ON WEAK CENTER GALOIS EXTENSIONS OF RINGS

GEORGE SZETO and LIANYONG XUE

(Received 27 April 2000)

Abstract

Let B be a ring with $1, C$ the center of B, G a finite automorphism group of B, and B^{G} the set of elements in B fixed under each element in G. Then, the notion of a center Galois extension of B^{G} with Galois group G (i.e., C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{C} \cong G$) is generalized to a weak center Galois extension with group G, where B is called a weak center Galois extension with group G if $B I_{i}=B e_{i}$ for some idempotent in C and $I_{i}=\left\{c-g_{i}(c) \mid c \in C\right\}$ for each $g_{i} \neq 1$ in G. It is shown that B is a weak center Galois extension with group G if and only if for each $g_{i} \neq 1$ in G there exists an idempotent e_{i} in C and $\left\{b_{k} e_{i} \in B e_{i} ; c_{k} e_{i} \in C e_{i}, k=1,2, \ldots, m\right\}$ such that $\sum_{k=1}^{m} b_{k} e_{i} g_{i}\left(c_{k} e_{i}\right)=\delta_{1, g_{i}} e_{i}$ and g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity, and a structure of a weak center Galois extension with group G is also given.

2000 Mathematics Subject Classification. Primary 16S35, 16W20.

1. Introduction. Galois theory for fields was generalized for rings in the sixties and seventies $[3,4,7,8]$. Let B be a ring with $1, G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$ an automorphism group of B of order n for some integer n, C the center of B, and B^{G} the set of elements in B fixed under each element in G. There are several well-known classes of noncommutative Galois extensions: (1) the DeMeyer-Kanzaki Galois extension B (i.e., B is an Azumaya C-algebra which is a Galois algebra with Galois group $\left.\left.G\right|_{C} \cong G\right)[3,7]$, (2) the H-separable Galois extension B (i.e., B is a Galois and a H-separable extension of B^{G}) [8], (3) the Azumaya Galois extension B (i.e., B is a Galois extension of B^{G} which is an Azumaya C^{G}-algebra) [1], (4) the central Galois algebra [3, 4, 7], and (5) the center Galois extension B (i.e., C is a Galois algebra over C^{G} with Galois group $\left.\left.G\right|_{C} \cong G\right)$ [11]. We note that a commutative Galois extension is a DeMeyer-Kanzaki Galois extension which is a center Galois extension. It is well know that C is a Galois extension of C^{G} if and only if the ideals generated by $\{c-g(c) \mid c \in C\}$ is C for each $g \neq 1$ in G [2, Proposition 1.2, page 80]. This fact was generalized in [11] to a center Galois extension; that is, B is a center Galois extension of B^{G} if and only if the ideals of B generated by $\{c-g(c) \mid c \in C\}$ is B, that is, $B I_{i}=B$, where $I_{i}=\left\{c-g_{i}(c) \mid c \in C\right\}$ for each $g_{i} \neq 1$ in G (for more about center Galois extensions, see [5, 6, 9, 10, 11]). Generalizing the condition that $B I_{i}=B=B 1$ to that $B I_{i}=B e_{i}$ for some idempotent e_{i} in C for each $g_{i} \neq 1$ in G, we obtain a broader class of rings B than the class of center Galois extensions. This class of rings is called weak center Galois extensions. The purpose of the present paper is to give a characterization and a structure of a weak center Galois extension B with group G. We shall show that B is a weak center Galois extension with group G if and only if for each $g_{i} \neq 1$ in G there exists an idempotent e_{i} in C and $\left\{b_{k} e_{i} \in B e_{i} ; c_{k} e_{i} \in C e_{i}, k=1,2, \ldots, m\right\}$ such that $\sum_{k=1}^{m} b_{k} e_{i} g_{i}\left(c_{k} e_{i}\right)=\delta_{1, g_{i}} e_{i}$
and g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity. Next, we call B a T-Galois extension of B^{T} if there exist elements $\left\{a_{i}, b_{i}\right.$ in $\left.B, i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$ for $g \in T \cup\{1\}$. We note that T is not necessarily a subgroup of G. Let B be a weak center Galois extension with group G. Then, we show that there exists a partition of $G-\{1\},\left\{T_{j} \subset G, j=1,2, \ldots, h\right.$ for some integer $\left.h\right\}$ and some idempotents $e_{j} \in C, j=1,2, \ldots, h$ such that $B e_{j}$ is a T_{j}-Galois extension of $\left(B e_{j}\right)^{T_{j}}$. So $B=\sum_{j=1}^{h} B e_{j} \oplus B\left(1-\vee_{j=1}^{h} e_{j}\right)$ such that $B e_{j}$ is a T_{j}-Galois extension of $\left(B e_{j}\right)^{T_{j}}$ for $j=1,2, \ldots, h$, where \vee is the sum of the Boolean algebra of the idempotents in C. Moreover, when G is abelian, e_{j} can be taken as orthogonal idempotents in C so that $\sum_{j=1}^{h} B e_{j}$ is a direct sum. Furthermore, a sufficient condition is given for the existence of a subgroup $H_{j} \subset T_{j} \cup\{1\}$ for $j=1,2, \ldots, h$. In this case, $B e_{j}$ is a H_{j}-Galois extension of $\left(B e_{j}\right)^{H_{j}}$ with Galois group H_{j}.
2. Definitions and notation. Throughout this paper, B represents a ring with 1 , $G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$ an automorphism group of B of order n for some integer n, C the center of B, and B^{G} the set of elements in B fixed under each element in G. We denote $I_{i}=\left\{c-g_{i}(c) \mid c \in C\right\}$ and $B I_{i}$ the ideal of B generated by I_{i} for $g_{i} \in G$.
B is called a G-Galois extension of B^{G} if there exist elements $\left\{a_{i}, b_{i}\right.$ in $\left.B, i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$. Such a set $\left\{a_{i}, b_{i}\right\}$ is called a G Galois system for B. B is called a weak center Galois extension of B^{G} with group G if $B I_{i}=B e_{i}$ for some idempotent in C for each $g_{i} \neq 1$ in G. For a subset T (not necessary a subgroup) of G, B is called a T-Galois extension of B^{T} if there exist elements $\left\{a_{i}, b_{i}\right.$ in $\left.B, i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$ for $g \in T \cup\{1\}$. Such a set $\left\{a_{i}, b_{i}\right\}$ is called a T-Galois system for B. For a B-module M, we denote $\operatorname{Ann}_{B}(M)=\{b \in B \mid b m=0$ for all $m \in M\}$.
3. Weak center Galois extensions. In [11], the present authors showed that a center Galois extension B is equivalent to each of the following statements: (i) $B I_{i}=B$ for each $g_{i} \neq 1$ in G and (ii) B is a Galois extension of B^{G} with a Galois system $\left\{b_{i} \in B, c_{i} \in C, i=1,2, \ldots, m\right\}$ for some integer m. In this section, we generalize this characterization to a weak center Galois extension B with group G. We begin with the following lemma.

