FIXED POINTS VIA A GENERALIZED LOCAL COMMUTATIVITY

GERALD F. JUNGCK

(Received 24 May 2000)

ABSTRACT. Let $g: X \to X$. The concept of a semigroup of maps which is "nearly commutative at g" is introduced. We thereby obtain new fixed point theorems for functions with bounded orbit(s) which generalize a recent theorem by Huang and Hong, and results by Jachymski, Jungck, Ohta, and Nikaido, Rhoades and Watson, and others.

2000 Mathematics Subject Classification. Primary 47H10, 54H25.

1. Introduction. By a *semi-group of maps* we mean a family H of self maps of a set X which is closed with respect to composition of maps $(f \circ g = fg)$ and includes the identity map $i_d(x) = x$, for $x \in X$. We often associate with a function $g: X \to X$ following semi-groups:

$$O_{g} = \{ g^{n} \mid n \in \mathbb{N} \cup \{0\} \}, \tag{1.1}$$

where \mathbb{N} is the set of positive integers and $g^0 = i_d$, and

$$C_g = \{ f : X \longrightarrow X \mid fg = gf \}.$$

$$(1.2)$$

A quick check confirms that C_q is a semi-group.

If *H* is a semi-group of self maps of a set *X* and $a \in X$, $H(a) = \{h(a) \mid a \in H\}$. In particular, if $H = O_g$, $O_g(a) = \{g^n(a) \mid n \in \mathbb{N} \cup \{0\}\}$ and is called the orbit of *g* at *a*.

In general, Lemma 3.2 and some theorems in Section 3 will be stated in the context of semi-metric spaces. A *semi-metric* on a set X is a function $d: X \times X \to [0, \infty)$ such that d(x, y) = d(y, x) for $x, y \in X$ and d(x, y) = 0 if and only if x = y. A *semi-metric space* is a pair (X;d), where X is a topological space and d is a semi-metric on X. The topology t(d) on X is generated by the sets $S(p,\epsilon) = \{x \mid d(x,p) < \epsilon\}$ with the requirement that p is an interior point of $S(p,\epsilon)$. A sequence $\{x_n\}$ in X converges in t(d) to $p \in X$ (denoted as $x_n \to p$) if and only if $d(x_n,p) \to 0$. We let t(d) be T_2 (Hausdorff) to ensure unique limits. Thus, a metric space (X,d) is a semi-metric space having the triangle inequality. For further details on semi-metric spaces, see, for example, [1, 4, 6].

If $g: X \to X$, a semi-metric space (X; d) is *complete* (*g*-*orbitally complete*) if and only if every Cauchy sequence (in the usual sense) in $X(O_g(x))$ converges to a point of X. *g* is *continuous* at $p \in X$ if and only if whenever $\{x_n\}$ is a sequence in X and $x_n \to p$, then $f(x_n) \to f(p)$. And if S is a bounded subset of X, $\delta(S) = \sup\{d(x, y) \mid x, y \in S\}$.

We are now ready to focus on the intent of this paper, namely, to introduce a generalized "local commutativity" and to demonstrate the concept's usefulness.

GERALD F. JUNGCK

2. Nearly commutative semi-groups. In [2], a semi-group *H* of maps is said to be *near-commutative* if and only if for each pair $f, g \in H$, there exists $h \in H$ such that fg = gh. We generalize as follows.

DEFINITION 2.1. A semi-group *H* of self maps of a set *X* is *nearly commutative* (*n.c.*) at $g: X \to X$ if and only if $(f \in H)$ implies that there exists $h \in H$ such that fg = gh.

Of course, O_g and C_g are n.c. at g. Observe also that a *near-commutative semigroup* H of self maps of a set X is n.c. at *each* $g \in H$. The following provides for each $a \in (0, \infty)$ an example of a semi-group $H = S_a$ of self maps which is not nearcommutative but is n.c. at a particular $g: X \to X$.

EXAMPLE 2.2. Let $X = [0, \infty)$ and $a \in (0, \infty)$. Let g(x) = ax and define

$$S_a = \{ a^m x^n \mid x \in [0, \infty), \ n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{0\} \},$$
(2.1)

where S_a is *nearly commutative* (n.c.) at g. For if $f(x) = a^m x^n$ is a representative element of S_a , then $fg(x) = f(g(x)) = a^m (ax)^n = a^{m+n}x^n$. We want $h(x) = a^r x^s \in$ S_a such that fg = gh. Now, $g(h(x)) = a(a^r x^s) = a^{r+1}x^s$, so we can let s = n and r+1 = m+n; that is, r = m + (n-1). Since $n \in \mathbb{N}$ and (n-1), $m \in \mathbb{N} \cup \{0\}$, s and rso designated imply $h \in S_a$. Thus, $(f \in H = S_a)$ implies that there exists $h \in H$ such that fg = gh. Since $i_d \in S_a$, S_a is clearly a semi-group, and we are finished. On the other hand, S_a is not a *near-commutative* semi-group. For example, let $f(x) = a^2x^2$ and $h(x) = a^2x^3$. We want $t(x) = a^r x^s$ such that fh = ht. So we must have 3s = 6and (2+3r) = 6. But then r = 4/3, and $r \notin \mathbb{N} \cup \{0\}$.

