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Abstract. Let g : X → X. The concept of a semigroup of maps which is “nearly commu-
tative at g” is introduced. We thereby obtain new fixed point theorems for functions with
bounded orbit(s) which generalize a recent theorem by Huang and Hong, and results by
Jachymski, Jungck, Ohta, and Nikaido, Rhoades and Watson, and others.

2000 Mathematics Subject Classification. Primary 47H10, 54H25.

1. Introduction. By a semi-group of maps we mean a family H of self maps of a
set X which is closed with respect to composition of maps (f ◦g = fg) and includes
the identity map id(x) = x, for x ∈ X. We often associate with a function g : X → X
following semi-groups:

Og =
{
gn |n∈N∪{0}}, (1.1)

where N is the set of positive integers and g0= id, and

Cg =
{
f :X �→X | fg = gf

}
. (1.2)

A quick check confirms that Cg is a semi-group.
If H is a semi-group of self maps of a set X and a ∈ X, H(a) = {h(a) | a ∈H}. In

particular, if H =Og, Og(a)= {gn(a) |n∈N∪{0}} and is called the orbit of g at a.
In general, Lemma 3.2 and some theorems in Section 3 will be stated in the context

of semi-metric spaces. A semi-metric on a set X is a function d : X×X → [0,∞) such
that d(x,y)= d(y,x) for x,y ∈X and d(x,y)= 0 if and only if x =y . A semi-metric
space is a pair (X;d), where X is a topological space and d is a semi-metric on X.
The topology t(d) on X is generated by the sets S(p,ε) = {x | d(x,p) < ε} with the
requirement that p is an interior point of S(p,ε). A sequence {xn} in X converges
in t(d) to p ∈ X (denoted as xn → p) if and only if d(xn,p) → 0. We let t(d) be
T2 (Hausdorff) to ensure unique limits. Thus, a metric space (X,d) is a semi-metric
space having the triangle inequality. For further details on semi-metric spaces, see,
for example, [1, 4, 6].
If g :X →X, a semi-metric space (X;d) is complete (g-orbitally complete) if and only

if every Cauchy sequence (in the usual sense) in X (Og(x)) converges to a point of X.
g is continuous at p ∈X if and only if whenever {xn} is a sequence in X and xn→ p,
then f(xn)→ f(p). And if S is a bounded subset of X, δ(S)= sup{d(x,y) | x,y ∈ S}.
We are now ready to focus on the intent of this paper, namely, to introduce a gen-

eralized “local commutativity” and to demonstrate the concept’s usefulness.
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2. Nearly commutative semi-groups. In [2], a semi-group H of maps is said to be
near-commutative if and only if for each pair f ,g ∈ H, there exists h ∈ H such that
fg = gh. We generalize as follows.

Definition 2.1. A semi-group H of self maps of a set X is nearly commutative
(n.c.) at g : X → X if and only if (f ∈ H) implies that there exists h ∈ H such that
fg = gh.

Of course, Og and Cg are n.c. at g. Observe also that a near-commutative semi-
group H of self maps of a set X is n.c. at each g ∈ H. The following provides for
each a ∈ (0,∞) an example of a semi-group H = Sa of self maps which is not near-
commutative but is n.c. at a particular g :X →X.

Example 2.2. Let X = [0,∞) and a∈ (0,∞). Let g(x)= ax and define

Sa =
{
amxn | x ∈ [0,∞), n∈N, m∈N∪{0}}, (2.1)

where Sa is nearly commutative (n.c.) at g. For if f(x) = amxn is a representative
element of Sa, then fg(x)= f(g(x))= am(ax)n = am+nxn. We want h(x)= arxs ∈
Sa such that fg = gh. Now, g(h(x)) = a(arxs) = ar+1xs , so we can let s = n and
r +1 =m+n; that is, r =m+(n−1). Since n ∈ N and (n−1), m ∈ N∪{0}, s and r
so designated imply h ∈ Sa. Thus, (f ∈H = Sa) implies that there exists h ∈H such
that fg = gh. Since id ∈ Sa, Sa is clearly a semi-group, and we are finished. On the
other hand, Sa is not a near-commutative semi-group. For example, let f(x) = a2x2

