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EXPONENTIAL FORMS AND PATH INTEGRALS
FOR COMPLEX NUMBERS IN n DIMENSIONS
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Abstract. Two distinct systems of commutative complex numbers in n dimensions are
described, of polar and planar types. Exponential forms of n-complex numbers are given
in each case, which depend on geometric variables. Azimuthal angles, which are cyclic
variables, appear in these forms at the exponent, and this leads to the concept of residue for
path integrals of n-complex functions. The exponential function of an n-complex number
is expanded in terms of functions called in this paper cosexponential functions, which are
generalizations to n dimensions of the circular and hyperbolic sine and cosine functions.
The factorization of n-complex polynomials is discussed.
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1. Introduction. Hypercomplex numbers are a generalization to several dimen-
sions of the regular complex numbers in 2 dimensions. A well-known example of
hypercomplex numbers are the quaternions of Hamilton, which are a system of hyper-
complex numbers in 4 dimensions, themultiplication being a non-commutative opera-
tion [1]. Many other hypercomplex systems are possible [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13],
but these interesting systems do not have all the required properties of regular, 2-
dimensional complex numbers which rendered possible the development of the the-
ory of functions of a 2-dimensional complex variable.

Two distinct systems of complex numbers in n dimensions are described in this
paper, for which the multiplication is associative and commutative, and which are rich
enough in properties such that exponential forms exist and the concepts of analytic
n-complex function, contour integration and residue can be defined. The first type
of n-complex numbers described in this article is characterized by the presence, in
an odd number of dimensions, of one polar axis, and by the presence, in an even
number of dimensions, of two polar axes. Therefore, these numbers will be called polar
n-complex numbers. The other type of n-complex numbers described in this paper
exists as a distinct entity only when the number of dimensions n of the space is even.
These numbers will be called planar n-complex numbers. The planar hypercomplex
numbers become for n= 2 the usual complex numbers x+iy .

The central result of this paper is the existence of an exponential form ofn-complex
numbers, which is expressed in terms of geometric variables. The exponential form
provides the link between the algebraic side of the operations and the analytic prop-
erties of the functions of n-complex variables. The azimuthal angles φk, which are
cyclic variables, appear in these forms at the exponent, and this leads to the con-
cept of n-complex residue for path integrals of n-complex functions. Expressions are
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given for the elementary functions of n-complex variables. The exponential function
of an n-complex number is expanded in terms of functions called in this paper n-
dimensional cosexponential functions of the polar and planar type, respectively. The
polar cosexponential functions are a generalization to n dimensions of the hyperbolic
functions coshy, sinhy , and the planar cosexponential functions are a generalization
to n dimensions of the trigonometric functions cosy, siny . Addition theorems and
other relations are obtained for the n-dimensional cosexponential functions.

In the case of polarn-complex numbers, a polynomial can be written as a product of
linear or quadratic factors, although several factorizations are in general possible. In
the case of planar n-complex numbers, a polynomial can always be written as a prod-
uct of linear factors, although, again, several factorizations are in general possible.

A study of commutative complex numbers in 2,3,4,5, and 6 dimensions and further
properties of polar and planar complex numbers in n dimensions can be found in [8].

2. Polar n-complex numbers

2.1. Operations with polar n-complex numbers. A hypercomplex number in n
dimensions is determined by itsn components (x0,x1, . . . ,xn−1). The polarn-complex
numbers and their operations discussed in this paper can be represented by writing
the n-complex number (x0,x1, . . . ,xn−1) as u = x0 +h1x1 +h2x2 + ···+hn−1xn−1,
where h1,h2, . . . ,hn−1 are bases for which the multiplication rules are

hjhk = hl, l= j+k−n[(j+k)/n], (2.1)

for j,k,l= 0,1, . . . ,n−1, where h0 = 1. In this relation, [(j+k)/n] denotes the integer
part of (j+k)/n, defined as [a]≤ a< [a]+1, so that 0≤ j+k−n[(j+k)/n]≤n−1.
In this paper, brackets larger than the regular brackets, [], do not have the meaning
of integer part. The significance of the composition laws in (2.1) can be understood
by representing the bases hj,hk by points on a circle at the angles αj = 2πj/n, αk =
2πk/n, as shown in Figure 2.1, and the product hjhk by the point of the circle at the
angle 2π(j+k)/n. If 2π ≤ 2π(j+k)/n < 4π , the point represents the basis hl of the
angle αl = 2π(j+k)/n−2π .