Now, let \mathcal{M}_n and \mathcal{N}_n denote the set of all $n \times n$ real matrices and the set of all nonsingular $n \times n$ real matrices, respectively. Then, both sets \mathcal{M}_n and \mathcal{N}_n are semigroups of linear transformations $A : \mathbb{R}^n \to \mathbb{R}^n$ relative to composition of maps (matrix multiplication).

EXAMPLE 2.3. \mathcal{N}_n is n.c. For if $A, B \in \mathcal{N}_n$, there exists $C = B^{-1}(AB) \in \mathcal{N}_n$ such that AB = BC.

EXAMPLE 2.4. \mathcal{M}_n is n.c. at any $B \in \mathcal{N}_n$, by Example 2.3. But \mathcal{M}_n is not near commutative. For instance, if n = 2, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, there exists no 2×2 matrix *C* such that AB = BC.

Now, let $g: X \to X$. Since any semi-group of self maps which commute with g is a subset of C_g , we might hope that $H_g = \{f: X \to X \mid fg = gh \text{ for some } h: X \to X\}$ would be a maximal semi-group which is n.c. at g. However, H_g so defined need not be n.c. at g! For example, let $X = [0, \infty)$, g(x) = 1/(x + 1), and f(x) = x/2. Then h(x) = 2x + 1 satisfies f(g(x)) = g(h(x)) for $x \in [0, \infty)$. However, there exists no $k \in H_g$ such that h(g(x)) = g(k(x)); that is, $2(x + 1)^{-1} + 1 = (k(x) + 1)^{-1}$ (note that $x, k(x) \ge 0$).

Note that the map g(x) = 1/(x+1) was not surjective. So consider the following example.

EXAMPLE 2.5. Let *X* be any set and let $g: X \to X$ be surjective. Then the family of all self mappings of *X*, $\mathcal{F} = \{f \mid f: X \to X\}$, is n.c. at *g*. For suppose $f \in \mathcal{F}$; we need $h \in \mathcal{F}$ such that fg(x) = gh(x) for all $x \in X$. So let $a \in X$. Since *g* is onto, we can choose $x_a \in X$ such that $g(x_a) = f(g(a))$. Choose such an x_a for each $a \in X$ and define $h(a) = x_a$. Then $h: X \to X$ and $g(h(a)) = g(x_a) = f(g(a))$ for $a \in X$; that is, fg = gh.

PROPOSITION 2.6. Suppose that *H* is a semigroup of maps which is n.c. at $g: X \to X$. If $f \in H$ and $n \in \mathbb{N}$, there exists $h_n \in H$ such that $fg^n = g^n h_n$ (i.e., *H* is n.c. at g^n).

PROOF. Let $f \in H$. Since, H is n.c. at g, there exists $h_1 \in H$ such that $fg = gh_1$. So suppose that $k \in \mathbb{N}$ such that $fg^k = g^k h_k$ for some $h_k \in H$. Then

$$fg^{k+1} = (fg^k)g = (g^k h_k)g = g^k(h_kg).$$
(2.2)

Since $h_k \in H$, there exists $h_{k+1} \in H$ such that $h_k g = gh_{k+1}$, and therefore (2.2) implies $fg^{k+1} = g^k(gh_{k+1}) = g^{k+1}h_{k+1}$, as desired.

Throughout this paper, *P* denotes a function $P : [0, \infty) \to [0, \infty)$ which is nondecreasing, and satisfies $\lim_{n\to\infty} P^n(t) = 0$ for $t \in [0, \infty)$. (For example, we could let $P(t) = \alpha t$ for some $\alpha \in (0, 1)$, or t/(t+1).) And throughout this paper, we appeal to the following lemma.

LEMMA 2.7. Let *H* be a semi-group of self maps of a set *X* and suppose that *H* is nearly commutative at $g: X \to X$. Let $d: X \times X \to [0, \infty)$. Suppose that for each pair $x, y \in X$ there exists a choice $r = r(\{x, y\}), s = s(\{x, y\}) \in H$, and $u, v \in \{x, y\}$ for which

$$d(gx, gy) \le P(d(ru, sv)). \tag{2.3}$$

Then, if $n \in \mathbb{N}$, for each pair $x, y \in X$ there exist $r_n, s_n \in H$ and $u_n, v_n \in \{x, y\}$ such that

$$d(g^n x, g^n y) \le P^n(d(r_n u_n, s_n v_n)).$$
(2.4)