and h(x) = a2x3. We want t(x) = arxs such that fh = ht. So we must have 3s = 6
and (2+3r)= 6. But then r = 4/3, and r ∉N∪{0}.
Now, let �n and �n denote the set of all n×n real matrices and the set of all

nonsingular n×n real matrices, respectively. Then, both sets �n and �n are semi-
groups of linear transformations A :Rn→Rn relative to composition of maps (matrix
multiplication).

Example 2.3. �n is n.c. For if A,B ∈ �n, there exists C = B−1(AB) ∈ �n such that
AB = BC .

Example 2.4. �n is n.c. at any B ∈�n, by Example 2.3. But �n is not near commu-
tative. For instance, if n = 2, B = [1 10 0

]
, and A = [1 23 4

]
, there exists no 2×2 matrix C

such that AB = BC .

Now, let g : X → X. Since any semi-group of self maps which commute with g is a
subset of Cg , we might hope that Hg = {f : X → X | fg = gh for some h : X → X}
would be a maximal semi-group which is n.c. at g. However, Hg so defined need
not be n.c. at g! For example, let X = [0,∞), g(x) = 1/(x + 1), and f(x) = x/2.
Then h(x) = 2x+1 satisfies f(g(x)) = g(h(x)) for x ∈ [0,∞). However, there ex-
ists no k ∈ Hg such that h(g(x)) = g(k(x)); that is, 2(x+ 1)−1 + 1 = (k(x)+ 1)−1
(note that x, k(x)≥ 0).
Note that the map g(x) = 1/(x+1) was not surjective. So consider the following

example.
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Example 2.5. Let X be any set and let g : X → X be surjective. Then the family of
all self mappings of X, � = {f | f : X → X}, is n.c. at g. For suppose f ∈ �; we need
h ∈ � such that fg(x) = gh(x) for all x ∈ X. So let a ∈ X. Since g is onto, we can
choose xa ∈ X such that g(xa) = f(g(a)). Choose such an xa for each a ∈ X and
define h(a) = xa. Then h : X → X and g(h(a)) = g(xa) = f(g(a)) for a ∈ X; that is,
fg = gh.

Proposition 2.6. Suppose that H is a semigroup of maps which is n.c. at g :X →X.
If f ∈H and n∈N, there exists hn ∈H such that fgn = gnhn (i.e., H is n.c. at gn).

Proof. Let f ∈H. Since, H is n.c. at g, there exists h1 ∈H such that fg = gh1. So
suppose that k∈N such that fgk = gkhk for some hk ∈H. Then

fgk+1 = (fgk)g = (gkhk
)
g = gk

(
hkg

)
. (2.2)

Since hk ∈H, there exists hk+1 ∈H such that hkg = ghk+1, and therefore (2.2) implies
fgk+1 = gk(ghk+1)= gk+1hk+1, as desired.

Throughout this paper, P denotes a function P : [0,∞) → [0,∞) which is non-
decreasing, and satisfies limn→∞Pn(t) = 0 for t ∈ [0,∞). (For example, we could let
P(t) = αt for some α ∈ (0,1), or t/(t+1).) And throughout this paper, we appeal to
the following lemma.