Two polar n-complex numbers u = x0+h1x1+h2x2+···+hn−1xn−1, u′ = x′0+
h1x′1+h2x′2+···+hn−1x′n−1 are equal if and only if xj = x′j , j = 0,1, . . . ,n−1. The
sum of the polar n-complex numbers u and u′ is

u+u′ = x0+x′0+h1
(
x1+x′1

)+···+hn−1(xn−1+x′n−1). (2.2)

The product of the polar n-complex numbers u,u′ is

uu′ = x0x′0+x1x′n−1+x2x′n−2+x3x′n−3+···+xn−1x′1
+h1

(
x0x′1+x1x′0+x2x′n−1+x3x′n−2+···+xn−1x′2

)
+h2

(
x0x′2+x1x′1+x2x′0+x3x′n−1+···+xn−1x′3

)
...

+hn−1
(
x0x′n−1+x1x′n−2+x2x′n−3+x3x′n−4+···+xn−1x′0

)
.

(2.3)



EXPONENTIAL FORMS AND PATH INTEGRALS FOR COMPLEX NUMBERS . . . 431

hn−2
hn−1

1

α1

h1

h2

Figure 2.1. Representation of the polar n-complex bases 1,h1, . . . ,hn−1 by
points on a circle at the angles αk = 2πk/n.

The product uu′ can be written as

uu′ =
n−1∑
k=0
hk

n−1∑
l=0
xlx′k−l+n[(n−k−1+l)/n]. (2.4)

Ifu,u′,u′′ aren-complex numbers, themultiplication is associative (uu′)u′′=u(u′u′′)
and commutative uu′ =u′u because the product of the bases, defined in (2.1), is as-
sociative and commutative.

The inverse of the polar n-complex number u is the n-complex number u′ having
the property that uu′ = 1. This equation has a solution provided that the correspond-
ing determinant ν is not equal to zero, ν �= 0. If n is an even number, it can be shown
that

ν = v+v−
n/2−1∏
k=1

ρ2
k, (2.5)

and if n is an odd number,

ν = v+
(n−1)/2∏
k=1

ρ2
k, (2.6)

where

ρ2
k = v2

k+ ṽ2
k , vk =

n−1∑
p=0
xp cos

(
2πkp
n

)
, ṽk =

n−1∑
p=0
xp sin

(
2πkp
n

)
. (2.7)

Thus, in an even number of dimensionsn, ann-complex number has an inverse unless
it lies on one of the nodal hypersurfacesv+ = 0, orv− = 0, orρ1 = 0, or . . . orρn/2−1 = 0.
In an odd number of dimensions n, an n-complex number has an inverse unless it
lies on one of the nodal hypersurfaces v+= 0, or ρ1 = 0, or . . . or ρ(n−1)/2 = 0.

For even n,

d2 = 1
n
v2
++

1
n
v2
−+

2
n

n/2−1∑
k=1

ρ2
k, (2.8)
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and for odd n,

d2 = 1
n
v2
++

2
n

(n−1)/2∑
k=1

ρ2
k. (2.9)

From these relations it results that if the product of two n-complex numbers is zero,
uu′ = 0, then ρ+ρ′+ = 0, ρ−ρ′− = 0, ρkρ′k = 0, k = 1, . . . ,n/2, which means that either
u = 0, or u′ = 0, or u,u′ belong to orthogonal hypersurfaces in such a way that the
afore-mentioned products of components should be equal to zero.

2.2. Geometric representation of polarn-complex numbers. The polarn-complex
number x0+h1x1+h2x2+···+hn−1xn−1 can be represented by the point A of coor-
dinates (x0,x1, . . . ,xn−1). If O is the origin of the n-dimensional space, the distance
from the origin O to the point A of coordinates (x0,x1, . . . ,xn−1) has the expression

d2 = x2
0+x2

1+···+x2
n−1. (2.10)

The quantity d will be called modulus of the polar n-complex number u= x0+h1x1+
h2x2+···+hn−1xn−1. The modulus of an n-complex number u will be designated by
d= |u|. If ν > 0, the quantity ρ = ν1/n will be called amplitude of the polar n-complex
number u.

The exponential and trigonometric forms of the polar n-complex number u can be
obtained conveniently in a rotated system of axes defined by the transformation

v+ =
√
nξ+, v− =

√
nξ−, vk =

√
n
2
ξk, ṽk =

√
n
2
ηk, (2.11)

for k= 1, . . . ,[(n−1)/2]. This transformation from the coordinates x0, . . . ,xn−1 to the
variables ξ+,ξ−,ξk,ηk is unitary.