PROOF. By (2.3), inequality (2.4) holds for n = 1, so suppose that $n \in \mathbb{N}$ for which (2.4) is true. Then, if $x, y \in X$,

$$d(g^{n+1}x, g^{n+1}y) = d(g(g^nx), g(g^ny)) \le P(d(ru, sv)),$$
(2.5)

where $r, s \in H$ and $u, v \in \{g^n x, g^n y\}$, by (2.3). Specifically, $u = g^n c$, $v = g^n d$, where $c, d \in \{x, y\}$. And since $r, s \in H$, there exist $r', s' \in H$ such that $rg^n = g^n r'$ and $sg^n = g^n s'$, by Proposition 2.6. So (2.4) implies that

$$d(ru, sv) = d(rg^{n}(c), sg^{n}(d)) = d(g^{n}(r'c), g^{n}(s'd)) \le P^{n}(d(r_{n}u_{n}, s_{n}v_{v})), \quad (2.6)$$

where $r_n, s_n \in H$ and $u_n, v_n \in \{r'c, s'd\}$. Thus, $r_n u_n \in \{(r_n r')c, (r_n s')d\}$, where $r_n r'$ and $r_n s'$ are elements of H, since H is a semi-group. So $r_n u_n = r_{n+1}u_{n+1}$, where $r_{n+1} \in \{r_n r', r_n s'\}$ (i.e., $r_{n+1} \in H$) and $u_{n+1} \in \{c, d\} \subset \{x, y\}$. Similarly, $s_n v_n = s_{n+1}v_{n+1}$, where $s_{n+1} \in H$ and $v_{n+1} \in \{x, y\}$. Thus, (2.6) implies that

$$d(ru, sv) \le P^n(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1})), \quad r_{n+1}, s_{n+1} \in H, \ u_{n+1}, v_{n+1} \in \{x, y\}.$$
(2.7)

But *P* is nondecreasing, and therefore (2.7) and (2.5) yield

$$d(g^{n+1}x, g^{n+1}y) \le P(P^n(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1}))) = P^{n+1}(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1})),$$
(2.8)

with $r_{n+1}, s_{n+1} \in H$ and $u_{n+1}, v_{n+1} \in \{x, y\}$. So, (2.4) is true for all n by induction.

3. Fixed point theorems

DEFINITION 3.1. Let (X; d) be a semi-metric space and let H be a semi-group of self maps of X. A map $g: X \to X$ is *P*-contractive relative to H if and only if (2.3) holds. (We will also say, "*g* is a *P*-contraction relative to H.")

LEMMA 3.2. Let (X;d) be a T_2 semi-metric space and let H be a semi-group of self maps of X n.c. at $g: X \to X$. Suppose that g is P-contractive relative to H and that $M \subset X$ such that $B = \bigcup \{H(c) \mid c \in M\}$ is bounded. Then $d(g^n(x), g^n(y)) \to 0$ uniformly on B as $n \to \infty$. Specifically, if $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that

$$(n \ge k) \Longrightarrow \left(d(g^n(x), g^n(y)) < \epsilon \ \forall x, y \in B \right). \tag{3.1}$$

PROOF. By hypothesis $\delta(B) < \infty$, $P^n(\delta(B)) \to 0$ as $n \to \infty$. Let $\epsilon > 0$. We can choose $k \in \mathbb{N}$ such that

$$P^n(\delta(B)) < \epsilon \quad \text{for } n \ge k.$$
 (3.2)

Let $x, y \in B$. If $n \in \mathbb{N}$, since g is P-contractive relative to H, Lemma 2.7 yields $r_n, s_n \in H$ and $u_n, v_n \in \{x, y\} (\subset B)$ such that

$$d(g^n(x), g^n(y)) \le P^n(d(r_n u_n, s_n v_n)).$$

$$(3.3)$$

Since $u_n \in B$, there exist $h \in H$ and $c \in M$ such that $u_n = h(c)$. But $r_n, h \in H$, so $r_n h \in H$. Therefore, $r_n u_n = (r_n h)(c) \in H(c) \subset B$. Likewise, $s_n v_n \in B$. But then $d(r_n u_n, s_n v_n) \le \delta(B)$ and therefore,

$$P^{n}(d(r_{n}u_{n},s_{n}v_{n})) \leq P^{n}(\delta(B)) \quad \text{for } n \in \mathbb{N},$$
(3.4)

since *P* is nondecreasing and *n* is arbitrary. Formulae (3.2), (3.3), and (3.4) imply

$$d(g^{n}(x), g^{n}(y)) < \epsilon \quad \text{for } n \ge k.$$
(3.5)

Since the choice of *k* in (3.2) was independent of *x* and *y*, (3.5) holds for all $x, y \in B$.