Lemma 2.7. Let H be a semi-group of self maps of a set X and suppose that H is
nearly commutative at g : X → X. Let d : X×X → [0,∞). Suppose that for each pair
x,y ∈ X there exists a choice r = r({x,y}), s = s({x,y}) ∈ H, and u,v ∈ {x,y} for
which

d(gx,gy)≤ P
(
d(ru,sv)

)
. (2.3)

Then, if n ∈ N, for each pair x,y ∈ X there exist rn,sn ∈ H and un,vn ∈ {x,y}
such that

d
(
gnx,gny

)≤ Pn
(
d
(
rnun,snvn

))
. (2.4)

Proof. By (2.3), inequality (2.4) holds for n = 1, so suppose that n ∈N for which
(2.4) is true. Then, if x,y ∈X,

d
(
gn+1x,gn+1y

)= d
(
g
(
gnx

)
,g
(
gny

))≤ P
(
d(ru,sv)

)
, (2.5)

where r ,s ∈H and u,v ∈ {gnx,gny}, by (2.3). Specifically, u= gnc, v = gnd, where
c,d ∈ {x,y}. And since r ,s ∈ H, there exist r ′,s′ ∈ H such that rgn = gnr ′ and
sgn = gns′, by Proposition 2.6. So (2.4) implies that

d(ru,sv)= d
(
rgn(c),sgn(d)

)= d
(
gn
(
r ′c

)
,gn

(
s′d
))≤ Pn

(
d
(
rnun,snvv

))
, (2.6)

where rn,sn ∈H and un,vn ∈ {r ′c,s′d}. Thus, rnun ∈ {(rnr ′)c,(rns′)d}, where rnr ′
and rns′ are elements ofH, sinceH is a semi-group. So rnun = rn+1un+1, where rn+1 ∈
{rnr ′,rns′} (i.e., rn+1 ∈ H) and un+1 ∈ {c,d} ⊂ {x,y}. Similarly, snvn = sn+1vn+1,
where sn+1 ∈H and vn+1 ∈ {x,y}. Thus, (2.6) implies that

d(ru,sv)≤ Pn
(
d
(
rn+1un+1,sn+1vn+1

))
, rn+1,sn+1 ∈H, un+1,vn+1 ∈ {x,y}. (2.7)



500 GERALD F. JUNGCK

But P is nondecreasing, and therefore (2.7) and (2.5) yield

d
(
gn+1x,gn+1y

)≤ P
(
Pn
(
d
(
rn+1un+1,sn+1vn+1

)))

= Pn+1
(
d
(
rn+1un+1,sn+1vn+1

))
,

(2.8)

with rn+1,sn+1 ∈ H and un+1,vn+1 ∈ {x,y}. So, (2.4) is true for all n by induction.

3. Fixed point theorems

Definition 3.1. Let (X;d) be a semi-metric space and letH be a semi-group of self
maps of X. A map g : X → X is P -contractive relative to H if and only if (2.3) holds.
(We will also say, “g is a P-contraction relative to H.”)

Lemma 3.2. Let (X;d) be a T2 semi-metric space and let H be a semi-group of self
maps ofX n.c. at g :X →X. Suppose that g is P -contractive relative toH and thatM ⊂X
such that B =∪{H(c) | c ∈M} is bounded. Then d(gn(x),gn(y))→ 0 uniformly on B
as n→∞. Specifically, if ε > 0, there exists k∈N such that

(n≥ k) �⇒ (d(gn(x),gn(y))< ε ∀x,y ∈ B
)
. (3.1)

Proof. By hypothesis δ(B) <∞, Pn(δ(B))→ 0 as n→∞. Let ε > 0. We can choose
k∈N such that

Pn
(
δ(B)

)
< ε for n≥ k. (3.2)

Let x,y ∈ B. If n ∈ N, since g is P -contractive relative to H, Lemma 2.7 yields
rn,sn ∈H and un,vn ∈ {x,y}(⊂ B) such that

d
(
gn(x),gn(y)

)≤ Pn
(
d
(
rnun,snvn

))
. (3.3)

Since un ∈ B, there exist h ∈ H and c ∈ M such that un = h(c). But rn,h ∈ H,
so rnh ∈ H. Therefore, rnun = (rnh)(c) ∈ H(c) ⊂ B. Likewise, snvn ∈ B. But then
d(rnun,snvn)≤ δ(B) and therefore,

Pn
(
d
(
rnun,snvn

))≤ Pn
(
δ(B)

)
for n∈N, (3.4)

since P is nondecreasing and n is arbitrary. Formulae (3.2), (3.3), and (3.4) imply

d
(
gn(x),gn(y)

)
< ε for n≥ k. (3.5)

Since the choice of k in (3.2) was independent of x and y , (3.5) holds for all x,y ∈ B.

