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ON WEAK CENTER GALOIS EXTENSIONS OF RINGS
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Abstract. Let B be a ring with 1, C the center of B, G a finite automorphism group of B,
and BG the set of elements in B fixed under each element in G. Then, the notion of a center
Galois extension of BG with Galois group G (i.e., C is a Galois algebra over CG with Galois
group G|C �G) is generalized to a weak center Galois extension with group G, where B is
called a weak center Galois extension with group G if BIi = Bei for some idempotent in C
and Ii = {c−gi(c) | c ∈ C} for each gi �= 1 in G. It is shown that B is a weak center Galois
extension with group G if and only if for each gi �= 1 in G there exists an idempotent ei in
C and {bkei ∈ Bei; ckei ∈ Cei, k = 1,2, . . . ,m} such that

∑m
k=1bkeigi(ckei) = δ1,giei and

gi restricted to C(1−ei) is an identity, and a structure of a weak center Galois extension
with group G is also given.

2000 Mathematics Subject Classification. Primary 16S35, 16W20.

1. Introduction. Galois theory for fields was generalized for rings in the sixties and
seventies [3, 4, 7, 8]. Let B be a ring with 1, G = {g1 = 1,g2, . . . ,gn} an automorphism
group of B of order n for some integer n, C the center of B, and BG the set of ele-
ments in B fixed under each element in G. There are several well-known classes of
noncommutative Galois extensions: (1) the DeMeyer-Kanzaki Galois extension B (i.e.,
B is an Azumaya C-algebra which is a Galois algebra with Galois group G|C �G) [3, 7],
(2) the H-separable Galois extension B (i.e., B is a Galois and a H-separable exten-
sion of BG) [8], (3) the Azumaya Galois extension B (i.e., B is a Galois extension of BG

which is an Azumaya CG-algebra) [1], (4) the central Galois algebra [3, 4, 7], and (5)
the center Galois extension B (i.e., C is a Galois algebra over CG with Galois group
G|C � G) [11]. We note that a commutative Galois extension is a DeMeyer-Kanzaki
Galois extension which is a center Galois extension. It is well know that C is a Galois
extension of CG if and only if the ideals generated by {c−g(c) | c ∈ C} is C for each
g �= 1 in G [2, Proposition 1.2, page 80]. This fact was generalized in [11] to a center
Galois extension; that is, B is a center Galois extension of BG if and only if the ideals
of B generated by {c−g(c) | c ∈ C} is B, that is, BIi = B, where Ii = {c−gi(c) | c ∈ C}
for each gi �= 1 in G (for more about center Galois extensions, see [5, 6, 9, 10, 11]).
Generalizing the condition that BIi = B = B1 to that BIi = Bei for some idempotent ei
in C for each gi �= 1 in G, we obtain a broader class of rings B than the class of cen-
ter Galois extensions. This class of rings is called weak center Galois extensions. The
purpose of the present paper is to give a characterization and a structure of a weak
center Galois extension B with group G. We shall show that B is a weak center Galois
extension with groupG if and only if for each gi �= 1 inG there exists an idempotent ei
in C and {bkei ∈ Bei; ckei ∈ Cei, k = 1,2, . . . ,m} such that

∑m
k=1bkeigi(ckei) = δ1,giei
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and gi restricted to C(1− ei) is an identity. Next, we call B a T -Galois extension of
BT if there exist elements {ai,bi in B, i = 1,2, . . . ,m} for some integer m such that∑m
i=1aig(bi) = δ1,g for g ∈ T ∪ {1}. We note that T is not necessarily a subgroup

of G. Let B be a weak center Galois extension with group G. Then, we show that there
exists a partition of G− {1}, {Tj ⊂ G, j = 1,2, . . . ,h for some integer h} and some
idempotents ej ∈ C , j = 1,2, . . . ,h such that Bej is a Tj-Galois extension of (Bej)Tj .
So B =∑h

j=1Bej ⊕B(1−∨hj=1ej) such that Bej is a Tj-Galois extension of (Bej)Tj for
j = 1,2, . . . ,h, where ∨ is the sum of the Boolean algebra of the idempotents in C .
Moreover, when G is abelian, ej can be taken as orthogonal idempotents in C so that∑h
j=1Bej is a direct sum. Furthermore, a sufficient condition is given for the existence

of a subgroup Hj ⊂ Tj∪{1} for j = 1,2, . . . ,h. In this case, Bej is a Hj-Galois extension
of (Bej)Hj with Galois group Hj .

