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ALGEBRAIC AND CATEGORICAL PROPERTIES OF r -IDEAL SYSTEMS
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Abstract. The structures (G,r), where r is a system of ideals defined on a directed
group G, play an important role in solving arithmetical problems. In this paper, we investi-
gate how some properties of these systems are transferred in their cartesian products and
their substructures. The results we obtain find an application in the study of categorical
properties of these structures.
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1. Introduction and preliminaries. The theory of r -ideal systems defined on di-
rected groups was firstly investigated by Lorenzen in 1939 (cf. [4]). Jaffard, in 1960
(cf. [1]), made a systematic study of these systems, which covers a large part of their
properties, although the terminology he used was quite difficult, thus some of his
results have been later rediscovered. These systems are important since a lot of arith-
metical problems, such as the embedding of an integral domain into a greatest com-
mon divisor integral domain, the embedding of a po-group into a lattice-group, the
investigation of Prüfer groups or Bezout domains, can be solved using their properties.

By an r -system of ideals in a directed po-group G we mean a map X � Xr (Xr is
called the r -ideal generated by X) from the set B(G) of all lower bounded subsets X
of G into the power set of G, which satisfies the following conditions:

(1) X ⊆Xr ,
(2) X ⊆ Yr ⇒Xr ⊆ Yr ,
(3) {a}r = a·G+ = (a) for all a∈G,
(4) a·Xr = (a·X)r for all a∈G.

An r -ideal is said to be finite if it is finitely generated, and said to be principal if it
can be generated by one element. The set �r (G) of the r -ideals of G, endowed with
the multiplication

Xr ×r Yr = (X ·Y)r =
(
Xr ·Yr

)
r , (1.1)

is a commutative monoid, which contains the structure (�
f
r (G),×r ), where �

f
r (G) is

the set of finite r -ideals, as a submonoid. In the following, a directed groupG endowed
with an r -system of ideals will be denoted by (G,r). The structure (G,r) has the
following properties:

(1) r -α total (respectively, finite) property if any (respectively, finite) r -ideal of G is
principal.

(2) r -β total (respectively, finite) property if (�r (G),×r ) (respectively, (�
f
r (G),×r ))

is a group.
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(3) r -γ total (respectively, finite) property if (�r (G),×r ) (respectively, (�
f
r (G),×r ))

is a cancellative monoid.
(4) r -δ total (respectively, finite) property if for any (respectively, finite) r -ideal Xr

of G, the transporter Xr :Xr = {x ∈G | x ·Xr ⊆Xr} is contained into G+.
We mention that (G,r) has the r -δ total (respectively, finite) property if and only if

for every x,y ∈G and Zr ∈ �r (G) (respectively, Zr ∈ �
f
r (G)) such that x ·Zr ⊆y ·Zr ,

it follows that y ≤ x. Among all the r -systems defined on G, there exist two special
ones, called the v-system and the t-system defined, respectively, by

Xv =
⋂

X⊆(x)
(x), Xt =

⋃

Y⊆X
Y finite

Yv (1.2)

for any X ∈ B(G).
In the next section, we study how the above-mentioned properties of the structures

(G1,r1) and (G2,r2) can be transferred into the cartesian product G1×G2 and vice
versa, considering that the directed group G1×G2 is endowed with a system of ideals
denoted by r1⊗r2, (cf. [2]), where

Xr1⊗r2 =
(
p1(X)

)
r1×

(
p2(X)

)
r2 (1.3)

for any X ∈ B(G1×G2).
In addition, we make a similar research for the structures (G,r) and (H,r ′), where

H is a directed subgroup of G and Xr ′ = Xr ∩H, for any X ∈ B(H). The system r ′

will be mentioned as the restriction of r . Moreover, the results we derive find an
application in the investigation of categorical properties. We recall some notions in
order to specify the categorical approach we attempt.