Theorem 3.3. Let (X;d) be a T2 semi-metric space, and let H be a semi-group of
self maps of X which is n.c. at g ∈ H. Suppose that H(a) is bounded for some a ∈ X
and X is g-orbitally complete. If g is a P -contraction relative to H, then gn(a)→ c for
some c ∈X. If g is continuous at c, g(c)= c.

Proof. Since X is g-orbitally complete, to show that gn(a)→ c for some c ∈ X it
suffices to show that {gn(a)} is a Cauchy sequence.
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To this end, let ε > 0. Since, H(a) is bounded, Lemma 3.2 with B = H(a) implies
that there exists k∈N such that

n≥ k �⇒ d
(
gn(x),gn(y)

)
< ε ∀x,y ∈H(a). (3.6)

Therefore, ifm>n≥ k, m=n+r for some r ∈N, and

d
(
gn(a),gm(a)

)= d
(
gn(a),gn

(
gr (a)

))
< ε, (3.7)

since a, gr (a) ∈ H(a). We conclude that {gn(a)} is Cauchy, and there exists c ∈ X
such that gn(a)→ c.
Now, if g is continuous at c, limn→∞ g(gn(a)) = g(c), since gn(a) → c. But then

gn+1(a)→ c also, so g(c)= c since (X;d) is a T2 semi-metric space.

Definition 3.4. Let X and Y be topological spaces. A map g : X → Y is closed if
and only if g(M) is closed in Y whenever M is a closed subset of X.

Note that the conclusion of Lemma 3.2 asserts that d(gk(xk),gk(yk))→ 0 for any
sequences {xk} and {yk} in B.

Theorem 3.5. Let (X;d) be a bounded and complete T2 semi-metric space, and let
H be a semi-group of maps n.c. at g ∈H. If g is closed and P -contractive relative to H,

(i) there exists p ∈X such that {p} = ∩{gn(X) |n∈N},
(ii) p is the unique fixed point of g,
(iii) gn(x)→ p for all x ∈X.

Proof. Let x ∈X. By Theorem 3.3, {gn(x)} converges to p for some p ∈X. More-
over, p ∈∩{gn(X) |n∈N}. Otherwise, there exists k∈N such that p ∉ gk(X). Since
gk(X) is closed, there exists ε > 0 such that S(p,ε)∩gk(X)=∅. Thus, d(gn(x),p)≥ ε
for n ≥ k since gn(X) is a subset of gk(X) for n ≥ k. This contradicts the fact that
gn(x)→ p.
In fact, {p} = ∩{gn(X) |n∈N}. For if q ∈∩{gn(X) |n∈N}, for each k∈N we can

choose xk,yk ∈X such that gk(xk)= p and gk(yk)= q. So

d(p,q)= d
(
gk
(
xk
)
,gk

(
yk
))
�→ 0, (3.8)

by Lemma 3.2 with M =X.
Clearly, (i) implies that p is a fixed point of g, since g({p}) ⊂ {p}. Thus, if x ∈ X,

d(gn(x),p) = d(gn(x),gn(p)) → 0 as n → ∞, so (iii) holds. Similarly, if q is a fixed
point of g, then d(p,q)= (gn(p),gn(q))→ 0, so that q = p. Thus, p is the only fixed
point of g.

In the following we need the triangle inequality, so we require the underlying space
to be a metric space.