The position of the point A of coordinates (x0,x1, . . . ,xn−1) can also be described
with the aid of the distance d, equation (2.10), and of n−1 angles defined further.
Thus, in the plane of the axes vk,ṽk, the azimuthal angles φk can be introduced by
the relations

cosφk = vkρk , sinφk = ṽkρk , (2.12)

where 0 ≤φk < 2π , so that there are [(n−1)/2] azimuthal angles. If the projection
of the point A on the plane of the axes vk,ṽk is Ak, and the projection of the point
A on the 4-dimensional space defined by the axes v1, ṽ1,vk, ṽk is A1k, the angle ψk−1
between the line OA1k and the 2-dimensional plane defined by the axes vk,ṽk is

tanψk−1 = ρ1ρk , (2.13)

for 0 ≤ ψk ≤ π/2, k = 2, . . . ,[(n−1)/2], so that there are [(n−3)/2] planar angles.
Moreover, there is a polar angle θ+, which can be defined as the angle between the line
OA1+ and the axis v+, where A1+ is the projection of the point A on the 3-dimensional
space generated by the axes v1, ṽ1,v+,

tanθ+ =
√
2ρ1
v+

, (2.14)
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Figure 2.2. Angular variables for the description of n-complex numbers.

where 0≤ θ+ ≤π , and in an even number of dimensions n there is also a polar angle
θ−, which can be defined as the angle between the line OA1− and the axis v−, where
A1− is the projection of the point A on the 3-dimensional space generated by the axes
v1, ṽ1,v−,

tanθ− =
√
2ρ1
v−

, (2.15)

where 0≤ θ− ≤π . Thus, the position of the point A is described, in an even number of
dimensions, by the distance d, by n/2−1 azimuthal angles, by n/2−2 planar angles,
and by 2 polar angles. In an odd number of dimensions, the position of the point A is
described by (n−1)/2 azimuthal angles, by (n−3)/2 planar angles, and by 1 polar an-
gle. These angles are shown in Figure 2.2. The variables ν,ρ,ρk,tanθ+/

√
2,tanθ−/

√
2,

tanψk are multiplicative and the azimuthal angles φk are additive upon the multipli-
cation of polar n-complex numbers.

2.3. Then-dimensional polar cosexponential functions. The exponential function
of the polar n-complex variable u can be defined by the series expu= 1+u+u2/2!+
u3/3!+··· . It can be checked by direct multiplication of the series that exp(u+u′)=
expu·expu′, so that expu= expx0 ·exp(h1x1)···exp(hn−1xn−1).

It can be seen with the aid of the representation in Figure 2.1 that

hn+pk = hpk (2.16)

for p integer, k= 1, . . . ,n−1. Then ehky can be written as

ehky =
n−1∑
p=0
hkp−n[kp/n]gnl(y), (2.17)
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where the functions gnl, which will be called polar cosexponential functions in n
dimensions, are

gnl(y)=
∞∑
p=0

yl+pn

(l+pn)! (2.18)

for l = 0,1, . . . ,n−1. If n is even, the polar cosexponential functions of even index k
are even functions, gn,2l(−y) = gn,2l(y), and the polar cosexponential functions of
odd index are odd functions, gn,2l+1(−y) = −gn,2l+1(y), l = 0,1, . . . ,n/2−1. For odd
values of n, the polar cosexponential functions do not have a definite parity. It can be
checked that

n−1∑
l=0
gnl(y)= ey (2.19)

and, for even n,
n−1∑
l=0
(−1)kgnl(y)= e−y. (2.20)

The expression of the polar n-dimensional cosexponential functions is

gnk(y)= 1
n

n−1∑
l=0

exp

[
y cos

(
2πl
n

)]
cos

[
y sin

(
2πl
n

)
− 2πkl

n

]
(2.21)

for k= 0,1, . . . ,n−1. It can be shown from (2.21) that

n−1∑
k=0
g2
nk(y)=

1
n

n−1∑
l=0

exp

[
2y cos

(
2πl
n

)]
. (2.22)

It can be seen that the right-hand side of (2.22) does not contain oscillatory terms. If
n is a multiple of 4, it can be shown by replacing y by iy in (2.22) that

n−1∑
k=0
(−1)kg2

nk(y)=
2
n


1+cos2y+

n/4−1∑
l=1

cos

[
2y cos

(
2πl
n

)]
 (2.23)

which does not contain exponential terms.
Addition theorems for the polar n-dimensional cosexponential functions can be

obtained from the relation exph1(y+z) = exph1y ·exph1z, by substituting the ex-
pression of the exponentials as given by eh1y =∑n−1

p=0hpgnp(y),

gnk(y+z)=gn0(y)gnk(z)+gn1(y)gn,k−1(z)+···+gnk(y)gn0(z)
+gn,k+1(y)gn,n−1(z)+gn,k+2(y)gn,n−2(z)+···+gn,n−1(y)gn,k+1(z) (2.24)

for k= 0,1, . . . ,n−1.
It can also be shown that{

gn0(y)+h1gn1(y)+···+hn−1gn,n−1(y)
}l

= gn0(ly)+h1gn1(ly)+···+hn−1gn,n−1(ly).
(2.25)