Lemma 3.1. If B is a weak center Galois extension with group G, then
(1) g_{i} restricted to $B e_{i}$ is an automorphism of $B e_{i}$.
(2) $B e_{i}$ is a $\left\{g_{i}\right\}$-Galois extension of $\left(B e_{i}\right)^{\left\{g_{i}\right\}}$.

Proof. (1) For any $b=\sum_{k=1}^{m} b_{k}\left(c_{k}-g_{i}\left(c_{k}\right)\right) \in B I_{i}=B e_{i}$, where $b_{k} \in B$ and $c_{k} \in C$, $k=1,2, \ldots, m$ for some integer m, we have $g_{i}(b)=g_{i}\left(\sum_{k=1}^{m} b_{k}\left(c_{k}-g_{i}\left(c_{k}\right)\right)\right)=$ $\sum_{k=1}^{m} g_{i}\left(b_{k}\right)\left(g_{i}\left(c_{k}\right)-g_{i}\left(g_{i}\left(c_{k}\right)\right)\right) \in B I_{i}=B e_{i}$. Hence, $g_{i}\left(B e_{i}\right) \subset B e_{i}$. Thus, g_{i} restricted to $B e_{i}$ is an automorphism of $B e_{i}$ since g_{i} is an automorphism of B.
(2) Since $B I_{i}=B e_{i}$, there exist $\left\{b_{k} \in B, c_{k} \in C, k=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{k=1}^{m} b_{k}\left(c_{k}-g_{i}\left(c_{k}\right)\right)=e_{i}$. Therefore, $\sum_{k=1}^{m} b_{k} c_{k}=e_{i}+\sum_{k=1}^{m} b_{k} g_{i}\left(c_{k}\right)$. Let $b_{m+1}=-\sum_{k=1}^{m} b_{k} g_{i}\left(c_{k}\right)$ and $c_{m+1}=1$. Then $\sum_{k=1}^{m+1} b_{k} c_{k}=e_{i}$ and $\sum_{k=1}^{m+1} b_{k} g_{i}\left(c_{k}\right)=0$. Noting that e_{i} is the identity of $B e_{i}$ and g_{i} restricted to $B e_{i}$ is an automorphism
of $B e_{i}$, we have $g_{i}\left(e_{i}\right)=e_{i}$. Hence, $\sum_{k=1}^{m+1} b_{k} e_{i} g_{i}\left(c_{k} e_{i}\right)=\delta_{1, g_{i}} e_{i}$, that is, $\left\{b_{k} e_{i} ; c_{k} e_{i}, k=\right.$ $1,2, \ldots, m+1\}$ is a $\left\{g_{i}\right\}$-Galois system for $B e_{i}$.

The following is an equivalent condition for a weak center Galois extension with group G.

Theorem 3.2. B is a weak center Galois extension with group G (i.e., $B I_{i}=B e_{i}$ for some idempotent e_{i} in C for each $g_{i} \neq 1$ in G) if and only if for each $g_{i} \neq 1$ in G there exists an idempotent e_{i} in C and $\left\{b_{k} e_{i} \in B e_{i} ; c_{k} e_{i} \in C e_{i}, k=1,2, \ldots, m\right\}$ such that $\sum_{k=1}^{m} b_{k} e_{i} g_{i}\left(c_{k} e_{i}\right)=\delta_{1, g_{i}} e_{i}$ and g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity.