Theorem 3.6. Let (X,d) be a metric space and let H be a semi-group of self maps
of X n.c. at some g ∈H. Suppose that X is g-orbitally complete and there exists k ∈N
such that for each pair x,y ∈X, there exist r ,s ∈H and u,v ∈ {x,y} for which

d
(
gkx,gky

)≤ P
(
d(ru,sv)

)
. (3.9)
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(i) If there exists a ∈ X such that H(a) is bounded, then there exists c ∈ X such
that limn→∞gn(a) = c. If h is continuous for some h ∈H, then h(c) = c. (Specifically,
g(c)= c if g is continuous at c.)
(ii) If H(x) is bounded for each x ∈ X, there exists a unique c ∈ X such that

gn(x)→c for all x ∈ X. If g is continuous at c, c is a unique common fixed point
for all h∈H.

Proof. Suppose that H(a) is bounded. Since H is n.c. at g, Proposition 2.6 says
that H is n.c. at gk. And X is gk-orbitally complete since X is g-orbitally complete.
Therefore, (3.9) and Theorem 3.3 imply that

lim
m→∞

(
gk
)m(a)= c for some c ∈X. (3.10)

To see that limn→∞gn(a)= c, let ε > 0. Then (3.10) and Lemma 3.2 (with B =H(a))
imply that there exists p ∈N such that d((gk)p(a),c) < ε/2 and d(gkp(x),gkp(y)) <
ε/2 for x,y ∈ B; that is,

d
(
gkp(a),c

)
<
ε
2
, d

(
gkp

(
gi(a)

)
,gkp(a)

)
<
ε
2

∀i∈N, (3.11)

since g ∈H ⇒ gi(a)∈H(a). So, if n> kp, n= kp+i for some i∈N, and
d
(
gn(a),c

)≤ d
(
gn(a),gkp(a)

)+d(gkp(a),c), (3.12)

or
d
(
gn(a),c

)≤ d
(
gkp

(
gi(a)

)
,gkp(a)

)+d(gkp(a),c)< ε
2
+ ε
2
= ε, (3.13)

by (3.11). Consequently, gn(a)→ c.
Now, leth∈H and suppose thath is continuous at c. Then, limn→∞h(gn(a))= h(c)

and

d
(
h(c),c

)= lim
n→∞d

(
hgn(a),gn(a)

)= lim
n→∞d

(
h
(
gk
)n(a),

(
gk
)n(a)

)
. (3.14)

But H is n.c. at gk, so for n ∈ N there exists hn ∈ H such that hgkn = gknhn. Then,
by (3.14),

d
(
h(c),c

)= lim
n→∞d

((
gk
)n(hn(a)

)
,
(
gk
)n(a)

)= 0, (3.15)

since a,hn(a)∈H(a) and Lemma 3.2 holds for gk. Thus, (i) holds.
To prove (ii), suppose that H(x) is bounded for each x ∈X. If a,b ∈X, gn(a)→ ca

and gn(b)→ cb for some ca,cb ∈X by (i). But ca = cb, since H(a)∪H(b) is bounded,
and therefore, Lemma 3.2 applied to gk implies that d(ca,cb) = limn→∞d((gk)n(a),
(gk)n(b))= 0.
Thus, there exists a unique c ∈ X such that gn(x)→ c for all x ∈ X. We know that

g(c) = c by part (i), if g is continuous at c. Since gn(d) = d for all n if d is a fixed
point of g, and therefore gn(d)→ d, c must be the only fixed point of g. Moreover,
h(c) = c for all h ∈ H (even though h may not be continuous). This follows, since
Proposition 2.6 applied to gk implies that for each n∈N,

d
(
c,h(c)

)= d
((
gk
)n(c),h

(
gk
)n(c)

)= d
((
gk
)n(c),

(
gk
)n(hn(c)

))
(3.16)

for some hn ∈H. But H(c) is bounded, so Lemma 3.2 applied to gk implies that the
right member of (3.16) converges to zero as n→∞, and thus, c = h(c).
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Remark 3.7. Theorem 3.3 appreciably generalizes Theorem 2.1 in [5] and Theorem
3.6 generalizes Corollary 2.3 in [5]—and hence Theorem 2 in [3] and the theorems of
Rhoades and Watson [9]. Note that in Theorem 3.6(ii), the mappings h ∈ H (h ≠ g)
need not be continuous. Remember also that Cg and Og are special instances of H.