THEOREM 3.3. Let (X;d) be a T_2 semi-metric space, and let H be a semi-group of self maps of X which is n.c. at $g \in H$. Suppose that H(a) is bounded for some $a \in X$ and X is g-orbitally complete. If g is a P-contraction relative to H, then $g^n(a) \to c$ for some $c \in X$. If g is continuous at c, g(c) = c.

PROOF. Since *X* is *g*-orbitally complete, to show that $g^n(a) \rightarrow c$ for some $c \in X$ it suffices to show that $\{g^n(a)\}$ is a Cauchy sequence.

To this end, let $\epsilon > 0$. Since, H(a) is bounded, Lemma 3.2 with B = H(a) implies that there exists $k \in \mathbb{N}$ such that

$$n \ge k \Longrightarrow d(g^n(x), g^n(y)) < \epsilon \quad \forall x, y \in H(a).$$
(3.6)

Therefore, if $m > n \ge k$, m = n + r for some $r \in \mathbb{N}$, and

$$d(g^n(a), g^m(a)) = d(g^n(a), g^n(g^r(a))) < \epsilon,$$
(3.7)

since $a, g^r(a) \in H(a)$. We conclude that $\{g^n(a)\}$ is Cauchy, and there exists $c \in X$ such that $g^n(a) \to c$.

Now, if *g* is continuous at *c*, $\lim_{n\to\infty} g(g^n(a)) = g(c)$, since $g^n(a) \to c$. But then $g^{n+1}(a) \to c$ also, so g(c) = c since (X;d) is a T_2 semi-metric space.

DEFINITION 3.4. Let *X* and *Y* be topological spaces. A map $g: X \to Y$ is *closed* if and only if g(M) is closed in *Y* whenever *M* is a closed subset of *X*.

Note that the conclusion of Lemma 3.2 asserts that $d(g^k(x_k), g^k(y_k)) \rightarrow 0$ for any sequences $\{x_k\}$ and $\{y_k\}$ in *B*.

THEOREM 3.5. Let (X;d) be a bounded and complete T_2 semi-metric space, and let H be a semi-group of maps n.c. at $g \in H$. If g is closed and P-contractive relative to H,

- (i) there exists $p \in X$ such that $\{p\} = \cap \{g^n(X) \mid n \in \mathbb{N}\},\$
- (ii) p is the unique fixed point of g,
- (iii) $g^n(x) \rightarrow p$ for all $x \in X$.

PROOF. Let $x \in X$. By Theorem 3.3, $\{g^n(x)\}$ converges to p for some $p \in X$. Moreover, $p \in \cap \{g^n(X) \mid n \in \mathbb{N}\}$. Otherwise, there exists $k \in \mathbb{N}$ such that $p \notin g^k(X)$. Since $g^k(X)$ is closed, there exists $\epsilon > 0$ such that $S(p,\epsilon) \cap g^k(X) = \emptyset$. Thus, $d(g^n(x), p) \ge \epsilon$ for $n \ge k$ since $g^n(X)$ is a subset of $g^k(X)$ for $n \ge k$. This contradicts the fact that $g^n(x) \to p$.

In fact, $\{p\} = \cap \{g^n(X) \mid n \in \mathbb{N}\}$. For if $q \in \cap \{g^n(X) \mid n \in \mathbb{N}\}$, for each $k \in \mathbb{N}$ we can choose $x_k, y_k \in X$ such that $g^k(x_k) = p$ and $g^k(y_k) = q$. So

$$d(p,q) = d(g^k(x_k), g^k(y_k)) \longrightarrow 0, \tag{3.8}$$

by Lemma 3.2 with M = X.

Clearly, (i) implies that *p* is a fixed point of *g*, since $g(\{p\}) \subset \{p\}$. Thus, if $x \in X$, $d(g^n(x), p) = d(g^n(x), g^n(p)) \to 0$ as $n \to \infty$, so (iii) holds. Similarly, if *q* is a fixed point of *g*, then $d(p,q) = (g^n(p), g^n(q)) \to 0$, so that q = p. Thus, *p* is the only fixed point of *g*.

In the following we need the triangle inequality, so we require the underlying space to be a metric space.

THEOREM 3.6. Let (X,d) be a metric space and let H be a semi-group of self maps of X n.c. at some $g \in H$. Suppose that X is g-orbitally complete and there exists $k \in \mathbb{N}$ such that for each pair $x, y \in X$, there exist $r, s \in H$ and $u, v \in \{x, y\}$ for which

$$d(g^k x, g^k y) \le P(d(ru, sv)). \tag{3.9}$$

(i) If there exists $a \in X$ such that H(a) is bounded, then there exists $c \in X$ such that $\lim_{n\to\infty} g^n(a) = c$. If h is continuous for some $h \in H$, then h(c) = c. (Specifically, g(c) = c if g is continuous at c.)

(ii) If H(x) is bounded for each $x \in X$, there exists a unique $c \in X$ such that $g^n(x) \rightarrow c$ for all $x \in X$. If g is continuous at c, c is a unique common fixed point for all $h \in H$.