Proof. (\Rightarrow) By Lemma 3.1(2), BI $I_{i}\left(=B e_{i}\right)$ contains a $\left\{g_{i}\right\}$-Galois system $\left\{b_{k} e_{i} \in\right.$ $\left.B e_{i} ; c_{k} e_{i} \in C e_{i}, k=1,2, \ldots, m\right\}$ such that $\sum_{k=1}^{m} b_{k} e_{i} g_{i}\left(c_{k} e_{i}\right)=\delta_{1, g_{i}} e_{i}$. Next, we show that g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity. In fact, by Lemma 3.1(1), $g_{i}\left(e_{i}\right)=e_{i}$. Hence, for any $c \in C, c\left(1-e_{i}\right)-g_{i}\left(c\left(1-e_{i}\right)\right)=\left(c-g_{i}(c)\right)\left(1-e_{i}\right) \in C e_{i} \cap C\left(1-e_{i}\right)=\{0\}$. Thus, $g_{i}\left(c\left(1-e_{i}\right)\right)=c\left(1-e_{i}\right)$ for all $c \in C$. This proves that g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity.
(\leftrightarrow) By hypothesis, for each $g_{i} \neq 1$ in G there exists an idempotent e_{i} in C and $\left\{b_{k} e_{i} \in B e_{i} ; c_{k} e_{i} \in C e_{i}, k=1,2, \ldots, m\right\}$ such that $\sum_{k=1}^{m} b_{k} e_{i} g_{i}\left(c_{k} e_{i}\right)=\delta_{1, g_{i}} e_{i}$. Hence, $e_{i}=\sum_{k=1}^{m} b_{k} e_{i}\left(c_{k} e_{i}-g_{i}\left(c_{k} e_{i}\right)\right) \in B I_{i}$. Hence, $B e_{i} \subset B I_{i}$. But e_{i} is an idempotent, so $B e_{i}=B e_{i} e_{i} \subset B I_{i} e_{i} \subset B e_{i}$. Thus, $B e_{i}=B I_{i} e_{i}$. Since g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity, $g_{i}\left(c\left(1-e_{i}\right)\right)=c\left(1-e_{i}\right)$ for all $c \in C$ (in particular, $\left.g_{i}\left(e_{i}\right)=e_{i}\right)$. Hence, $c-g_{i}(c)=c e_{i}-g_{i}\left(c e_{i}\right)=\left(c-g_{i}(c)\right) e_{i}$ for all $c \in C$. This implies that $B e_{i}=B I_{i} e_{i}=B I_{i}$.

Recall that B is called a T-Galois extension of B^{T} for a subset T (not necessary a subgroup) of G if B contains a T-Galois system. Next, we give a structure of a weak center Galois extension with group G.

Lemma 3.3. Assume B is a weak center Galois extension with group G. Let $T_{j}=\left\{g_{i} \in\right.$ $G \mid B I_{i}=B e_{j}$, i.e., $\left.e_{i}=e_{j}\right\}$. Then $B e_{j}$ is a T_{j}-Galois extension of $\left(B e_{j}\right)^{T_{j}}$ for each $j \neq 1$.

Proof. By the proof of Lemma 3.1(2), for each $g_{i} \in T_{j}$, there is a $\left\{g_{i}\right\}$-Galois system $\left\{b_{k}^{(i)} e_{j} ; c_{k}^{(i)} e_{j}, k=1,2, \ldots, m_{i}\right\}$ for $B e_{j}$, where $b_{k}^{(i)} \in B$ and $c_{k}^{(i)} \in C, k=1,2, \ldots, m_{i}$ for some integer m_{i}. Denote the elements in T_{j} by $\left\{g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{t}}\right\}$ for some integer t. Let $b_{k_{1}, k_{2}, \ldots, k_{t}}=b_{k_{1}}^{\left(i_{1}\right)} b_{k_{2}}^{\left(i_{2}\right)} \cdots b_{k_{t}}^{\left(i_{t}\right)} e_{j}$ and $c_{k_{1}, k_{2}, \ldots, k_{t}}=c_{k_{1}}^{\left(i_{1}\right)} c_{k_{2}}^{\left(i_{2}\right)} \cdots c_{k_{t}}^{\left(i_{t}\right)} e_{j}$ for $k_{l}=1,2, \ldots, m_{i_{l}}$ and $l=1,2, \ldots, t$. Noting that $c_{k_{l}}^{\left(i_{l}\right)} \in C, l=1,2, \ldots, t$, we have

$$
\begin{align*}
\sum_{k_{1}=1}^{m_{i_{1}}} & \sum_{k_{2}=1}^{m_{i_{2}}} \cdots \sum_{k_{t}=1}^{m_{i_{t}}} b_{k_{1}, k_{2}, \ldots, k_{t}} c_{k_{1}, k_{2}, \ldots, k_{t}} \\
& =\sum_{k_{1}=1}^{m_{i_{1}}} \sum_{k_{2}=1}^{m_{i_{2}}} \cdots \sum_{k_{t}=1}^{m_{i_{t}}}\left(b_{k_{1}}^{\left(i_{1}\right)} b_{k_{2}}^{\left(i_{2}\right)} \cdots b_{k_{t}}^{\left(i_{t}\right)} e_{j}\right)\left(c_{k_{1}}^{\left(i_{1}\right)} c_{k_{2}}^{\left(i_{2}\right)} \cdots c_{k_{t}}^{\left(i_{t}\right)} e_{j}\right) \tag{3.1}\\
& =\sum_{k_{1}=1}^{m_{i_{1}}}\left(b_{k_{1}}^{\left(i_{1}\right)} e_{j}\right)\left(c_{k_{1}}^{\left(i_{1}\right)} e_{j}\right) \sum_{k_{2}=1}^{m_{i_{2}}}\left(b_{k_{2}}^{\left(i_{2}\right)} e_{j}\right)\left(c_{k_{2}}^{\left(i_{2}\right)} e_{j}\right) \cdots \sum_{k_{t}=1}^{m_{i_{t}}}\left(b_{k_{t}}^{\left(i_{t}\right)} e_{j}\right)\left(c_{k_{t}}^{\left(i_{t}\right)} e_{j}\right) \\
& =e_{j},
\end{align*}
$$