The following example suggests that the requirement in Theorem 3.6(ii), that H(x)
be bounded for each x ∈X, is not as restrictive as may first appear.

Example 3.8. Let S = {continuous functions f : [0,∞) → [0,∞) | there exists
af ∈ (0,∞) such that f(x) < x for x > af }. (So, e.g., {f | f(x) =mx+b, m ∈ [0,1)
and b ≥ 0} ⊂ S, and ln(x+b) ∈ S for b ≥ 1.) Then (1) S∪{id} is a semi-group under
composition of functions, and (2) Of (x) is bounded for f ∈ S and x ∈ [0,∞).
First note that, we can let Mf denote the maximum value of f on [0,af ] for each

f ∈ S since each f is continuous. To see that (1) is true, let f ,g ∈ S. We need only
to show that g ◦ f = gf ∈ S. Clearly, gf is a continuous self map of [0,∞). So let
agf = max{af ,Mg} and suppose that x > agf . We want gf(x) < x. Now, x > agf
implies that x > af so that (i) f(x) < x. If f(x) > ag , then g(f(x)) < f(x) < x by
(i) and the definition of ag . If f(x) ≤ ag, g(f(x)) ≤Mg ≤ agf < x. So, in any event,
(g ◦f)(x) < x if x > agf , and thus, g ◦f ∈ S. (2) follows easily by using induction
to show that (f ∈ S) implies that (if x ∈ [0,∞), fn(x) ≤max{x,Mf } for n ∈ N). We
omit the details.
If we let P(t)=αt for fixedα∈ (0,1) and t ∈ [0,∞), we have the following corollary.
Corollary 3.9. Let (X,d) be a bounded complete metric space and let g :X →X be

continuous. Suppose thatH is a semi-group of self maps ofX n.c. at g and g ∈H. If there
exists α ∈ (0,1) such that for any pair x,y ∈ X there exist r ,s ∈H and u,v ∈ {x,y}
for which

d(gx,gy)≤αd(ru,sv), (3.17)

then there exists a unique c ∈ X such that gn(x)→ c for x ∈ X, and c = gc = hc for
all h∈H.

4. Some consequences

Definition 4.1. A gauge function is an upper semicontinuous (u.s.c.) function
φ : [0,∞)→ [0,∞) such that φ(0)= 0 and φ(t) < t for all t > 0.

Lemma 4.2. Let (X,d) be a metric space and let H be a semi-group of self maps of
X which is n.c. at g ∈H. Suppose that H(x,y)=H(x)∪H(y) is bounded for x,y ∈X
and there exists a gauge function φ such that

d(gx,gy)≤φ
(
δ
(
H(x,y)

))
for x,y ∈X. (4.1)

Then, there exists a nondecreasing continuous function P : [0,∞) → [0,∞) such that
Pn(t)→ 0 for all t > 0 and which satisfies the following condition: for any pair x,y ∈X
there exist r = r(x,y), s = s(x,y)∈H, and u,v ∈ {x,y} such that

d(gx,gy)≤ P
(
d(ru,sv)

)
. (4.2)
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Proof. Let x,y ∈X and suppose that (4.1) holds. Since, φ is a gauge function, as
is well known [2], there exists a nondecreasing continuous function P : [0,∞)→ [0,∞)
such that Pn(t)→ 0 for t ≥ 0, and

φ(t) < P(t), P(t) < t ∀t ∈ (0,∞). (4.3)

Since P is continuous, (4.3) implies that for any t > 0, there exists εt ∈ (0, t) such that

t′ ∈ (t−εt,t+εt
)
�⇒φ(t) < P

(
t′
)
. (4.4)