PROOF. Suppose that H(a) is bounded. Since H is n.c. at g, Proposition 2.6 says that H is n.c. at g^k . And X is g^k -orbitally complete since X is g-orbitally complete. Therefore, (3.9) and Theorem 3.3 imply that

$$\lim_{m \to \infty} (g^k)^m(a) = c \quad \text{for some } c \in X.$$
(3.10)

To see that $\lim_{n\to\infty} g^n(a) = c$, let $\epsilon > 0$. Then (3.10) and Lemma 3.2 (with B = H(a)) imply that there exists $p \in \mathbb{N}$ such that $d((g^k)^p(a), c) < \epsilon/2$ and $d(g^{kp}(x), g^{kp}(y)) < \epsilon/2$ for $x, y \in B$; that is,

$$d(g^{kp}(a),c) < \frac{\epsilon}{2}, \qquad d(g^{kp}(g^{i}(a)),g^{kp}(a)) < \frac{\epsilon}{2} \quad \forall i \in \mathbb{N},$$
(3.11)

since $g \in H \Rightarrow g^i(a) \in H(a)$. So, if n > kp, n = kp + i for some $i \in \mathbb{N}$, and

$$d(g^{n}(a),c) \le d(g^{n}(a),g^{kp}(a)) + d(g^{kp}(a),c), \qquad (3.12)$$

or

$$d(g^n(a),c) \le d(g^{kp}(g^i(a)),g^{kp}(a)) + d(g^{kp}(a),c) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$
(3.13)

by (3.11). Consequently, $g^n(a) \rightarrow c$.

Now, let $h \in H$ and suppose that h is continuous at c. Then, $\lim_{n\to\infty} h(g^n(a)) = h(c)$ and

$$d(h(c),c) = \lim_{n \to \infty} d(hg^{n}(a),g^{n}(a)) = \lim_{n \to \infty} d(h(g^{k})^{n}(a),(g^{k})^{n}(a)).$$
(3.14)

But *H* is n.c. at g^k , so for $n \in \mathbb{N}$ there exists $h_n \in H$ such that $hg^{kn} = g^{kn}h_n$. Then, by (3.14),

$$d(h(c),c) = \lim_{n \to \infty} d((g^k)^n (h_n(a)), (g^k)^n(a)) = 0,$$
(3.15)

since $a, h_n(a) \in H(a)$ and Lemma 3.2 holds for g^k . Thus, (i) holds.

To prove (ii), suppose that H(x) is bounded for each $x \in X$. If $a, b \in X$, $g^n(a) \to c_a$ and $g^n(b) \to c_b$ for some $c_a, c_b \in X$ by (i). But $c_a = c_b$, since $H(a) \cup H(b)$ is bounded, and therefore, Lemma 3.2 applied to g^k implies that $d(c_a, c_b) = \lim_{n\to\infty} d((g^k)^n(a), (g^k)^n(b)) = 0$.

Thus, there exists a unique $c \in X$ such that $g^n(x) \to c$ for all $x \in X$. We know that g(c) = c by part (i), if g is continuous at c. Since $g^n(d) = d$ for all n if d is a fixed point of g, and therefore $g^n(d) \to d$, c must be the only fixed point of g. Moreover, h(c) = c for all $h \in H$ (even though h may not be continuous). This follows, since Proposition 2.6 applied to g^k implies that for each $n \in \mathbb{N}$,

$$d(c,h(c)) = d((g^k)^n(c),h(g^k)^n(c)) = d((g^k)^n(c),(g^k)^n(h_n(c)))$$
(3.16)

for some $h_n \in H$. But H(c) is bounded, so Lemma 3.2 applied to g^k implies that the right member of (3.16) converges to zero as $n \to \infty$, and thus, c = h(c).

REMARK 3.7. Theorem 3.3 appreciably generalizes Theorem 2.1 in [5] and Theorem 3.6 generalizes Corollary 2.3 in [5]—and hence Theorem 2 in [3] and the theorems of Rhoades and Watson [9]. Note that in Theorem 3.6(ii), the mappings $h \in H$ ($h \neq g$) need not be continuous. Remember also that C_g and O_g are special instances of H.

The following example suggests that the requirement in Theorem 3.6(ii), that H(x) be bounded for each $x \in X$, is not as restrictive as may first appear.

EXAMPLE 3.8. Let $S = \{$ continuous functions $f : [0, \infty) \rightarrow [0, \infty) |$ there exists $a_f \in (0, \infty)$ such that f(x) < x for $x > a_f \}$. (So, e.g., $\{f \mid f(x) = mx + b, m \in [0, 1) \}$ and $b \ge 0 \} \subset S$, and $\ln(x + b) \in S$ for $b \ge 1$.) Then (1) $S \cup \{i_d\}$ is a semi-group under composition of functions, and (2) $O_f(x)$ is bounded for $f \in S$ and $x \in [0, \infty)$.