and, for each $g_{i} \in T_{j}$,

$$
\begin{align*}
& \sum_{k_{1}=1}^{m_{i_{1}}} \sum_{k_{2}=1}^{m_{i_{2}}} \cdots \sum_{k_{t}=1}^{m_{i_{t}}} b_{k_{1}, k_{2}, \ldots, k_{t}} g_{i}\left(c_{k_{1}, k_{2}, \ldots, k_{t}}\right) \\
& \quad=\sum_{k_{1}=1}^{m_{i_{1}}} \sum_{k_{2}=1}^{m_{i_{2}}} \cdots \sum_{k_{t}=1}^{m_{i_{t}}}\left(b_{k_{1}}^{\left(i_{1}\right)} b_{k_{2}}^{\left(i_{2}\right)} \cdots b_{k_{t}}^{\left(i_{t}\right)} e_{j}\right) g_{i}\left(c_{k_{1}}^{\left(i_{1}\right)} c_{k_{2}}^{\left(i_{2}\right)} \cdots c_{k_{t}}^{\left(i_{t}\right)} e_{j}\right) \tag{3.2}\\
& \quad=\sum_{k_{1}=1}^{m_{i_{1}}}\left(b_{k_{1}}^{\left(i_{1}\right)} e_{j}\right) g_{i}\left(c_{k_{1}}^{\left(i_{1}\right)} e_{j}\right) \sum_{k_{2}=1}^{m_{i_{2}}}\left(b_{k_{2}}^{\left(i_{2}\right)} e_{j}\right) g_{i}\left(c_{k_{2}}^{\left(i_{2}\right)} e_{j}\right) \cdots \sum_{k_{t}=1}^{m_{i_{t}}}\left(b_{k_{t}}^{\left(i_{t}\right)} e_{j}\right) g_{i}\left(c_{k_{t}}^{\left(i_{t}\right)} e_{j}\right) \\
& \quad=0 .
\end{align*}
$$

Thus, $\left\{b_{k_{1}, k_{2}, \ldots, k_{t}} ; c_{k_{1}, k_{2}, \ldots, k_{t}}, k_{l}=1,2, \ldots, m_{i_{l}}\right.$ and $\left.l=1,2, \ldots, t\right\}$ is a T_{j}-Galois system for $B e_{j}$. This completes the proof.

Theorem 3.4. If B is a weak center Galois extension with group G, then there exists a partition $\left\{T_{j} \subset G, j=1,2, \ldots, m\right\}$ of $G-\{1\}$ and a finite set of central idempotents $\left\{e_{i}^{\prime} \mid i=1,2, \ldots, m\right.$ for some integer $\left.m\right\}$ such that (1) $B e_{j}^{\prime}$ is a T_{j}-Galois extension of $\left(B e_{j}^{\prime}\right)^{T_{j}}$, (2) $B=\sum_{j=1}^{m} B e_{j}^{\prime} \oplus B\left(1-\vee_{j=1}^{m} e_{j}^{\prime}\right)$, where $\vee_{j=1}^{m} e_{j}^{\prime}$ is the sum of $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{m}^{\prime}$ in the Boolean algebra of all idempotents in C, and (3) $\left.G\right|_{C\left(1-\vee_{j=1}^{m} e_{j}^{\prime}\right)}=\{1\}$.
Proof. (1) Since $B I_{i}=B e_{i}$ for some idempotent e_{i} in C for each $g_{i} \neq 1$ in G, we have a set of central idempotents $\left\{e_{i} \mid g_{i} \neq 1\right.$ in $\left.G\right\}$. Let $E=\left\{e_{j}^{\prime} \mid j=1,2, \ldots, m\right\}$ be the set of all distinct idempotents in $\left\{e_{i} \mid g_{i} \neq 1\right.$ in $\left.G\right\}$ and let $T_{j}=\left\{g_{i} \in G \mid B I_{i}=B e_{j}^{\prime}\right.$, i.e., $e_{i}=$ $\left.e_{j}^{\prime}\right\}$. Then $B e_{j}^{\prime}$ is a T_{j}-Galois extension of $\left(B e_{j}^{\prime}\right)^{T_{j}}$ for each $j=1,2, \ldots, m$ by Lemma 3.3. Moreover, since $E=\left\{e_{j}^{\prime} \mid j=1,2, \ldots, m\right\}$ is the set of all distinct idempotents in $\left\{e_{i} \mid\right.$ $B I_{i}=B e_{i}$ for $g_{i} \neq 1$ in $\left.G\right\}$, it is easy to see that $T_{i} \cap T_{j}=\varnothing$, the empty set for $i \neq j$ and that $\cup_{j=1}^{m} T_{j}=G-\{1\}$, that is, $\left\{T_{j} \subset G, j=1,2, \ldots, m\right\}$ is a partition of $G-\{1\}$.