2. Definitions and notation. Throughout this paper, B represents a ring with 1,
G = {g1 = 1,g2, . . . ,gn} an automorphism group of B of order n for some integer n,
C the center of B, and BG the set of elements in B fixed under each element in G. We
denote Ii = {c−gi(c) | c ∈ C} and BIi the ideal of B generated by Ii for gi ∈G.
B is called aG-Galois extension of BG if there exist elements {ai,bi in B, i=1,2, . . . ,m}

for some integer m such that
∑m
i=1aig(bi) = δ1,g . Such a set {ai,bi} is called a G-

Galois system for B. B is called a weak center Galois extension of BG with group
G if BIi = Bei for some idempotent in C for each gi �= 1 in G. For a subset T (not
necessary a subgroup) of G, B is called a T -Galois extension of BT if there exist ele-
ments {ai,bi in B, i = 1,2, . . . ,m} for some integer m such that

∑m
i=1aig(bi) = δ1,g

for g ∈ T ∪{1}. Such a set {ai,bi} is called a T -Galois system for B. For a B-module
M , we denote AnnB(M)= {b ∈ B | bm= 0 for allm∈M}.

3. Weak center Galois extensions. In [11], the present authors showed that a cen-
ter Galois extension B is equivalent to each of the following statements: (i) BIi = B
for each gi �= 1 in G and (ii) B is a Galois extension of BG with a Galois system
{bi ∈ B, ci ∈ C, i = 1,2, . . . ,m} for some integer m. In this section, we generalize
this characterization to a weak center Galois extension B with group G. We begin with
the following lemma.

Lemma 3.1. If B is a weak center Galois extension with group G, then
(1) gi restricted to Bei is an automorphism of Bei.
(2) Bei is a {gi}-Galois extension of (Bei){gi}.

Proof. (1) For any b =∑m
k=1bk(ck−gi(ck)) ∈ BIi = Bei, where bk ∈ B and ck ∈ C ,

k = 1,2, . . . ,m for some integer m, we have gi(b) = gi
(∑m

k=1bk(ck − gi(ck))
) =∑m

k=1gi(bk)(gi(ck)−gi(gi(ck)))∈ BIi = Bei. Hence, gi(Bei)⊂ Bei. Thus, gi restricted
to Bei is an automorphism of Bei since gi is an automorphism of B.
(2) Since BIi = Bei, there exist {bk ∈ B, ck ∈ C, k = 1,2, . . . ,m} for some integer

m such that
∑m
k=1bk(ck−gi(ck)) = ei. Therefore,

∑m
k=1bkck = ei+

∑m
k=1bkgi(ck). Let

bm+1 = −
∑m
k=1bkgi(ck) and cm+1 = 1. Then

∑m+1
k=1 bkck = ei and

∑m+1
k=1 bkgi(ck) = 0.

Noting that ei is the identity of Bei and gi restricted to Bei is an automorphism



ON WEAK CENTER GALOIS EXTENSIONS OF RINGS 491

of Bei, we have gi(ei)= ei. Hence,
∑m+1
k=1 bkeigi(ckei)= δ1,giei, that is, {bkei; ckei, k=

1,2, . . . ,m+1} is a {gi}-Galois system for Bei.

The following is an equivalent condition for a weak center Galois extension with
group G.

Theorem 3.2. B is a weak center Galois extension with group G (i.e., BIi = Bei for
some idempotent ei in C for each gi �= 1 in G) if and only if for each gi �= 1 in G
there exists an idempotent ei in C and {bkei ∈ Bei; ckei ∈ Cei, k= 1,2, . . . ,m} such that∑m
k=1bkeigi(ckei)= δ1,giei and gi restricted to C(1−ei) is an identity.
Proof. (⇒) By Lemma 3.1(2), BIi (= Bei) contains a {gi}-Galois system {bkei ∈

Bei; ckei ∈ Cei, k = 1,2, . . . ,m} such that
∑m
k=1bkeigi(ckei) = δ1,giei. Next, we show

that gi restricted to C(1−ei) is an identity. In fact, by Lemma 3.1(1), gi(ei)= ei. Hence,
for any c ∈ C , c(1− ei)−gi(c(1− ei)) = (c−gi(c))(1− ei) ∈ Cei ∩C(1− ei) = {0}.
Thus, gi(c(1−ei))= c(1−ei) for all c ∈ C . This proves that gi restricted to C(1−ei)
is an identity.
(⇐) By hypothesis, for each gi �= 1 in G there exists an idempotent ei in C and