First note that, we can let M_f denote the maximum value of f on $[0, a_f]$ for each $f \in S$ since each f is continuous. To see that (1) is true, let $f, g \in S$. We need only to show that $g \circ f = gf \in S$. Clearly, gf is a continuous self map of $[0, \infty)$. So let $a_{gf} = \max\{a_f, M_g\}$ and suppose that $x > a_{gf}$. We want gf(x) < x. Now, $x > a_{gf}$ implies that $x > a_f$ so that (i) f(x) < x. If $f(x) > a_g$, then g(f(x)) < f(x) < x by (i) and the definition of a_g . If $f(x) \le a_g$, $g(f(x)) \le M_g \le a_{gf} < x$. So, in any event, $(g \circ f)(x) < x$ if $x > a_{gf}$, and thus, $g \circ f \in S$. (2) follows easily by using induction to show that $(f \in S)$ implies that (if $x \in [0, \infty)$, $f^n(x) \le \max\{x, M_f\}$ for $n \in \mathbb{N}$). We omit the details.

If we let $P(t) = \alpha t$ for fixed $\alpha \in (0, 1)$ and $t \in [0, \infty)$, we have the following corollary.

COROLLARY 3.9. Let (X,d) be a bounded complete metric space and let $g: X \to X$ be continuous. Suppose that H is a semi-group of self maps of X n.c. at g and $g \in H$. If there exists $\alpha \in (0,1)$ such that for any pair $x, y \in X$ there exist $r, s \in H$ and $u, v \in \{x, y\}$ for which

$$d(gx, gy) \le \alpha d(ru, sv), \tag{3.17}$$

then there exists a unique $c \in X$ such that $g^n(x) \rightarrow c$ for $x \in X$, and c = gc = hc for all $h \in H$.

4. Some consequences

DEFINITION 4.1. A *gauge function* is an upper semicontinuous (u.s.c.) function $\phi : [0, \infty) \rightarrow [0, \infty)$ such that $\phi(0) = 0$ and $\phi(t) < t$ for all t > 0.

LEMMA 4.2. Let (X,d) be a metric space and let H be a semi-group of self maps of X which is n.c. at $g \in H$. Suppose that $H(x, y) = H(x) \cup H(y)$ is bounded for $x, y \in X$ and there exists a gauge function ϕ such that

$$d(gx, gy) \le \phi(\delta(H(x, y))) \quad \text{for } x, y \in X.$$

$$(4.1)$$

Then, there exists a nondecreasing continuous function $P : [0, \infty) \rightarrow [0, \infty)$ such that $P^n(t) \rightarrow 0$ for all t > 0 and which satisfies the following condition: for any pair $x, y \in X$ there exist r = r(x, y), $s = s(x, y) \in H$, and $u, v \in \{x, y\}$ such that

$$d(gx, gy) \le P(d(ru, sv)). \tag{4.2}$$

PROOF. Let $x, y \in X$ and suppose that (4.1) holds. Since, ϕ is a gauge function, as is well known [2], there exists a nondecreasing continuous function $P : [0, \infty) \to [0, \infty)$ such that $P^n(t) \to 0$ for $t \ge 0$, and

$$\phi(t) < P(t), \quad P(t) < t \quad \forall t \in (0, \infty).$$
(4.3)

Since *P* is continuous, (4.3) implies that for any t > 0, there exists $\epsilon_t \in (0, t)$ such that

$$t' \in (t - \epsilon_t, t + \epsilon_t) \Longrightarrow \phi(t) < P(t'). \tag{4.4}$$

And since H(x, y) is bounded, the definition of δ implies that there exist $r, s \in H$ and $u, v \in \{x, y\}$ such that, with $t = \delta(H(x, y))$,

$$t = \delta(H(x, y)) \ge d(ru, sv) > \delta(H(x, y)) - \epsilon_t.$$
(4.5)

So, with t' = d(ru, sv), (4.4) and (4.5) imply that

$$\phi(\delta(H(x,y))) < P(d(ru,sv)). \tag{4.6}$$

Therefore, (4.1) implies that $d(gx, gy) \le P(d(ru, sv))$.

The following theorem provides a generalization of Theorem 2.1 in [2].

THEOREM 4.3. Let (X,d) be a complete metric space and let H be a semi-group of self maps of X which is n.c. at some $g \in H$. Suppose that the following conditions are satisfied:

(i) H(x) is bounded for all $x \in X$, g is continuous,

(ii) there exists a gauge function ϕ and $k \in \mathbb{N}$ such that

$$d(g^{k}x, g^{k}y) \le \phi(\delta(H(x, y))) \quad \text{for } x, y \in X.$$

$$(4.7)$$

Then

(a) *H* has a unique common fixed point *c* and $g^n(x) \rightarrow c$ for $x \in X$.