Part (2) is an immediate consequence of part (1), and Theorem 3.2 implies part (3).
We remark that the partition of $G-\{1\},\left\{T_{j} \subset G, j=1,2, \ldots, m\right\}$ is determined by the set of all distinct idempotents in $\left\{e_{i} \mid B I_{i}=B e_{i}\right.$ for $g_{i} \neq 1$ in $\left.G\right\}$.

When G is abelian, we obtain a stronger structure of a weak center Galois extension with group G.

Lemma 3.5. Assume that B is a weak center Galois extension with group G. If G is abelian, then $g_{j}\left(e_{i}\right)=e_{i}$ for all $i, j=2,3, \ldots, n$.

Proof. For any $c-g_{i}(c) \in I_{i}, g_{j}\left(c-g_{i}(c)\right)=g_{j}(c)-g_{i}\left(g_{j}(c)\right) \in I_{i}$. Hence, $g_{j}\left(B I_{i}\right) \subset B I_{i}$. Thus, g_{j} restricted to $B I_{i}\left(=B e_{i}\right)$ is an automorphism of $B e_{i}$ since g_{j} is an automorphism of B. Therefore, $g_{j}\left(e_{i}\right)=e_{i}$.

Theorem 3.6. Assume that B is a weak center Galois extension with group G. If G is abelian, then there exist orthogonal idempotents $\left\{f_{i} \mid i=1,2, \ldots, p\right.$ for some integer $\left.p\right\}$ and some subset $T^{(i)}$ of $G, i=1,2, \ldots, p$ such that $B=\oplus \sum_{i=1}^{p} B f_{i} \oplus B\left(1-\vee_{i=1}^{p} f_{i}\right)$, where $\vee_{i=1}^{p} f_{i}$ is the sum of $f_{1}, f_{2}, \ldots, f_{p}$ in the Boolean algebra of all idempotents in C and $B f_{i}$ is a $T^{(i)}$-Galois extension of $\left(B f_{i}\right)^{T^{(i)}}$ for $i=1,2, \ldots, p$.

Proof. By Theorem 3.4, there exists a set of distinct idempotents $E=\left\{e_{j}^{\prime} \mid j=\right.$ $1,2, \ldots, m\}$ in C and a partition $\left\{T_{j} \mid j=1,2, \ldots, m\right\}$ of $G-\{1\}$ such that $B e_{j}^{\prime}$ is a T_{j}-Galois extension of $\left(B e_{j}^{\prime}\right)^{T_{j}}$ for $j=1,2, \ldots, m$. Now, let S be the Boolean subalgebra generated by E with all nonzero minimal elements $f_{1}, f_{2}, \ldots, f_{p}$ in S. Then, it is easy to see that $f_{i} f_{j}=0$ for $i \neq j$, and so $f_{1}, f_{2}, \ldots, f_{p}$ are orthogonal idempotents in C. For each $f_{i}, i=1,2, \ldots, p, f_{i}=e_{j_{1}}^{\prime} e_{j_{2}}^{\prime} \cdots e_{j_{p_{i}}}^{\prime}$. By Theorem 3.4, Be $e_{j_{l}}^{\prime}$ is a $T_{j_{l}}$-Galois extension of $\left(B e_{j_{l}}^{\prime}\right)^{T_{j_{l}}}$ for each $l=1,2, \ldots, p_{i}$ with a $T_{j_{l}}$-Galois system $\left\{b_{t_{l}}^{(l)} e_{j_{l}}^{\prime} ; c_{t_{l}}^{(l)} e_{j_{l}}^{\prime} \mid b_{t_{l}}^{(l)} \in B, c_{t_{l}}^{(l)} \in C\right.$, and $\left.t_{l}=1,2, \ldots, m_{l}\right\}$. Hence, by using the same patching method as given in Lemma 3.3, $\left\{b_{t_{1}, t_{2}, \ldots, t_{p_{i}}}=b_{t_{1}}^{(1)} b_{t_{2}}^{(2)} \cdots b_{t_{p_{i}}}^{\left(p_{i}\right)} f_{i} ; c_{t_{1}, t_{2}, \ldots, t_{p_{i}}}=\right.$ $c_{t_{1}}^{(1)} c_{t_{2}}^{(2)} \cdots c_{t_{p_{i}}}^{\left(p_{i}\right)} f_{i} \mid t_{l}=1,2, \ldots, m_{l}$ and $\left.l=1,2, \ldots, p_{i}\right\}$ is a $T^{(i)}$-Galois system for $B f_{i}$, where $T^{(i)}=\cup_{l=1}^{k_{i}} T_{j_{l}}$. Thus, $B=\oplus \sum_{i=1}^{p} B f_{i} \oplus B\left(1-\vee_{i=1}^{p} f_{i}\right)$ such that $B f_{i}$ is a $T^{(i)}$-Galois extension of $\left(B f_{i}\right)^{T^{(i)}}$ for $i=1,2, \ldots, p$ and $\left\{f_{1}, f_{2}, \ldots, f_{p}\right\}$ is a set of orthogonal idempotents in C.
4. Special cases. We note that the T_{i} 's in Theorem 3.4 and $T^{(i)}$'s in Theorem 3.6 may not be subgroups of G. Next, we give a sufficient condition for each $T_{i} \cup\{1\}(\subset G)$ containing a subgroup H_{i} so that $B e_{i}$ is a H_{i}-Galois extension of $\left(B e_{i}\right)^{H_{i}}$ with Galois group H_{i}. Consequently, $B e_{i}$ becomes a center Galois extension of $\left(B e_{i}\right)^{H_{i}}$ with Galois group H_{i}, and B is a center Galois extension of G with Galois group G if $e_{i}=1$ for all $g_{i} \neq 1$. We first show a relation between $B\left(1-e_{p}\right), B\left(1-e_{q}\right)$, and $B\left(1-e_{t}\right)$, where $g_{p} g_{q}=g_{t} \in G$.
Lemma 4.1. Let $J_{i}=\left\{b \in B \mid b c=g_{i}(c) b\right.$ for all $\left.c \in C\right\}$ for each $g_{i} \in G$. Then, $J_{p} J_{q} \subset J_{t}$ if $g_{p} g_{q}=g_{t} \in G$.