And since H(x,y) is bounded, the definition of δ implies that there exist r ,s ∈H
and u,v ∈ {x,y} such that, with t = δ(H(x,y)),

t = δ
(
H(x,y)

)≥ d(ru,sv) > δ
(
H(x,y)

)−εt. (4.5)

So, with t′ = d(ru,sv), (4.4) and (4.5) imply that

φ
(
δ
(
H(x,y)

))
< P

(
d(ru,sv)

)
. (4.6)

Therefore, (4.1) implies that d(gx,gy)≤ P(d(ru,sv)).

The following theorem provides a generalization of Theorem 2.1 in [2].

Theorem 4.3. Let (X,d) be a complete metric space and let H be a semi-group of
self maps of X which is n.c. at some g ∈ H. Suppose that the following conditions are
satisfied:

(i) H(x) is bounded for all x ∈X, g is continuous,
(ii) there exists a gauge function φ and k∈N such that

d
(
gkx,gky

)≤φ
(
δ
(
H(x,y)

))
for x,y ∈X. (4.7)

Then
(a) H has a unique common fixed point c and gn(x)→ c for x ∈X.
(b) If for each h ∈ H−{id} there exists k = kh ∈ N such that (4.7) holds with g =

h, then
hn(x) �→ c ∀x ∈X, h∈H−{id

}
. (4.8)

Proof. Now, (i) implies that H(x,y) = H(x)∪H(y) is bounded for x,y ∈ X. To
see that (a) is true, note thatH is n.c. at gk by Proposition 2.6 and substitute gk for g in
Lemma 4.2 to conclude that (3.9) holds. Consequently, we can appeal to Theorem 3.6(ii)
to obtain a c ∈ X such that gn(x)→ c for x ∈ X. And since g is continuous, c is the
unique fixed point of g and a fixed point for each h∈H. Thus, c is the unique common
fixed point of H (remember, g ∈H) and therefore (a) holds.
To prove (b) note that, by part (a), if h ∈ H −{id}, h ≠ g, hn(c) = g(c) = c for

n∈N. But Theorem 3.6 applied to h yields a unique c1 ∈X such that hn(x)→ c1 for
all x ∈X. Since hn(c)= c for all n,c1 = c.

Remark 4.4. Theorem 4.3 generalizes Theorem 2.1 in [2] in the following ways:
(i) The semi-group H is not required to be near-commutative (i.e., n.c. at each

h∈H), but n.c. only at g,
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(ii) g is the only member of H required to be continuous,
(iii) in (b), (4.7) is required to hold only for k= kh, not for all k≥ kh.
Theorem 4.3 yields the following corollary, which generalizes the theorem of Ohta

and Nikaido [8] by requiring only that the orbits of f—but not all of X—be bounded.

Corollary 4.5. Let f be a continuous self mapping of a metric space (X,d) having
bounded orbits Of (x) for all x ∈X. If there exist c ∈ (0,1) and k∈N such that

d
(
fkx,f ky

)≤ cδ
({
f it | t ∈ {x,y}, i∈N∪{0}}) (4.9)

for all x,y ∈X, then f has a unique fixed point.

Observe that Lemma 3.2 does not require that g ∈ H, whereas the theorems in
Section 3 do. The requirement that g ∈H was convenient in the proof, but the follow-
ing proposition says that it is not necessary when Og(a) is bounded. Moreover, this
result is needed for the proof of Theorem 4.7.

Proposition 4.6. If H is a semi-group of self maps n.c. at g and g ∉ H, then
Hg = {gnh | n ∈ N∪ {0} and h ∈ H} is a semi-group which is n.c. at g. Moreover,
g ∈Hg and H ⊂Hg .