(b) If for each $h \in H - \{i_d\}$ there exists $k = k_h \in \mathbb{N}$ such that (4.7) holds with g = h, then

$$h^n(x) \longrightarrow c \quad \forall x \in X, \ h \in H - \{i_d\}.$$
 (4.8)

PROOF. Now, (i) implies that $H(x, y) = H(x) \cup H(y)$ is bounded for $x, y \in X$. To see that (a) is true, note that *H* is n.c. at g^k by Proposition 2.6 and substitute g^k for *g* in Lemma 4.2 to conclude that (3.9) holds. Consequently, we can appeal to Theorem 3.6(ii) to obtain a $c \in X$ such that $g^n(x) \to c$ for $x \in X$. And since *g* is continuous, *c* is the unique fixed point of *g* and a fixed point for each $h \in H$. Thus, *c* is the unique common fixed point of *H* (remember, $g \in H$) and therefore (a) holds.

To prove (b) note that, by part (a), if $h \in H - \{i_d\}$, $h \neq g$, $h^n(c) = g(c) = c$ for $n \in \mathbb{N}$. But Theorem 3.6 applied to h yields a unique $c_1 \in X$ such that $h^n(x) \to c_1$ for all $x \in X$. Since $h^n(c) = c$ for all $n, c_1 = c$.

REMARK 4.4. Theorem 4.3 generalizes Theorem 2.1 in [2] in the following ways:

(i) The semi-group *H* is not required to be near-commutative (i.e., n.c. at each $h \in H$), but n.c. only at *g*,

- (ii) g is the only member of H required to be continuous,
- (iii) in (b), (4.7) is required to hold only for $k = k_h$, not for all $k \ge k_h$.

Theorem 4.3 yields the following corollary, which generalizes the theorem of Ohta and Nikaido [8] by requiring only that the orbits of f—but not all of X—be bounded.

COROLLARY 4.5. Let f be a continuous self mapping of a metric space (X,d) having bounded orbits $O_f(x)$ for all $x \in X$. If there exist $c \in (0,1)$ and $k \in \mathbb{N}$ such that

$$d(f^{k}x, f^{k}y) \le c\delta(\{f^{i}t \mid t \in \{x, y\}, i \in \mathbb{N} \cup \{0\}\})$$
(4.9)

for all $x, y \in X$, then f has a unique fixed point.

Observe that Lemma 3.2 does not require that $g \in H$, whereas the theorems in Section 3 do. The requirement that $g \in H$ was convenient in the proof, but the following proposition says that it is not necessary when $O_g(a)$ is bounded. Moreover, this result is needed for the proof of Theorem 4.7.

PROPOSITION 4.6. If *H* is a semi-group of self maps *n.c.* at *g* and $g \notin H$, then $H_g = \{g^n h \mid n \in \mathbb{N} \cup \{0\} \text{ and } h \in H\}$ is a semi-group which is *n.c.* at *g*. Moreover, $g \in H_g$ and $H \subset H_g$.

PROOF. H_g is a semi-group. For if $g^n h_1, g^m h_2 \in H_g$, since H is n.c. at g, we have $g^n h_1 g^m h_2 = g^n (h_1 g^m) h_2 = g^n (g^m h_3) h_2 = g^{n+m} (h_4)$, where $h_4 = h_3 h_2 \in H$.

 H_g is n.c. at g, since (H n.c. at g) implies that there exists $h_2 \in H$ such that $(g^n h)g = g^n(hg) = g^n(gh_2) = g(g^nh_2)$.

It is clear that if $g : X \to X$ is a *P*-contraction relative to *H*, then it is certainly a *P*-contraction relative to H_g since $H \subset H_g$. We use this fact in the proof of Theorem 4.7.

THEOREM 4.7. Let *C* be a compact subset of a normed linear space *X* which is starshaped with respect to $q \in C$. Let $T : C \to C$ be continuous and let *H* be a semi-group of affine maps $I : C \to C$ n.c. at *T* such that I(q) = q. If for each pair $x, y \in C$ there exist $I, J \in H$ and $u, v \in \{x, y\}$ for which

$$||Tx - Ty|| \le ||Iu - Jv||,$$
 (4.10)

then there exists $a \in C$ such that a = Ta and a = Ia for all continuous $I \in H$.

PROOF. Choose a sequence $\{k_n\}$ in (0,1) such that $k_n \to 1$, and for each $n \in \mathbb{N}$, let

$$T_n(x) = k_n T x + (1 - k_n) q.$$
(4.11)

Since *C* is star-shaped with respect to *q*, $T_n : C \to C$ for $n \in \mathbb{N}$. Moreover, if $I \in H$, there exists $J \in H$ such that

$$IT_n x = I(k_n T x + (1 - k_n)q) = k_n I(T x) + (1 - k_n)Iq$$

= $k_n T(J x) + (1 - k_n)q = T_n J x,$ (4.12)

since *I* is affine, *H* is n.c. at *T*, and Iq = q. Thus, for each $n \in \mathbb{N}$, *H* is a semi-group of affine maps which is n.c. at T_n . Then, by Proposition 4.6, H_{T_n} is a semi-group of self maps of *C* which is n.c. at T_n , $T_n \in H_{T_n}$, and $H \subset H_{T_n}$ for $n \in \mathbb{N}$.