Proof. Let $a \in J_{p}$ and $b \in J_{q}$. Then, for any $c \in C,(a b) c=a g_{q}(c) b=g_{p}\left(g_{q}(c)\right) a b$ $=g_{t}(c)(a b)$, where $g_{p} g_{q}=g_{t}$. Hence, $a b \in J_{t}$. Thus, $J_{p} J_{q} \subset J_{t}$.

Corollary 4.2. If B is a weak center Galois extension with group G, then $B\left(1-e_{p}\right) B\left(1-e_{q}\right) \subset B\left(1-e_{t}\right)$, where $g_{p} g_{q}=g_{t} \in G$.

Proof. Since B is a weak center Galois extension with group $G, B I_{i}=B e_{i}$ for some idempotent e_{i} in C for each $g_{i} \neq 1$ in G. But $I_{i}=\left\{c-g_{i}(c) \mid c \in C\right\}$, so $J_{i}=\{b \in B \mid b c=$ $g_{i}(c) b$ for all $\left.c \in C\right\}=\left\{b \in B \mid b\left(c-g_{i}(c)\right)=0\right.$ for all $\left.c \in C\right\}$. Hence, $J_{i}=\operatorname{Ann}_{B}\left(I_{i}\right)=$ $\operatorname{Ann}_{B}\left(B I_{i}\right)=\operatorname{Ann}_{B}\left(B e_{i}\right)=B\left(1-e_{i}\right)$. Thus, by Lemma 4.1, we have $B\left(1-e_{p}\right) B\left(1-e_{q}\right) \subset$ $B\left(1-e_{t}\right)$, where $g_{p} g_{q}=g_{t} \in G$.

Theorem 4.3. Assume that B is a weak center Galois extension with group G. Let T_{i}, for each $i=2,3, \ldots, n$, be the subset of G as given in Theorem 3.4 such that $B e_{i}$ is a T_{i}-Galois extension of $\left(B e_{i}\right)^{T_{i}}, S$ the Boolean subalgebra generated by $\left\{e_{i} \mid g_{i} \neq 1\right.$ in $\left.G\right\}$ with all nonzero minimal elements $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ in S, and $H_{j}=\{1\} \cup\left\{g_{i} \in G \mid e_{i} f_{j}=\right.$ f_{j} and $e_{i} f_{l}=0$ for all $\left.l \neq j\right\}$. Then, H_{j} is a subgroup of G for each $j=1,2, \ldots, k$ such that $g_{i}\left(f_{j}\right)=f_{j}$ for each $g_{i} \in H_{j}$.

Proof. (1) For any g_{p} and g_{q} in H_{j}, let $g_{p} g_{q}=g_{t}$ for some $g_{t} \in G$. We claim that $g_{t} \in H_{j}$ if $g_{t} \neq 1$. Since $g_{t} \neq 1, B I_{t}=B e_{t}$ for some idempotent $e_{t} \neq 0$ in C. By Corollary 4.2, $B\left(1-e_{p}\right) B\left(1-e_{q}\right) \subset B\left(1-e_{t}\right)$. Therefore, in the Boolean algebra of all
idempotents in C with operations \wedge, \vee, complement, and the relation $<,\left(1-e_{p}\right)\left(1-e_{q}\right)$ $<\left(1-e_{t}\right)$. So $e_{t}<e_{p} \vee e_{q}=e_{p}+e_{q}-e_{p} e_{q}$. Thus, $e_{t}=e_{t}\left(e_{p}+e_{q}-e_{p} e_{q}\right)$. Since $g_{p}, g_{q} \in$ $H_{j}, e_{p} f_{l}=0$ and $e_{q} f_{l}=0$ for all $l \neq j$. Hence, $e_{t} f_{l}=e_{t}\left(e_{p}+e_{q}-e_{p} e_{q}\right) f_{l}=0$ for all $l \neq j$. Moreover, since S is the Boolean subalgebra generated by $\left\{e_{i} \mid g_{i} \neq 1\right.$ in $\left.G\right\}$, there is at least one nonzero minimal element in S less than e_{t}. But $e_{t} f_{l}=0$ for all $l \neq j$, so f_{j} must be less than e_{t}. Hence, $e_{t} f_{j}=f_{j}$. Thus, $g_{t}\left(=g_{p} g_{q}\right) \in H_{j}$, and so H_{j} is a subgroup of G. Moreover, suppose $g_{i} \in H_{j}$. Then $e_{i} f_{j}=f_{j}$ and $e_{i} f_{l}=0$ for all $l \neq j$. Hence, e_{i} is greater than f_{j}, but not greater than f_{l} for all $l \neq j$. Since $g_{i}\left(e_{i}\right)=e_{i}, g_{i}\left(f_{j}\right)$ is a nonzero minimal element in S less than e_{i}. Thus, $g_{i}\left(f_{j}\right)=f_{j}$.