The polar n-dimensional cosexponential functions are solutions of the nth-order
differential equation

dnζ
dun

= ζ (2.26)
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whose solutions are of the form ζ(u) = A0gn0(u)+A1gn1(u)+···+An−1gn,n−1(u).
It can be checked that the derivatives of the polar cosexponential functions are re-
lated by

dgn0
du

= gn,n−1, dgn1du
= gn0, . . . , dgn,n−2du

= gn,n−3, dgn,n−1du
= gn,n−2. (2.27)

For n = 1 and n = 2 the polar cosexponential functions are g10(y) = ey , g20(y) =
coshy , and g21(y) = sinhy . For n = 3 the cosexponential functions are g30(y) =
1+y3/3!+y6/6!+··· , g31(y) = y +y4/4!+y7/7!+··· , g32(y) = y2/2!+y5/5!+
y8/8!+··· , and they fulfill the identity g3

30+g3
31+g3

30−3g30g31g32 = 1.

2.4. Exponential and trigonometric forms of polar n-complex numbers. In order
to obtain the exponential and trigonometric forms of polar n-complex numbers, a
new set of hypercomplex bases will be introduced for even n by the relations

e+ = 1
n

n−1∑
p=0
hp, ek = 2

n

n−1∑
p=0
hp cos

(
2πkp
n

)
, ẽk = 2

n

n−1∑
p=0
hp sin

(
2πkp
n

)
, (2.28)

where k= 1, . . . ,[(n−1)/2] and, if n is even,

e− = 1
n

n−1∑
p=0
(−1)php. (2.29)

The multiplication relations for the new hypercomplex bases are

e2+ = e+, e2− = e−, e+e− = 0, e+ek = 0, e+ẽk = 0, e−ek = 0, e−ẽk = 0,

e2k = ek, ẽ2k =−ek, ekẽk = ẽk, ekel = 0, ekẽl = 0, ẽkẽl = 0, k �= l, (2.30)

where k,l= 1, . . . ,[(n−1)/2]. It can be shown that, for even n,

u= e+v++e−v−+
n/2−1∑
k=1

(
ekvk+ ẽkṽk

)
, (2.31)

and for odd n,

u= e+v++
(n−1)/2∑
k=1

(
ekvk+ ẽkṽk

)
. (2.32)

The exponential form of the polar n-complex number u is

u= ρexp


n−1∑
p=1
hp


 1
n

ln

√
2

tanθ+
+F(n)(−1)

p

n
ln

√
2

tanθ−

− 2
n

[(n−1)/2]∑
k=2

cos
(
2πkp
n

)
lntanψk−1


+ [(n−1)/2]∑

k=1
ẽkφk


,

(2.33)

where F(n)= 1 for even n and F(n)= 0 for odd n, and

ρ = (
v+v−ρ2

1 ···ρ2
n/2−1

)1/n
(2.34)
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for even n, and
ρ = (

v+ρ2
1 ···ρ2

(n−1)/2
)1/n

(2.35)

for odd n.
The trigonometric form of the polar n-complex number u is

u= d
(
n
2

)1/2
(

1
tan2ψ+

+ F(n)
tan2ψ−

+1+ 1
tan2ψ1

+ 1
tan2ψ2

+···+ 1
tan2ψ[(n−3)/2]

)−1/2

×

 e+√2
tanθ+

+F(n) e−
√
2

tanθ−
+e1+

[(n−1)/2]∑
k=2

ek
tanψk−1


exp


 [(n−1)/2]∑

k=1
ẽkφk


.

(2.36)

2.5. Elementary functions of a polar n-complex variable. The logarithm u1 of the
polar n-complex number u, u1 = lnu, can be defined as the solution of the equation
u = eu1 . For even n, lnu exists as an n-complex function with real components if
v+ > 0 and v− > 0. For odd n lnu exists as an n-complex function with real compo-
nents if v+ > 0. The expression of the logarithm is

lnu= lnρ+
n−1∑
p=1
hp


 1
n

ln

√
2

tanθ+
+F(n)(−1)

p

n
ln

√
2

tanθ−

− 2
n

[(n−1)/2]∑
k=2

cos
(
2πkp
n

)
lntanψk−1


+ [(n−1)/2]∑

k=1
ẽkφk.