Now fix *n*. By hypothesis, for each pair $x, y \in C$ there exist $I, J \in H(\subset H_{T_n})$ and $u, v \in \{x, y\}$ such that

$$||Tx - Ty|| \le ||Iu - Jv||,$$
 (4.13)

so

$$||T_n x - T_n y|| \le k_n ||Iu - Jv||,$$
 (4.14)

by (4.11). Therefore, since T_n is continuous and $k_n \in (0,1)$, Corollary 3.9 applied to T_n and H_{T_n} (*C* compact implies that *C* is bounded and complete) implies that there exists a unique $x_n \in C$ such that

$$x_n = T_n(x_n) = I(x_n) \quad \forall I \in H_{T_n}.$$

$$(4.15)$$

Thus we have a sequence $\{x_n\}$ in *C* which satisfies (4.15). Since *C* is compact, $\{x_n\}$ has a subsequence $\{x_{i_n}\}$ which converges to some $a \in C$. Equations (4.11) and (4.15) thus imply that

$$a = \lim_{n \to \infty} x_{i_n} = \lim_{n \to \infty} k_{i_n} T x_{i_n} + \lim_{n \to \infty} (1 - k_{i_n}) q = \lim_{n \to \infty} I x_{i_n}.$$
 (4.16)

But *T* is continuous, so (4.16) implies that a = Ta, and a = Ia for all continuous *I*.

REMARK 4.8. We see that Theorem 4.7 does indeed extend Theorem 3 in [7] if we observe that the family \mathcal{F} in Theorem 3 [7]. is a family of sets which is a subset of C_g . We can let

$$H = \{ \text{maps } h : C \longrightarrow C \mid h \text{ is affine, } h \in C_g \}.$$

$$(4.17)$$

Then *H* is a semi-group and $\mathcal{F} \subset H$.

5. Conclusion. We conclude with further evidence of the generality and applicability of the concept of being nearly commutative at a function g. The theorem below generalizes Theorem 4.2 in [5] by replacing the semi-group C_{gf} with a more general semi-group H.

THEOREM 5.1. Let f and g be commuting self maps of a compact metric space (X,d) such that gf is continuous. If H is a semi-group of self maps of X which is n.c. at gf, and

$$fx \neq gy \Longrightarrow d(fx, gy) < \delta(H(x, y)), \tag{5.1}$$

then there exists a unique point $a \in X$ such that a = fa = ga = ha for all $h \in H$.

We leave the proof of Theorem 5.1 to the interested reader.

References

- T. L. Hicks and B. E. Rhoades, Fixed points for pairs of mappings in d-complete topological spaces, Int. J. Math. Math. Sci. 16 (1993), no. 2, 259–266. MR 93k:54076. Zbl 796.54049.
- [2] Y.-Y. Huang and C.-C. Hong, Common fixed point theorems for semigroups on metric spaces, Int. J. Math. Math. Sci. 22 (1999), no. 2, 377-386. MR 2000b:54053. Zbl 944.47034.
- [3] J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (1993), no. 6, 1095–1102. MR 94k:54076. Zbl 795.54054.

506

- [4] J. Jachymski, J. Matkowski, and T. Świątkowski, Nonlinear contractions on semimetric spaces, J. Appl. Anal. 1 (1995), no. 2, 125–134. CMP 1 395 268.
- G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), no. 3, 977–983. MR 89h:54030. Zbl 661.54043.
- [6] _____, Fixed point theorems for semi-groups of self maps of semi-metric spaces, Int. J. Math. Math. Sci. 21 (1998), no. 1, 125–132. CMP 1 486 967. Zbl 892.54026.
- [7] G. Jungck and S. Sessa, *Fixed point theorems in best approximation theory*, Math. Japon. 42 (1995), no. 2, 249–252. MR 96f:47112. Zbl 834.54026.
- [8] M. Ohta and G. Nikaido, *Remarks on fixed point theorems in complete metric spaces*, Math. Japon. 39 (1994), no. 2, 287-290. MR 94m:54099. Zbl 802.47055.
- B. E. Rhoades and B. Watson, *Generalized contractions and fixed points in metric spaces*, Math. Japon. 34 (1989), no. 6, 975–982. MR 91c:54057. Zbl 697.54023.

Gerald F. Jungck: Department of Mathematics, Bradley University, Peoria, IL 61625, USA

E-mail address: gfj@hilltop.bradley.edu