Corollary 4.4. Keeping the notation in Theorem 4.3, if $H_{j} \neq\{1\}$ for $j=1,2, \ldots, p$, then $B=\oplus \sum_{j=1}^{p} B f_{j} \oplus B\left(1-\vee_{j=1}^{p} f_{j}\right)$, where $\vee_{j=1}^{p} f_{j}$ is the sum of $f_{1}, f_{2}, \ldots, f_{p}$ in the Boolean algebra of all idempotents in C, such that $B f_{j}$ is a H_{j}-Galois extension of $\left(B f_{j}\right)^{H_{j}}$ with Galois group H_{j} for $j=1,2, \ldots, p$.

Corollary 4.5. If $B I_{j}=B$ for each $g_{j} \neq 1$ in G, then B is a center Galois extension of B^{G} with Galois group G.

Proof. Since $e_{2}=e_{3}=\cdots=e_{n}, T_{2}=T_{3}=\cdots=T_{n}=G-\{1\}$, so $T_{j} \cup\{1\}=G$. Thus, B is a Galois extension of B^{G} with a Galois system $\left\{b_{i} \in B ; c_{i} \in C, i=1,2, \ldots, m\right\}$ for some integer m, that is, B is a center Galois extension of B^{G} with Galois group G.

If the order of each nonidentity element in G has order 2 (hence, G is abelian), the following theorem shows that $T_{i} \cup\{1\}$ contains a subgroup of G for each $g_{j} \neq 1$ in T_{i}.

Theorem 4.6. Assume that B is a weak center Galois extension with group G. If each nonidentity element g_{i} in G has order 2 , then T_{i} contains a subgroup of H_{i} of order 2 for each $g_{j} \neq 1$ in G such that $B e_{i}$ is a H_{i}-Galois extension of $\left(B e_{i}\right)^{H_{i}}$ with Galois group H_{i}.

Proof. Let $B I_{i}=B e_{i}$ for $g_{i} \neq 1$ in G. Then $H_{i}=\left\{1, g_{i}\right\}$ is a subgroup contained in $T_{i} \cup\{1\}$, where $T_{i}=\left\{g_{k} \in G \mid B I_{k}=B e_{i}\right\}$ as defined in Theorem 3.4. Since $B e_{i}$ is a T_{i}-Galois extension of $\left(B e_{i}\right)^{T_{i}}, B e_{i}$ is a H_{i}-Galois extension of $\left(B e_{i}\right)^{H_{i}}$ with Galois group H_{i}.

Theorem 3.4 shows that a weak center Galois extension is a sum of T_{i}-Galois extensions for some $T_{i} \subset G$ and Theorem 4.6 states a weak center Galois extension as a direct sum of center Galois extensions. The following is an example of a weak center Galois extension with group G as given in Theorem 4.6, but not a Galois extension.