(2.37)

The function lnu is multivalued because of the presence of the terms ẽkφk.
The power function um of the polar n-complex variable u can be defined for real

values ofm as um = em lnu. It can be shown that

um = e+vm+ +F(n)e−vm− +
[(n−1)/2]∑
k=1

ρmk
(
ek cosmφk+ ẽk sinmφk

)
. (2.38)

For integer values ofm, this expression is valid for any x0, . . . ,xn−1. The power func-
tion is multivalued unlessm is an integer.

2.6. Power series of polar n-complex numbers. A power series of the polar n-
complex variable u is a series of the form

a0+a1u+a2u2+···+alul+··· . (2.39)

Using the inequality ∣∣u′u′′∣∣≤√n∣∣u′∣∣∣∣u′′∣∣ (2.40)

which replaces the relation of equality extant for 2-dimensional complex numbers,
it can be shown that the series (2.39) is absolutely convergent for |u| < c, where
c = liml→∞ |al|/√n|al+1|.

The convergence of the series (2.39) can also be studied with the aid of the formulas
(2.38), which for integer values of m are valid for any values of x0, . . . ,xn−1. If al =∑n−1
p=0hpalp , and

Al+ =
n−1∑
p=0
alp, Alk =

n−1∑
p=0
alp cos

(
2πkp
n

)
, Ãlk =

n−1∑
p=0
alp sin

(
2πkp
n

)
, (2.41)
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for k= 1, . . . ,[(n−1)/2], and for even n

Al− =
n−1∑
p=0
(−1)palp, (2.42)

the series (2.39) can be written as

∞∑
l=0


e+Al+vl++F(n)e−Al−vl−+

[(n−1)/2]∑
k=1

(
ekAlk+ ẽkÃlk

)(
ekvk+ ẽkṽk

)l. (2.43)

The series in (2.39) is absolutely convergent for

|v+|< c+, |v−|< c−, ρk < ck, (2.44)

for k= 1, . . . ,[(n−1)/2], where

c+ = lim
l→∞

|Al+|
|Al+1,+| , c− = lim

l→∞
|Al−|
|Al+1,−| , ck = lim

l→∞

(
A2
lk+Ã2

lk
)1/2

(
A2
l+1,k+Ã2

l+1,k
)1/2 . (2.45)

These relations show that the region of convergence of the series (2.39) is an n-
dimensional cylinder.

2.7. Analytic functions of polar n-complex variables. The derivative of a function
f(u) of the n-complex variable u is defined as a function f ′(u) having the property
that ∣∣f(u)−f (u0

)−f ′(u0
)(
u−u0

)∣∣ �→ 0 as
∣∣u−u0

∣∣ �→ 0. (2.46)

If the difference u−u0 is not parallel to one of the nodal hypersurfaces, the definition
in (2.46) can also be written as

f ′
(
u0

)= lim
u→u0

f(u)−f (u0
)

u−u0
. (2.47)

The derivative of the function f(u) = um, with m an integer, is f ′(u) =mum−1, as
can be seen by developing um = [u0+(u−u0)]m as

um =
m∑
p=0

m!
p!(m−p)!u

m−p
0

(
u−u0

)p, (2.48)

and using the definition (2.46).
If the function f ′(u) defined in (2.46) is independent of the direction in space along

which u is approaching u0, the function f(u) is said to be analytic, analogously to
the case of functions of regular complex variables [14]. The function um, with m
an integer, of the n-complex variable u is analytic, because the difference um−um0
is always proportional to u−u0, as can be seen from (2.48). Then series of integer
powers ofuwill also be analytic functions of the n-complex variableu, and this result
holds in fact for any commutative algebra.

If the n-complex function f(u) of the polar n-complex variable u is written in
terms of the real functions Pk(x0, . . . ,xn−1), k = 0,1, . . . ,n− 1 of the real variables
x0,x1, . . . ,xn−1 as

f(u)=
n−1∑
k=0
hkPk

(
x0, . . . ,xn−1

)
, (2.49)
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then relations of equality exist between the partial derivatives of the functions Pk. The
derivative of the function f can be written as

lim
∆u→0

1
∆u

n−1∑
k=0


hk

n−1∑
l=0

∂Pk
∂xl

∆xl


, (2.50)

where ∆u=∑n−1
k=0 hl∆xl.