Proof. Hg is a semi-group. For if gnh1,gmh2 ∈ Hg , since H is n.c. at g, we have
gnh1gmh2 = gn(h1gm)h2 = gn(gmh3)h2 = gn+m(h4), where h4 = h3h2 ∈H.
Hg is n.c. at g, since (H n.c. at g) implies that there exists h2 ∈H such that (gnh)g =

gn(hg)= gn(gh2)= g(gnh2).

It is clear that if g : X → X is a P -contraction relative to H, then it is certainly a
P -contraction relative toHg sinceH ⊂Hg . We use this fact in the proof of Theorem 4.7.

Theorem 4.7. Let C be a compact subset of a normed linear space X which is star-
shaped with respect to q ∈ C . Let T : C → C be continuous and let H be a semi-group of
affine maps I : C → C n.c. at T such that I(q) = q. If for each pair x,y ∈ C there exist
I,J ∈H and u,v ∈ {x,y} for which

∥
∥Tx−Ty∥∥≤ ∥∥Iu−Jv∥∥, (4.10)

then there exists a∈ C such that a= Ta and a= Ia for all continuous I ∈H.

Proof. Choose a sequence {kn} in (0,1) such that kn→ 1, and for each n∈N, let

Tn(x)= knTx+
(
1−kn

)
q. (4.11)

Since C is star-shaped with respect to q, Tn : C → C for n ∈ N. Moreover, if I ∈ H,
there exists J ∈H such that

ITnx = I
(
knTx+

(
1−kn

)
q
)= knI(Tx)+

(
1−kn

)
Iq

= knT(Jx)+
(
1−kn

)
q = TnJx,

(4.12)

since I is affine, H is n.c. at T , and Iq = q. Thus, for each n∈N, H is a semi-group of
affine maps which is n.c. at Tn. Then, by Proposition 4.6, HTn is a semi-group of self
maps of C which is n.c. at Tn, Tn ∈HTn , and H ⊂HTn for n∈N.
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Now fix n. By hypothesis, for each pair x,y ∈ C there exist I,J ∈ H(⊂ HTn) and
u,v ∈ {x,y} such that

∥
∥Tx−Ty∥∥≤ ∥∥Iu−Jv∥∥, (4.13)

so
∥
∥Tnx−Tny

∥
∥≤ kn

∥
∥Iu−Jv∥∥, (4.14)

by (4.11). Therefore, since Tn is continuous and kn ∈ (0,1), Corollary 3.9 applied to
Tn and HTn (C compact implies that C is bounded and complete) implies that there
exists a unique xn ∈ C such that

xn = Tn
(
xn
)= I

(
xn
) ∀I ∈HTn. (4.15)

Thus we have a sequence {xn} in C which satisfies (4.15). Since C is compact, {xn}
has a subsequence {xin} which converges to some a∈ C . Equations (4.11) and (4.15)
thus imply that

a= lim
n→∞xin = limn→∞kinTxin+ limn→∞

(
1−kin

)
q = lim

n→∞Ixin . (4.16)

But T is continuous, so (4.16) implies that a = Ta, and a = Ia for all continuous I.

Remark 4.8. We see that Theorem 4.7 does indeed extend Theorem 3 in [7] if we
observe that the family � in Theorem 3 [7]. is a family of sets which is a subset of Cg .
We can let

H = {maps h : C �→ C | h is affine, h∈ Cg
}
. (4.17)

Then H is a semi-group and �⊂H.

5. Conclusion. We conclude with further evidence of the generality and applicabil-
ity of the concept of being nearly commutative at a function g. The theorem below
generalizes Theorem 4.2 in [5] by replacing the semi-group Cgf with a more general
semi-group H.

Theorem 5.1. Let f and g be commuting self maps of a compact metric space (X,d)
such that gf is continuous. If H is a semi-group of self maps of X which is n.c. at gf ,
and

fx ≠ gy �⇒ d(fx,gy) < δ
(
H(x,y)

)
, (5.1)

then there exists a unique point a∈X such that a= fa= ga= ha for all h∈H.

We leave the proof of Theorem 5.1 to the interested reader.
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