A map f : (G1,r1)→ (G2,r2) is called (r1,r2)-morphism if it is a group homomor-
phism and f(Xr1)⊆ (f (X))r2 , for every X ∈ B(G1). The map

f∗ : �r1
(
G1
)
�→ �r2

(
G2
)
, f∗

(
Xr1

)= (f(X)
)
r2 , (1.4)

is a semigroup homomorphism and it will be mentioned as the map induced by f . We
denote by K the category with objects (G,r) and morphisms the (r1,r2)-morphisms
and by L the category with objects (�r (G),×r ) and morphisms the semigroup homo-
morphisms. In [2], we have studied limits in the category K and we have proved that
the map � :K→ L, with

�(G,r)= (�r (G),×r
)
, �f = f∗, (1.5)

for every object (G,r) and every morphism f of K, is a functor which preserves
the products.

In Section 3, we continue the study of the categories K,L and of the functor �, in
what concerns the existence of limits and the ability of � to preserve or reflect them.
Moreover, we define a proper subcategory L∗ of L, which is equivalent to K. We finish
by defining subcategories ofK and L according to the properties their objects have and
we investigate limits in them as well as their relation via the above-mentioned functor.
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2. Special structures with r -ideal systems. This section is devoted to the inves-
tigation of the properties of ideal systems. We denote by R(G) the set of all the r -
systems defined on G and by Rj(G) (respectively, Rf

j (G)), j = α,β,γ,δ, the subset of
R(G)which contains the r -systems having the r−j total (respectively, finite) property,
j = α,β,γ,δ. In the following, whenever we refer to a cartesian product G = G1×G2,
we consider it endowed with the r1⊗ r2-system, where ri ∈ R(Gi), i = 1,2, and we
denote by pi : G → Gi, i = 1,2, the usual projection maps. Especially, we prove that
the properties a cartesian product G1×G2 possesses are determined by the properties
its factors have and vice versa.

Proposition 2.1 (see [3]). Consider the structures (G1,r1) and (G2,r2). If G is the
cartesian product G1×G2, then

(
�r1

(
G1
)
,×r1

)×(�r2
(
G2
)
,×r2

)� (�r1⊗r2(G),×r1⊗r2
)
,

(
�

f
r1
(
G1
)
,×r1

)×(�f
r2
(
G2
)
,×r2

)� (�f
r1⊗r2(G),×r1⊗r2

)
.

(2.1)

Proof. Since [3] has not yet been published, we mention that the isomorphism
needed in the first congruence is defined by f((X1)r1 ,(X2)r2) = (X1 ×X2)r1⊗r2 , for
every Xi ∈ B(Gi), i = 1,2, while the one needed in the second congruence is its re-
striction into �

f
r1(G1)×�

f
r2(G2).

Proposition 2.2. Consider the structures (G1,r1), (G2,r2), and (G,r1⊗r2), where
G = G1 ×G2. Then, r1 ∈ Rj(G1) and r2 ∈ Rj(G2) if and only if r1 ⊗ r2 ∈ Rj(G) for
j =α,β,γ,δ, respectively.

Proof. We distinguish the following cases:
(i) If r1 ∈ Rα(G1) and r2 ∈ Rα(G2), then for every X ∈ B(G) the following hold

(
p1(X)

)
r1 =

{
a1
}
r1 ,

(
p2(X)

)
r2 =

{
a2
}
r2 , (2.2)

where ai ∈ Gi, i = 1,2, since pi(X) ∈ B(Gi), i = 1,2. Put a = (a1,a2). Obviously,
Xr1⊗r2 = {a}r1⊗r2 , which means that r1⊗ r2 ∈ Rα(G). Conversely, if r1⊗ r2 ∈ Rα(G),
then for every lower bounded subset X1 of G1, the set X = X1 × {1G2} is a lower
bounded subset of G and there exists (x1,x2)∈G such that

Xr1⊗r2 =
(
X1
)
r1×

{
1G2

}
r2 =

{(
x1,x2

)}
r1⊗r2 =

{
x1
}
r1×

{
x2
}
r2 . (2.3)

Hence, (X1)r1 = {x1}r1 , x1 ∈ G1, thus, the structure (G1,r1) has the r1-α total prop-
erty. In the same way, we prove that r2 ∈ Rα(G2).

(ii) It results directly from Proposition 2.1 that r1 ∈ Rj(G1) and r2 ∈ Rj(G2) if and
only if r1⊗r2 ∈ Rj(G) for j = β,γ, respectively.