{bkei ∈ Bei; ckei ∈ Cei, k = 1,2, . . . ,m} such that
∑m
k=1bkeigi(ckei) = δ1,giei. Hence,

ei =
∑m
k=1bkei(ckei −gi(ckei)) ∈ BIi. Hence, Bei ⊂ BIi. But ei is an idempotent, so

Bei = Beiei ⊂ BIiei ⊂ Bei. Thus, Bei = BIiei. Since gi restricted to C(1− ei) is an
identity, gi(c(1 − ei)) = c(1 − ei) for all c ∈ C (in particular, gi(ei) = ei). Hence,
c−gi(c)= cei−gi(cei)= (c−gi(c))ei for all c ∈ C . This implies that Bei = BIiei = BIi.

Recall that B is called a T -Galois extension of BT for a subset T (not necessary a
subgroup) of G if B contains a T -Galois system. Next, we give a structure of a weak
center Galois extension with group G.

Lemma 3.3. Assume B is a weak center Galois extension with group G. Let Tj = {gi ∈
G | BIi = Bej, i.e., ei = ej}. Then Bej is a Tj -Galois extension of (Bej)Tj for each j �= 1.

Proof. By the proof of Lemma 3.1(2), for each gi ∈ Tj , there is a {gi}-Galois system
{b(i)k ej ; c(i)k ej, k = 1,2, . . . ,mi} for Bej , where b(i)k ∈ B and c(i)k ∈ C , k = 1,2, . . . ,mi for
some integermi. Denote the elements in Tj by {gi1 ,gi2 , . . . ,git} for some integer t. Let
bk1,k2,...,kt = b(i1)k1 b

(i2)
k2 ···b(it)kt ej and ck1,k2,...,kt = c

(i1)
k1 c

(i2)
k2 ···c(it)kt ej for kl = 1,2, . . . ,mil

and l= 1,2, . . . , t. Noting that c(il)kl ∈ C , l= 1,2, . . . , t, we have

mi1∑

k1=1

mi2∑

k2=1
···

mit∑

kt=1
bk1,k2,...,kt ck1,k2,...,kt

=
mi1∑

k1=1

mi2∑

k2=1
···

mit∑

kt=1

(
b(i1)k1 b

(i2)
k2 ···b(it)kt ej

)(
c(i1)k1 c

(i2)
k2 ···c(it)kt ej

)

=
mi1∑

k1=1

(
b(i1)k1 ej

)(
c(i1)k1 ej

) mi2∑

k2=1

(
b(i2)k2 ej

)(
c(i2)k2 ej

)
···

mit∑

kt=1

(
b(it)kt ej

)(
c(it)kt ej

)

= ej,

(3.1)
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and, for each gi ∈ Tj ,

mi1∑

k1=1

mi2∑

k2=1
···

mit∑

kt=1
bk1,k2,...,ktgi

(
ck1,k2,...,kt

)

=
mi1∑

k1=1

mi2∑

k2=1
···

mit∑

kt=1

(
b(i1)k1 b

(i2)
k2 ···b(it)kt ej

)
gi
(
c(i1)k1 c

(i2)
k2 ···c(it)kt ej

)

=
mi1∑

k1=1

(
b(i1)k1 ej

)
gi
(
c(i1)k1 ej

) mi2∑

k2=1

(
b(i2)k2 ej

)
gi
(
c(i2)k2 ej

)
···

mit∑

kt=1

(
b(it)kt ej

)
gi
(
c(it)kt ej

)

= 0.

(3.2)

Thus, {bk1,k2,...,kt ; ck1,k2,...,kt , kl = 1,2, . . . ,mil and l = 1,2, . . . , t} is a Tj-Galois system
for Bej . This completes the proof.