The relations between the partial derivatives of the functions Pk are obtained by set-
ting successively in (2.50) ∆u= hl∆xl, for l= 0,1, . . . ,n−1, and equating the resulting
expressions. The relations are

∂Pk
∂x0

= ∂Pk+1
∂x1

= ··· = ∂Pn−1
∂xn−k−1

= ∂P0
∂xn−k

= ··· = ∂Pk−1
∂xn−1

(2.51)

for k = 0,1, . . . ,n−1. The relations (2.51) are analogous to the Riemann relations for
the real and imaginary components of a complex function. It can be shown from (2.51)
that the components Pk fulfill the second-order equations

∂2Pk
∂x0∂xl

= ∂2Pk
∂x1∂xl−1

= ··· = ∂2Pk
∂x[l/2]∂xl−[l/2]

= ∂2Pk
∂xl+1∂xn−1

= ∂2Pk
∂xl+2∂xn−2

= ··· = ∂2Pk
∂xl+1+[(n−l−2)/2]∂xn−1−[(n−l−2)/2]

(2.52)

for k,l= 0,1, . . . ,n−1.

2.8. Integrals of polar n-complex functions. The singularities of polar n-complex
functions arise from terms of the form 1/(u−u0)m, withm> 0. Functions containing
such terms are singular not only at u=u0, but also at all points of the hypersurfaces
passing through u0 and which are parallel to the nodal hypersurfaces.

The integral of a polar n-complex function between two points A,B along a path
situated in a region free of singularities is independent of path, which means that the
integral of an analytic function along a loop situated in a region free of singularities
is zero, ∮

Γ
f(u)du= 0, (2.53)

where it is supposed that a surface
∑

spanning the closed loop Γ is not intersected
by any of the hypersurfaces associated with the singularities of the function f(u).
Using the expression, equation (2.49), for f(u) and the fact that du = ∑n−1

k=0 hkdxk,
the explicit form of the integral in (2.53) is

∮
Γ
f(u)du=

∮
Γ

n−1∑
k=0
hk

n−1∑
l=0
Pldxk−l+n[(n−k−1+l)/n]. (2.54)

If the functions Pk are regular on a surface
∑

spanning the loop Γ , the integral along
the loop Γ can be transformed in an integral over the surface

∑
of terms of the form

∂Pl/∂xk−m+n[(n−k+m−1)/n] −∂Pm/∂xk−l+n[(n−k+l−1)/n]. The integrals of these terms are
equal to zero by (2.51), and this proves (2.53).



EXPONENTIAL FORMS AND PATH INTEGRALS FOR COMPLEX NUMBERS . . . 439

ξk

O

u0

Γ

u0ξkηk

Γξkηk
ηk

Figure 2.3. Integration path Γ and pole u0, and their projections Γξkηk and
u0ξkηk on the plane ξkηk.

The quantity du/(u−u0) is

du
u−u0

= dρ
ρ
+
n−1∑
p=1
hp


1
n
d ln

√
2

tanθ+
+F(n)(−1)

p

n
d ln

√
2

tanθ−

− 2
n

[(n−1)/2]∑
k=2

cos
(
2πkp
n

)
d lntanψk−1


+[(n−1)/2]∑

k=1
ẽk dφk.

(2.55)

Since ρ, ln(
√
2/tanθ+), ln(

√
2/tanθ−), and ln(tanψk−1) are single-valued variables,

it follows that
∮
Γ dρ/ρ = 0,

∮
Γ d(ln

√
2/tanθ+) = 0,

∮
Γ d(ln

√
2/tanθ−) = 0, and∮

Γ d(lntanψk−1)= 0. On the other hand, since φk are cyclic variables, they may give
contributions to the integral around the closed loop Γ .

The expression of
∮
Γ du/(u−u0) can be written with the aid of a functional which

will be called int(M,C), defined for a pointM and a closed curve C in a 2-dimensional
plane, such that

int(M,C)=

1 if M is an interior point of C,

0 if M is exterior to C.
(2.56)

If f(u) is an analytic function of a polar n-complex variable which can be expanded
in a series in the region of the curve Γ and on a surface spanning Γ , then

∮
Γ

f(u)du
u−u0

= 2πf
(
u0

) [(n−1)/2]∑
k=1

ẽk int
(
u0ξkηk ,Γξkηk

)
, (2.57)

where u0ξkηk and Γξkηk are respectively the projections of the point u0 and of the loop
Γ on the plane defined by the axes ξk and ηk, as shown in Figure 2.3.