(iii) Suppose that r1 ∈ Rδ(G1) and r2 ∈ Rδ(G2). Let Z ∈ B(G) and x,y ∈ G, x =
(x1,x2), y = (y1,y2), with x ·Zr1⊗r2 ⊆y ·Zr1⊗r2 . Then,

xi ·
(
pi(Z)

)
ri
⊆yi ·

(
pi(Z)

)
ri
, (2.4)

thusyi ≤ xi, for i= 1,2. Hence,y ≤ x, whichmeans that r1⊗r2 ∈ Rδ(G). Conversely, if
r1⊗r2 ∈ Rδ(G), then for everyZ1 ∈ B(G1) andx1,y1 ∈G1, withx1 ·(Z1)r1 ⊆y1 ·(Z1)r1 ,



512 A. KALAPODI AND A. KONTOLATOU

we consider the lower bounded subset Z = Z1×{1G2} of G and we put x = (x1,1G2

)
,

y = (y1,1G2

)
. Then,

x ·Zr1⊗r2 = x ·((Z1
)
r1×

{
1G2

}
r2

)= (x1 ·Z1
)
r1×

{
1G2

}
r2

⊆ (y1 ·Z1
)
r1×

{
1G2

}
r2 =y ·Zr1⊗r2 .

(2.5)

Hence, y ≤ x, thus y1 ≤ x1, that is, r1 ∈ Rδ(G1). In the same way, we prove that
(G2,r2) has the r2-δ total property.

Proposition 2.3. Consider the structures (G1,r1),(G2,r2), and (G,r1⊗r2), where
G = G1 ×G2. Then, r1 ∈ Rf

j (G1) and r2 ∈ Rf
j (G2) if and only if r1 ⊗ r2 ∈ Rf

j (G) for
j =α,β,γ,δ, respectively.

Proof. We observe that if X is a finite subset of G, then pi(X) is a finite subset of
Gi, i = 1,2 and vice versa; if Xi is a finite subset of Gi, then we can always construct
a finite subset X of G such that pi(X)=Xi, for i= 1,2. The result follows by arguing
as in Proposition 2.2.

We can now prove proportionate results concerning subgroups of a directed group.

Proposition 2.4. Consider the structures (G1,r1),(G2,r2), and f ,g : G1 → G2 are
two (r1,r2)-morphisms. Put E = {a∈G1 | f(a)= g(a)} and r ′1 the restriction of the r1-
system on E. If r1 ∈ Rα(G1) (respectively, r1 ∈ Rf

α(G1)), then r ′1 ∈ Rα(E) (respectively,

r ′1 ∈ Rf
α(E)).

Proof. Obviously, the set E is a directed subgroup of G1, so the system r ′1 is well
defined. LetX be a lower bounded (respectively, finite) subset of E, that is, f(X)= g(X)
and Xr ′1 =Xr1∩E, where Xr1 = {a}r1 , a∈G1. Then,
(
f(X)

)
r2=

(
g(X)

)
r2 �⇒f∗

(
Xr1

)=g∗
(
Xr1

)
�⇒{f(a)

}
r2=

{
g(a)

}
r2 �⇒f(a)=g(a), (2.6)

thus a∈ E and Xr ′1 = {a}r ′1 . Hence, r ′1 ∈ Rα(E) (respectively, r ′1 ∈ Rf
α(E)).

Proposition 2.5. Consider the structure (G,r), H a directed subgroup of G and
r ′ the restriction of r into H. If r ∈ Rj(G), (respectively, r ∈ Rf

j (G)), then r ′ ∈ Rj(H),

(respectively, r ′ ∈ Rf
j (H)), for j = γ,δ, respectively.