Example 4.7. Let \mathbb{Q} be the rational field, $B=\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}$, and $G=\left\{g_{1}=1\right.$, $\left.g_{2}, g_{3}, g_{4}=g_{2} g_{3}\right\}$ such that $g_{2}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{2}, a_{1}, a_{3}, a_{4}, a_{5}\right)$ and $g_{3}\left(a_{1}, a_{2}\right.$, $\left.a_{3}, a_{4}, a_{5}\right)=\left(a_{1}, a_{2}, a_{4}, a_{3}, a_{5}\right)$ for all $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in B$. Then,
(1) $B I_{i}=B e_{i}$ for each $g_{i} \neq 1$ in G, where $e_{2}=(1,1,0,0,0), e_{3}=(0,0,1,1,0)$, and $e_{4}=(1,1,1,1,0)$. Hence, B is a weak center Galois extension with group G.
(2) B is not a Galois extension since G restricted to $\{(0,0,0,0, a) \mid a \in \mathbb{Q}\}$ is identity.
(3) Let $H_{i}=\left\{1, g_{i}\right\}, i=2,3,4$. Then H_{i} is a subgroup of G of order 2. Moreover, $B I_{2}=B e_{2}$ is a center H_{2}-Galois extension of $\left(B e_{2}\right)^{H_{2}}$ with Galois system $\left\{b_{1}=(1,0,0,0,0)\right.$, $\left.b_{2}=(0,1,0,0,0) ; c_{1}=(1,0,0,0,0), c_{2}=(0,1,0,0,0)\right\}, B I_{3}=B e_{3}$ is a center H_{3}-Galois extension of $\left(B e_{3}\right)^{H_{3}}$ with Galois system $\left\{b_{1}=(0,0,1,0,0), b_{2}=(0,0,0,1,0) ; c_{1}=(0,0\right.$,
$\left.1,0,0), c_{2}=(0,0,0,1,0)\right\}$, and $B I_{4}=B e_{4}$ is a center H_{4}-Galois extension of $\left(B e_{4}\right)^{H_{4}}$ with Galois system $\left\{b_{1}=(1,0,0,0,0), b_{2}=(0,1,0,0,0), b_{3}=(0,0,1,0,0), b_{4}=(0,0,0,1,0)\right.$; $\left.c_{1}=(1,0,0,0,0), c_{2}=(0,1,0,0,0), c_{3}=(0,0,1,0,0), c_{4}=(0,0,0,1,0)\right\}$.
(4) $S=\left\{0=(0,0,0,0,0), e_{2}, e_{3}, e_{4}, 1=(1,1,1,1,1)\right\}$ is the Boolean subalgebra generated by $E=\left\{e_{2}, e_{3}, e_{4}\right\}$ in the Boolean algebra of all idempotents in the center of B. The minimal elements in S are $f_{1}=e_{2}$ and $f_{2}=e_{3}$, and $f_{1} \vee f_{2}=e_{4}$. We have that $B f_{1}=\left\{\left(a_{1}, a_{2}, 0,0,0\right) \mid a_{1}, a_{2} \in \mathbb{Q}\right\}, B f_{2}=\left\{\left(0,0, a_{3}, a_{4}, 0\right) \mid a_{3}, a_{4} \in \mathbb{Q}\right\}$, and $B\left(1-f_{1} \vee\right.$ $\left.f_{2}\right)=\left\{\left(0,0,0,0, a_{5}\right) \mid a_{5} \in \mathbb{Q}\right\}$. So $B=B f_{1} \oplus B f_{2} \oplus B\left(1-f_{1} \vee f_{2}\right)$ and $B f_{j}$ is a H_{j}-Galois extension of $\left(B f_{j}\right)^{H_{j}}$ for $j=1,2$.
(5) Since $e_{2}=(1,1,0,0,0), e_{3}=(0,0,1,1,0)$, and $e_{4}=(1,1,1,1,0)$, we have $C\left(1-e_{2}\right)=\left\{\left(0,0, a_{3}, a_{4}, a_{5}\right) \mid a_{3}, a_{4}, a_{5} \in \mathbb{Q}\right\}, C\left(1-e_{3}\right)=\left\{\left(a_{1}, a_{2}, 0,0, a_{5}\right) \mid a_{1}, a_{2}, a_{5} \in\right.$ $\mathbb{Q}\}$, and $C\left(1-e_{4}\right)=\left\{\left(0,0,0,0, a_{5}\right) \mid a_{5} \in \mathbb{Q}\right\}$. So g_{i} restricted to $C\left(1-e_{i}\right)$ is an identity for each $g_{i} \neq 1$ in G.

References

[1] R. Alfaro and G. Szeto, On Galois extensions of an Azumaya algebra, Comm. Algebra 25 (1997), no. 6, 1873-1882. MR 98h:13007. Zbl 890.16017.
[2] F. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, New York, 1971. MR 436199. Zbl 215.36602.
[3] F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117-127. MR 32\#128. Zbl 143.05602.
[4] M. Harada, Supplementary results on Galois extension, Osaka J. Math. 2 (1965), 343-350. MR 33\#151. Zbl 178.36903.
[5] S. Ikehata, On H-separable polynomials of prime degree, Math. J. Okayama Univ. 33 (1991), 21-26. MR 93g:16043. Zbl 788.16022.
[6] S. Ikehata and G. Szeto, On H-skew polynomial rings and Galois extensions, Rings, Extensions, and Cohomology (Evanston, IL, 1993) (A. R. Magid, ed.), Lecture Notes in Pure and Appl. Math., vol. 159, Dekker, New York, 1994, pp. 113-121. MR 95j:16033. Zbl 815.16009.
[7] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309-317. MR 33\#150. Zbl 163.28802.
[8] K. Sugano, On a special type of Galois extensions, Hokkaido Math. J. 9 (1980), no. 2, 123128. MR 82c:16036. Zbl 467.16005.
[9] G. Szeto and L. Xue, On the Ikehata theorem for H-separable skew polynomial rings, Math. J. Okayama Univ. 40 (1998), 27-32 (2000). CMP 1755914.
[10] , The general Ikehata theorem for H-separable crossed products, Int. J. Math. Math. Sci. 23 (2000), no. 10, 657-662. CMP 1761739.
[11] , On characterizations of a center Galois extension, Int. J. Math. Math. Sci. 23 (2000), no. 11, 753-758. CMP 1764117.

George Szeto: Mathematics Department, Bradley University, Peoria, IL 61625, USA
E-mail address: szeto@hil1top.brad1ey.edu
Lianyong Xue: Mathematics Department, Bradley University, Peoria, il 61625, USA
E-mail address: 1xue@hi11top.brad1ey.edu