Theorem 3.4. If B is a weak center Galois extension with group G, then there exists
a partition {Tj ⊂ G, j = 1,2, . . . ,m} of G−{1} and a finite set of central idempotents
{e′i | i = 1,2, . . . ,m for some integerm} such that (1) Be′j is a Tj -Galois extension of

(Be′j)
Tj , (2) B =∑m

j=1Be
′
j⊕B(1−∨mj=1e′j), where ∨mj=1e′j is the sum of e′1,e

′
2, . . . ,e′m in the

Boolean algebra of all idempotents in C , and (3) G|C(1−∨mj=1e′j) = {1}.
Proof. (1) Since BIi = Bei for some idempotent ei in C for each gi �= 1 inG, we have

a set of central idempotents {ei | gi �= 1 in G}. Let E = {e′j | j = 1,2, . . . ,m} be the set of
all distinct idempotents in {ei | gi �= 1 in G} and let Tj = {gi ∈ G | BIi = Be′j , i.e., ei =
e′j}. Then Be′j is a Tj-Galois extension of (Be′j)Tj for each j = 1,2, . . . ,m by Lemma 3.3.
Moreover, since E = {e′j | j = 1,2, . . . ,m} is the set of all distinct idempotents in {ei |
BIi = Bei for gi �= 1 in G}, it is easy to see that Ti∩Tj =∅, the empty set for i �= j and
that ∪mj=1Tj =G−{1}, that is, {Tj ⊂G, j = 1,2, . . . ,m} is a partition of G−{1}.
Part (2) is an immediate consequence of part (1), and Theorem 3.2 implies part (3).
We remark that the partition of G−{1}, {Tj ⊂ G, j = 1,2, . . . ,m} is determined by

the set of all distinct idempotents in {ei | BIi = Bei for gi �= 1 in G}.
When G is abelian, we obtain a stronger structure of a weak center Galois extension

with group G.

Lemma 3.5. Assume that B is a weak center Galois extension with group G. If G is
abelian, then gj(ei)= ei for all i,j = 2,3, . . . ,n.

Proof. For any c − gi(c) ∈ Ii, gj(c − gi(c)) = gj(c) − gi(gj(c)) ∈ Ii. Hence,
gj(BIi)⊂ BIi. Thus, gj restricted to BIi (= Bei) is an automorphism of Bei since gj is
an automorphism of B. Therefore, gj(ei)= ei.

Theorem 3.6. Assume that B is a weak center Galois extension with group G. If G is
abelian, then there exist orthogonal idempotents {fi | i= 1,2, . . . ,p for some integer p}
and some subset T(i) of G, i= 1,2, . . . ,p such that B =⊕∑p

i=1Bfi⊕B(1−∨pi=1fi), where
∨pi=1fi is the sum of f1,f2, . . . ,fp in the Boolean algebra of all idempotents in C and Bfi
is a T(i)-Galois extension of (Bfi)T

(i)
for i= 1,2, . . . ,p.
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Proof. By Theorem 3.4, there exists a set of distinct idempotents E = {e′j | j =
1,2, . . . ,m} in C and a partition {Tj | j = 1,2, . . . ,m} of G − {1} such that Be′j is
a Tj-Galois extension of (Be′j)

Tj for j = 1,2, . . . ,m. Now, let S be the Boolean sub-
algebra generated by E with all nonzero minimal elements f1,f2, . . . ,fp in S. Then,
it is easy to see that fifj = 0 for i �= j, and so f1,f2, . . . ,fp are orthogonal idem-
potents in C . For each fi, i = 1,2, . . . ,p, fi = e′j1e′j2 ···e′jpi . By Theorem 3.4, Be′jl is

a Tjl -Galois extension of (Be
′
jl )

Tjl for each l = 1,2, . . . ,pi with a Tjl -Galois system{
b(l)tl e

′
jl ; c

(l)
tl e

′
jl | b

(l)
tl ∈ B, c(l)tl ∈ C, and tl = 1,2, . . . ,ml

}
. Hence, by using the same

patching method as given in Lemma 3.3,
{
bt1,t2,...,tpi = b

(1)
t1 b

(2)
t2 ···b

(pi)
tpi
fi; ct1,t2,...,tpi =

c(1)t1 c
(2)
t2 ···c

(pi)
tpi
fi | tl = 1,2, . . . ,ml and l = 1,2, . . . ,pi

}
is a T(i)-Galois system for Bfi,

where T(i) =∪kil=1Tjl . Thus, B =⊕
∑p
i=1Bfi⊕B(1−∨pi=1fi) such that Bfi is a T(i)-Galois

extension of (Bfi)T
(i)
for i= 1,2, . . . ,p and {f1,f2, . . . ,fp} is a set of orthogonal idem-

potents in C .