Proof. We denote by i : H → G the injection map, which is obviously an (r ′,r )-
morphism and let i∗ : �r ′(H) → �r (G) be the induced semigroup homomorphism.
If (G,r) has the r -γ total property, then for every X,Y ,Z ∈ B(H) with Xr ′ ×r ′ Zr ′ =
Yr ′ ×r ′ Zr ′ , it follows that

i∗
(
(XZ)r ′

)= i∗
(
(YZ)r ′

)
�⇒ (XZ)r = (YZ)r �⇒Xr = Yr �⇒Xr ′ = Yr ′ . (2.7)

Thus, the monoid �r ′(H) is cancellative. Suppose now that (G,r) has the r -δ total
property and let X ∈ B(H) and a∈Xr ′ |Xr ′ . Then

a·X ⊆ a·Xr ′ ⊆Xr ′ ⊆Xr , (2.8)

and therefore, (a·X)r ⊆Xr , that is, a∈Xr |Xr ⊆G+. Thus, a∈H+, hence, Xr ′ |Xr ′ ⊆
H+, which means that r ′ ∈ Rδ(H).

Similarly, we can prove that if r ∈ Rf
j (G), then r ′ ∈ Rf

j (H), for j = γ,δ.
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In the previous propositions, we have used the notion of a semigroup homomor-
phism induced by an (r1,r2)-morphism. We shall prove that this kind of map does
not include all semigroup homomorphisms from �r1(G1) to �r2(G2).

Proposition 2.6. Consider the structures (G1,r1) and (G2,r2). There exist semi-
group homomorphisms from �r1(G1) to �r2(G2), which are not induced by any (r1,r2)-
morphism f :G1→G2.

Proof. We prove this proposition by giving an example. Let (Z,+,≤) be the addi-
tive group of the integers endowed with the usual ordering. Consider the cartesian
product Z×Z, which becomes a partially ordered group with the componentwise or-
dering and addition. Put G1 = (Z,+,≤), G2 = (Z×Z,+,≤) and consider the structures
(G1, t1),(G2, t2), where t1, t2 are the t-systems defined on G1,G2, respectively. Then,
from the definition of the t-system, it follows that (Xi)ti = {∧GiXi}ti , for Xi ∈ B(Gi),
where ∧GiXi is the infimum of Xi, i= 1,2. Put

f̄ : �t2
(
G2
)
�→ �t1

(
G1
)
, f̄

(
Xt2

)= (p1(X)+p2(X)
)
t1 , (2.9)

where pi :G2→G1, i= 1,2 are the usual projection maps. Let X,Y ∈ B(G2), with Xt2 =
Yt2 . Then, ∧G2X = ∧G2Y = (x1,x2), where xi = ∧G1pi(X) = ∧G1pi(Y), i = 1,2. Thus,
∧G1(p1(X)+p2(X)) = ∧G1p1(X)+∧G1p2(X) = x1 +x2 and similarly, ∧G1(p1(Y)+
p2(Y))= x1+x2. Hence,

f̄
(
Xt2

)= {∧G1

(
p1(X)+p2(X)

)}
t1 =

{
x1+x2

}
t1 =

(
p1(Y)+p2(Y)

)
t1 = f̄

(
Yt2
)

(2.10)

which means that the map f̄ is well defined. Moreover, this map is a semigroup ho-
momorphism, since for Xt2 ,Yt2 ∈ �r2(G2), there holds

f̄
(
Xt2×t2 Yt2

)= f̄
(
(X+Y)t2

)= (p1(X+Y)+p2(X+Y)
)
t1

= (p1(X)+p2(X)
)
t1×t1

(
p1(Y)+p2(Y)

)
t1 = f̄

(
Xt2

)×t1 f̄
(
Yt2
)
.

(2.11)

Now suppose that the map f̄ is induced by a (t2, t1)-morphism f :G2→G1. Then, for
every x = (x1,x2) ∈ G2, there holds {f(x)}t1 = f̄ ({x}t2) = {x1+x2}t1 . Thus, f(x) =
x1+x2. It is obvious that the map f is a group homomorphism. In order to prove that
it is not a (t2, t1)-morphism, it would be enough to find a lower bounded subset X of
G2, such that f(Xt2) �⊆ (f (X))t1 . Put X = {(3,−2),(−3,2)}. Then, X ∈ B(G2) and

Xt2 =
{∧G2 X

}
t2 =

{
(−3,−2)}t2 =

{
(a,b)∈G2 | a≥−3, b ≥−2}. (2.12)

Moreover, f(X) = {1,−1} and (f (X))t1 = {∧G1f(X)}t1 = {−1}t1 . Since, (−3,−2) be-
longs to Xt2 , it results that−5∈ f(Xt2). But−5 ∉ (f (X))t1 , which means that f(Xt2) �⊆
(f (X))t1 . Hence, the map f is not a (t2, t1)-morphism.

