F and x ∈ F . Since F is a filter of L (see Theorem 3.3), it follows

that yn+1z ∈ F . Using Theorem 3.4, we know that ynz ∈ F .

Conversely, assume that F satisfies (2.12) and (3.6). Let x,y ∈ L be such that xy ∈ F
and x ∈ F . Then x(1n+1y)= xy ∈ F and x ∈ F . Thus, by (3.6), we have y = 1ny ∈ F .

Hence F is a filter of L. Now, if xn+1y ∈ F for all x,y ∈ L, then 1(xn+1y)= xn+1y ∈ F
and 1 ∈ F . It follows from (3.6) that xny ∈ F . Hence F is an n-fold implicative filter

of L by Theorem 3.4. This completes the proof.
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Theorem 3.9 (extension property for n-fold implicative filters). Let F and G be

filters of L such that F ⊆G. If F is n-fold implicative, then so is G.

Proof. Let x,y ∈ L be such that xn+1y ∈ G. Since xn+1((xn+1y)y) = 1 ∈ F , it

follows from (2.1) and Theorem 3.4(ii) that

(
xn+1y

)(
xny

)= xn((xn+1y
)
y
)∈ F ⊆G, (3.7)

so that xny ∈G since G is a filter. Using Theorem 3.4, we conclude that G is an n-fold

implicative filter of L.

Using Theorems 3.7 and 3.9, we have the following theorem.

Theorem 3.10. A lattice implication algebra is n-fold implicative if and only if every

filter is n-fold implicative.
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