4. Special cases. We note that the Ti’s in Theorem 3.4 and T(i)’s in Theorem 3.6
may not be subgroups of G. Next, we give a sufficient condition for each Ti∪{1} (⊂G)
containing a subgroup Hi so that Bei is a Hi-Galois extension of (Bei)Hi with Galois
group Hi. Consequently, Bei becomes a center Galois extension of (Bei)Hi with Galois
group Hi, and B is a center Galois extension of G with Galois group G if ei = 1 for
all gi �= 1. We first show a relation between B(1−ep), B(1−eq), and B(1−et), where
gpgq = gt ∈G.

Lemma 4.1. Let Ji = {b ∈ B | bc = gi(c)b for all c ∈ C} for each gi ∈ G. Then,
JpJq ⊂ Jt if gpgq = gt ∈G.

Proof. Leta∈ Jp and b ∈ Jq. Then, for any c ∈ C , (ab)c = agq(c)b = gp(gq(c))ab
= gt(c)(ab), where gpgq = gt . Hence, ab ∈ Jt . Thus, JpJq ⊂ Jt .

Corollary 4.2. If B is a weak center Galois extension with group G, then
B(1−ep)B(1−eq)⊂ B(1−et), where gpgq = gt ∈G.

Proof. Since B is a weak center Galois extension with group G, BIi = Bei for some
idempotent ei inC for each gi �= 1 inG. But Ii = {c−gi(c) | c ∈ C}, so Ji = {b ∈ B | bc =
gi(c)b for all c ∈ C} = {b ∈ B | b(c−gi(c)) = 0 for all c ∈ C}. Hence, Ji = AnnB(Ii) =
AnnB(BIi)=AnnB(Bei)= B(1−ei). Thus, by Lemma 4.1, we have B(1−ep)B(1−eq)⊂
B(1−et), where gpgq = gt ∈G.

Theorem 4.3. Assume that B is a weak center Galois extension with group G. Let
Ti, for each i= 2,3, . . . ,n, be the subset of G as given in Theorem 3.4 such that Bei is a
Ti-Galois extension of (Bei)Ti , S the Boolean subalgebra generated by {ei | gi �= 1 in G}
with all nonzero minimal elements {f1,f2, . . . ,fk} in S, and Hj = {1}∪{gi ∈G | eifj =
fj and eifl = 0 for all l �= j}. Then, Hj is a subgroup of G for each j = 1,2, . . . ,k such
that gi(fj)= fj for each gi ∈Hj .

Proof. (1) For any gp and gq in Hj , let gpgq = gt for some gt ∈ G. We claim
that gt ∈ Hj if gt �= 1. Since gt �= 1, BIt = Bet for some idempotent et �= 0 in C . By
Corollary 4.2, B(1−ep)B(1−eq) ⊂ B(1−et). Therefore, in the Boolean algebra of all
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idempotents inC with operations∧,∨, complement, and the relation<, (1−ep)(1−eq)
< (1−et). So et < ep∨eq = ep+eq−epeq. Thus, et = et(ep+eq−epeq). Since gp,gq ∈
Hj , epfl = 0 and eqfl = 0 for all l �= j. Hence, etfl = et(ep+eq−epeq)fl = 0 for all l �= j.
Moreover, since S is the Boolean subalgebra generated by {ei | gi �= 1 in G}, there is
at least one nonzero minimal element in S less than et . But etfl = 0 for all l �= j, so fj
must be less than et . Hence, etfj = fj . Thus, gt(= gpgq)∈Hj , and soHj is a subgroup
of G. Moreover, suppose gi ∈ Hj . Then eifj = fj and eifl = 0 for all l �= j. Hence, ei
is greater than fj , but not greater than fl for all l �= j. Since gi(ei) = ei, gi(fj) is a
nonzero minimal element in S less than ei. Thus, gi(fj)= fj .

Corollary 4.4. Keeping the notation in Theorem 4.3, if Hj �= {1} for j = 1,2, . . . ,p,
then B = ⊕∑p

j=1Bfj ⊕B(1−∨pj=1fj), where ∨pj=1fj is the sum of f1,f2, . . . ,fp in the

Boolean algebra of all idempotents inC , such that Bfj is aHj -Galois extension of (Bfj)Hj

with Galois group Hj for j = 1,2, . . . ,p.
Corollary 4.5. If BIj = B for each gj �= 1 in G, then B is a center Galois extension

of BG with Galois group G.

Proof. Since e2 = e3 = ··· = en, T2 = T3 = ··· = Tn =G−{1}, so Tj∪{1} =G. Thus,
B is a Galois extension of BG with a Galois system {bi ∈ B; ci ∈ C, i = 1,2, . . . ,m} for
some integerm, that is, B is a center Galois extension of BG with Galois group G.