2.9. Factorization of polar n-complex polynomials. A polynomial of degreem of
the polar n-complex variable u has the form

Pm(u)=um+a1um−1+···+am−1u+am, (2.58)



440 SILVIU OLARIU

where al, l = 1, . . . ,m, are in general polar n-complex constants. If al =
∑n−1
p=0hpalp ,

and with the notations of (2.41) and (2.42) applied for l = 1, . . . ,m, the polynomial
Pm(u) can be written as

Pm = e+

vm+ +

m∑
l=1
Al+vm−l+


+F(n)e−


vm− +

m∑
l=1
Al−vm−l−




+
[(n−1)/2]∑
k=1


(ekvk+ ẽkṽk)m+

m∑
l=1

(
ekAlk+ ẽkÃlk

)(
ekvk+ ẽkṽk

)m−l,
(2.59)

where the constants Al+,Al−,Alk,Ãlk are real numbers.
These relations can be written with the aid of (2.28) and (2.29) as

Pm(u)=
m∏
p=1

(
u−up

)
, (2.60)

where

up = e+vp++F(n)e−vp−+
[(n−1)/2]∑
k=1

(
ekvkp+ ẽkṽkp

)
, (2.61)

for p = 1, . . . ,m. The roots vp+, the roots vp− and, for a given k, the roots ekvkp+ẽkṽkp
defined in (2.59) may be ordered arbitrarily. This means that (2.61) gives sets of m
roots u1, . . . ,um of the polynomial Pm(u), corresponding to the various ways in which
the roots vp+,vp−,ekvkp+ẽkṽkp are ordered according to p in each group. Thus, while
the polar hypercomplex components in (2.59) taken separately have unique factoriza-
tions, the polynomial Pm(u) can be written in many different ways as a product of
linear factors.

For example, u2 − 1 = (u−u1)(u−u2), where for even n, u1 = ±e+ ± e− ± e1 ±
e2±···± en/2−1, u2 = −u1, so that there are 2n/2 independent sets of roots u1,u2

of u2−1. It can be checked that (±e+ ± e− ± e1± e2±···± en/2−1)2 = e+ + e− + e1+
e2+···+en/2−1 = 1. For odd n, u1 = ±e+±e1±e2±···±e(n−1)/2, u2 = −u1, so that
there are 2(n−1)/2 independent sets of roots u1,u2 of u2−1. It can be checked that
(±e+±e1±e2±···±e(n−1)/2)2 = e++e1+e2+···+e(n−1)/2 = 1.

2.10. Representation of polar n-complex numbers by irreducible matrices. The
polar n-complex number u can be represented by the matrix

U =




x0 x1 x2 ··· xn−1
xn−1 x0 x1 ··· xn−2
xn−2 xn−1 x0 ··· xn−3

...
...

... ··· ...
x1 x2 x3 ··· x0



. (2.62)

The product u = u′u′′ is represented by the matrix multiplication U = U ′U ′′. It can
be shown that the irreducible form [15] of the matrix U in terms of matrices with real
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coefficients is, for even n,



v+ 0 0 ··· 0
0 v− 0 ··· 0
0 0 V1 ··· 0
...

...
... ··· ...

0 0 0 ··· Vn/2−1




(2.63)

and, for odd n, 


v+ 0 0 ··· 0
0 V1 0 ··· 0
0 0 V2 ··· 0
...

...
... ··· ...

0 0 0 ··· V(n−1)/2



, (2.64)

where

Vk =
(
vk ṽk
−ṽk vk

)
, (2.65)

k = 1, . . . ,[(n−1)/2]. The relations between the variables v+,v−,vk, ṽk for the multi-
plication of polar n-complex numbers are v+ = v′+v′′+ , v− = v′−v′′− , vk = v′kv′′k − ṽ′kṽ′′k ,
ṽk = v′kṽ′′k + ṽ′kv′′k .

3. Planar hypercomplex numbers in even n dimensions

3.1. Operations with planar n-complex numbers. A planar hypercomplex number
in n dimensions is determined by its n components (x0,x1, . . . ,xn−1). The planar n-
complex numbers and their operations discussed in this paper can be represented
by writing the n-complex number (x0,x1, . . . ,xn−1) as u = x0+h1x1+h2x2+···+
hn−1xn−1, where h1,h2, . . . ,hn−1 are bases for which the multiplication rules are

hjhk = (−1)[(j+k)/n]hl, l= j+k−n[(j+k)/n], (3.1)

for j,k,l= 0,1, . . . ,n−1, where h0 = 1. The rules for the planar bases differ from the
rules for the polar bases by the minus sign which appears when n≤ j+k≤ 2n−2.
The significance of the composition laws in (3.1) can be understood by representing
the bases hj,hk by points on a circle at the angles αj =πj/n, αk =πk/n, as shown in
Figure 3.1, and the product hjhk by the point of the circle at the angle π(j+k)/n. If
π ≤π(j+k)/n < 2π , the point is opposite to the basishl of angleαl =π(j+k)/n−π .