3. Categorical properties. In [2], we have proved the existence of finite products
and equalizers in the category K. More specifically, the product of the objects (G1,r1)
and (G2,r2) is ((G1 × G2,r1 ⊗ r2),p1,p2), where p1,p2 are the projection maps
and the equalizer of the (r1,r2)-morphisms f ,g : G1 → G2 is ((E,r ′1),l), where E =
{a ∈ G1 | f(a) = g(a)}, r ′1 is the restriction of the r1-system into E and l : E → G1 is
the injection map.
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Proposition 3.1. The category K is complete.

Proof. We can easily generalize the construction of finite products (cf. [2]) in order
to verify that the product of an arbitrary family (Gi,ri)i∈I of objects of K is the pair
((
∏

i∈I Gi,r),(pi)i∈I), where Xr =
∏

i∈I(pi(X))ri and pi, i ∈ I, the projection maps.

Corollary 3.2. Consider the objects (Gi,ri), i = 1,2,3, of K and the morphisms
f :G1→G3, g :G2→G3. Their pullback is ((H,r ′),p1,p2), where H = {(x1,x2)∈G1×
G2 | f(x1) = g(x2)}, r ′ is the restriction of the r1⊗r2-system into H and pi :H →Gi,
i= 1,2, the projection maps.

Proof. The proof is obvious, from the form the products and the equalizers have
in the category K.

Proposition 3.3. The inclusion functor L→ Sem does not reflect equalizers.

Proof. Consider the objects (G1, t1),(G2, t2) of the category K, as they have been
defined in Proposition 2.6, the corresponding objects (�t1(G1),×t1),(�t2(G2),×t2) of
L and the semigroup homomorphisms f̄ ,p∗1 from (�t2(G2),×t2) to (�t1(G1),×t1), with

f̄
(
Xt2

)= (p1(X)+p2(X)
)
t1 , p∗1

(
Xt2

)= (p1(X)
)
t1 , (3.1)

where pi, i= 1,2, are the projection maps from Z×Z to Z. Let (E,l) be the equalizer
of f̄ and p∗1 in the category Sem, that is,

E =
{
Xt2 ∈ �t2

(
G2
) | (p1(X)+p2(X)

)
t1 =

(
p1(X)

)
t1

}
. (3.2)

If the inclusion functor L → Sem reflects equalizers, then there exists an object
(G,r)∈K, such that E = (�r (G),×r ). The group G is a subset of G2, since for g ∈G,
it is {g}r ∈ �r (G)⊆ �t2(G2). Moreover,

{
p1(g)

}
t1 = p∗1

({g}t2
)= f̄

({g}t2
)= {p1(g)+p2(g)

}
t1 , (3.3)

thus, p1(g)= p1(g)+p2(g). Hence,

G ⊆ {(x,y)∈G2 | x = x+y
}= {(x,0)∈G2 | x ∈G1

}
. (3.4)

Put X = {(−3,2),(4,0)}. Obviously, X ∈ B(G2), p1(X)+p2(X) = {−1,−3,6,4} and
p1(X)= {−3,4}. Then,

∧G1

(
p1(X)

)=∧G1

(
p1(X)+p2(X)

)=−3, (3.5)

which means that f̄ (Xt2) = p∗1 (Xt2). Thus, Xt2 ∈ E. Consider now Y ∈ B(G), such
that Yr = Xt2 . Then (−3,2)∈G, since (−3,2) belongs to Xt2 , which is absurd. So, the
equalizer (E,l) is not an object of the category L and this completes the proof.

The previous proposition shows that in the category L equalizers do not exist, in
general. It is then natural for one to define a proper subcategory of L, which should
have more properties. We put L∗ the subcategory of L, which has the same objects
and as morphisms the semigroup homomorphisms induced by morphisms of the
category K.
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Proposition 3.4. The functor � :K→ L∗, with �(G,r)= (�r (G),×r ) and �f = f∗,
is an equivalence.