If the order of each nonidentity element in G has order 2 (hence, G is abelian), the
following theorem shows that Ti∪{1} contains a subgroup of G for each gj �= 1 in Ti.

Theorem 4.6. Assume that B is a weak center Galois extension with group G. If each
nonidentity element gi inG has order 2, then Ti contains a subgroup ofHi of order 2 for
each gj �= 1 in G such that Bei is a Hi-Galois extension of (Bei)Hi with Galois group Hi.

Proof. Let BIi = Bei for gi �= 1 in G. Then Hi = {1,gi} is a subgroup contained
in Ti∪{1}, where Ti = {gk ∈ G | BIk = Bei} as defined in Theorem 3.4. Since Bei is
a Ti-Galois extension of (Bei)Ti , Bei is a Hi-Galois extension of (Bei)Hi with Galois
group Hi.

Theorem 3.4 shows that a weak center Galois extension is a sum of Ti-Galois ex-
tensions for some Ti ⊂G and Theorem 4.6 states a weak center Galois extension as a
direct sum of center Galois extensions. The following is an example of a weak center
Galois extension with group G as given in Theorem 4.6, but not a Galois extension.

Example 4.7. Let Q be the rational field, B =Q⊕Q⊕Q⊕Q⊕Q, and G = {g1 = 1,
g2,g3,g4 = g2g3} such that g2(a1,a2,a3,a4,a5) = (a2,a1,a3,a4,a5) and g3(a1,a2,
a3,a4,a5)= (a1,a2,a4,a3,a5) for all (a1,a2,a3,a4,a5)∈ B. Then,
(1) BIi = Bei for each gi �= 1 in G, where e2 = (1,1,0,0,0), e3 = (0,0,1,1,0), and

e4 = (1,1,1,1,0). Hence, B is a weak center Galois extension with group G.
(2) B is not a Galois extension since G restricted to {(0,0,0,0,a) | a∈Q} is identity.
(3) Let Hi = {1,gi}, i = 2,3,4. Then Hi is a subgroup of G of order 2. Moreover,

BI2 = Be2 is a centerH2-Galois extension of (Be2)H2 withGalois system {b1=(1,0,0,0,0),
b2 = (0,1,0,0,0); c1 = (1,0,0,0,0), c2 = (0,1,0,0,0)}, BI3 = Be3 is a center H3-Galois
extension of (Be3)H3 with Galois system {b1 = (0,0,1,0,0), b2 = (0,0,0,1,0); c1 = (0,0,



ON WEAK CENTER GALOIS EXTENSIONS OF RINGS 495

1,0,0), c2 = (0,0,0,1,0)}, and BI4 = Be4 is a centerH4-Galois extension of (Be4)H4 with
Galois system {b1 = (1,0,0,0,0), b2 = (0,1,0,0,0), b3 = (0,0,1,0,0), b4 = (0,0,0,1,0);
c1 = (1,0,0,0,0), c2 = (0,1,0,0,0), c3 = (0,0,1,0,0), c4 = (0,0,0,1,0)}.
(4) S = {0 = (0,0,0,0,0),e2,e3,e4,1 = (1,1,1,1,1)} is the Boolean subalgebra gen-

erated by E = {e2,e3,e4} in the Boolean algebra of all idempotents in the center of B.
The minimal elements in S are f1 = e2 and f2 = e3, and f1∨ f2 = e4. We have that
Bf1 = {(a1,a2,0,0,0) | a1,a2 ∈Q}, Bf2 = {(0,0,a3,a4,0) | a3,a4 ∈Q}, and B(1−f1∨
f2)= {(0,0,0,0,a5) | a5 ∈Q}. So B = Bf1⊕Bf2⊕B(1−f1∨f2) and Bfj is a Hj -Galois
extension of (Bfj)Hj for j = 1,2.
(5) Since e2 = (1,1,0,0,0), e3 = (0,0,1,1,0), and e4 = (1,1,1,1,0), we have

C(1−e2)= {(0,0,a3,a4,a5) | a3,a4,a5 ∈Q}, C(1−e3)= {(a1,a2,0,0,a5) | a1,a2,a5∈
Q}, and C(1−e4)= {(0,0,0,0,a5) | a5 ∈Q}. So gi restricted to C(1−ei) is an identity
for each gi �= 1 in G.
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