Proof. It is obvious that this functor is well defined. In order to prove the equiv-
alence of the categories K and L∗, it is enough to observe that for every f ,g ∈
HomK((G1,r1),(G2,r2)) with �f = �g, it follows that

�f
({x}r1

)= �g
({x}r1

)
�⇒ {

f(x)
}
r2 =

{
g(x)

}
r2 �⇒ f(x)= g(x) (3.6)

for any x ∈G1.

Corollary 3.5. The category L∗ is complete and the functor � : K → L∗ preserves
and reflects limits.

In the following, we denote by Kj (respectively, Kf
j ), the subcategory of K with ob-

jects (G,r) which have the r−j total (respectively, finite) property and by Lj (respec-

tively, Lf
j ), the corresponding subcategories of L, for j =α,β,γ,δ. To avoid confusion,

we symbolize the restriction of the functor � : K → L, into the subcategories Kj and

Kf
j , by the same letter. We investigate the existence of limits in Kj and Kf

j as well as

the proportionate results for the categories Lj and Lf
j .

Proposition 3.6. (1) The categories Kj and Kf
j , j =α,γ,δ, are complete.

(2) The categories Kβ and Kf
β have products.

Proof. Since all these categories are subcategories of K, it is enough to check
whether the limits existing in K are reflected in them by the inclusion functor or not.
The answer is obvious from Propositions 2.2, 2.3, 2.4, and 2.5.

It is obvious that the restriction of the functor � :K→ L intoKj andKf
j , j =α,β,γ,δ,

preserves the products. We prove that the functor � :Kα→ Lα also preserves equaliz-
ers and pullbacks.

Proposition 3.7. The functor � :Kα→ Lα preserves limits.

Proof. It is enough to prove that this functor preserves equalizers. Let ((E,r ′1),l)
be the equalizer of f ,g ∈ HomKα((G1,r1),(G2,r2)). We prove that the equalizer of
�f ,�g ∈ HomLα((�r1(G1),×r1),(�r2(G2),×r2)) is ((�r ′1(E),×r ′1),�l). There holds
�f ◦�l = �g ◦�l, since � is a functor. Let (�r (G),×r ) be another object of Lα and
h : (�r (G),×r )→ (�r1(G1),×r1) a morphism, such that �f ◦h= �g◦h. Put

k :
(
�r (G),×r

)
�→ (

�r ′1(E),×r ′1
)
, k

({x}r
)= {a}r ′1 , (3.7)

where h({x}r )= {a}r1 . The map k is well defined, since for {x}r ∈ �r (G), there holds
(�f ◦h)({x}r )= (�g◦h)({x}r ), so {f(a)}r2 = {g(a)}r2 , and therefore, f(a)= g(a).
If {x}r ,{y}r ∈ �r (G), then k({x}r ) = {a}r ′1 and k({y}r ) = {b}r ′1 , with h({x}r ) =
{a}r1 and h({y}r )= {b}r1 . Thus,

k
({x}r

)×r ′1 k
({y}r

)= {a·b}r ′1 , k
({x}r ×r {y}r

)= k
({x ·y}r

)= {c}r ′1 , (3.8)

where
{c}r1 = h

({x ·y}r
)= h

({x}r
)×r1 h

({y}r
)= {a·b}r1 . (3.9)



516 A. KALAPODI AND A. KONTOLATOU

Hence, {a · b}r ′1 = {c}r1 ∩ E = {c}r ′1 , which means that the map k is a semigroup
homomorphism. Obviously, �l◦k= h. Moreover, the map k is unique, because if m :
(�r (G),×r )→ (�r ′1(E),×r ′1) is another morphism such that �l◦m= h, then for {x}r ∈
�r (G), withm({x}r )= {b}r ′1 and k({x}r )= {a}r ′1 , we have �l({b}r ′1)= �l({a}r ′1), that
is {b}r1 = {a}r1 . Hence, {a}r ′1 = {b}r ′1 and finally m= k.
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