In an odd number of dimensions n, a transformation of coordinates according
to x2l = x′l , x2m−1 = −x′(n−1)/2+m, and of the bases according to 2l = h′l, h2m−1 =
−h′(n−1)/2+m, l = 0, . . . ,(n−1)/2, m = 1, . . . ,(n−1)/2, leaves the expression of an n-
complex number unchanged,

∑n−1
k=0 hkxk =

∑n−1
k=0 h

′
kx

′
k, and the products of the bases

h′k are h′jh
′
k = h′l, l = j+k−n[(j+k)/n], j,k,l = 0,1, . . . ,n−1. Thus, the planar n-

complex numbers with the rules are equivalent in an odd number of dimensions to
the polar n-complex numbers. Therefore, in this section it will be supposed that n is
an even number, unless otherwise stated.
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−hn−2

−hn−1

1

h1

h2hn−2

hn−1

−1

−h1

−h2

α1

Figure 3.1. Representation of the planar n-complex bases 1,h1, . . . ,hn−1 by
points on a circle at the angles αk =πk/n.

Two planar n-complex numbers u = x0+h1x1+h2x2+···+hn−1xn−1, u′ = x′0+
h1x′1+h2x′2+···+hn−1x′n−1 are equal if and only if xj = x′j , j = 0,1, . . . ,n−1. The
sum of the planar n-complex numbers u and u′ is

u+u′ = x0+x′0+h1
(
x1+x′1

)+···+hn−1(xn−1+x′n−1). (3.2)

The product of the planar numbers u,u′ is

uu′ = x0x′0−x1x′n−1−x2x′n−2−x3x′n−3−···−xn−1x′1
+h1

(
x0x′1+x1x′0−x2x′n−1−x3x′n−2−···−xn−1x′2

)
+h2

(
x0x′2+x1x′1+x2x′0−x3x′n−1−···−xn−1x′3

)
...

+hn−1
(
x0x′n−1+x1x′n−2+x2x′n−3+x3x′n−4+···+xn−1x′0

)
.

(3.3)

The product uu′ can be written as

uu′ =
n−1∑
k=0
hk

n−1∑
l=0
(−1)[(n−k−1+l)/n]xlx′k−l+n[(n−k−1+l)/n]. (3.4)

If u,u′,u′′ are n-complex numbers, the multiplication is associative, (uu′)u′′ =
u(u′u′′), and is commutative, uu′ = u′u, because the product of the bases, de-
fined in (3.1), is both associative and commutative. For n = 2 the product is uu′ =
x0x′0−x1x′1+h1(x0x′1+x1x′0). In 2 dimensions, the notation for h1 is h1 = i, i being
the conventional imaginary unit.

The inverse of the planar n-complex number u is the n-complex number u′ having
the property that uu′ = 1. This equation has a solution provided that the correspond-
ing determinant ν is not equal to zero, ν �= 0. For planar n-complex numbers ν ≥ 0,
and the quantity ρ = ν1/n will be called amplitude of the planar n-complex number u.
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It can be shown that

ν =
n/2∏
k=1
ρ2
k, (3.5)

where

ρ2
k=v2

k+ṽ2
k , vk=

n−1∑
p=0
xp cos

(
π(2k−1)p

n

)
, ṽk=

n−1∑
p=0
xp sin

(
π(2k−1)p

n

)
. (3.6)

Thus, a planar n-complex number has an inverse unless it lies on one of the nodal
hypersurfaces ρ1 = 0, or ρ2 = 0, or . . . or ρn/2 = 0. It can also be shown that

d2 = 2
n

n/2∑
k=1
ρ2
k. (3.7)

From this relation it results that if the product of two n-complex numbers is zero,
uu′ = 0, then ρkρ′k = 0, k = 1, . . . ,n/2, which means that either u = 0, or u′ = 0,
or u,u′ belong to orthogonal hypersurfaces in such a way that the afore-mentioned
products of components should be equal to zero. For n= 2, v1 = x0, ṽ1 = x1, that is,
v1 and ṽ1 are the real and imaginary parts of a 2-dimensional complex number.

3.2. Geometric representation of planar n-complex numbers. The planar n-com-
plex number x0 +h1x1 +h2x2 +···+hn−1xn−1 can be represented by the point A
of coordinates (x0,x1, . . . ,xn−1). If O is the origin of the n-dimensional space, the
distance from the origin O to the point A of coordinates (x0,x1, . . . ,xn−1) has the
expression written in (2.10). The quantity d will be now called modulus of the planar
n-complex number u = x0 +h1x1 +h2x2 + ··· +hn−1xn−1. The modulus of an n-
complex number u will be designated by d= |u|. The quantity ρ = ν1/n will be called
amplitude of the n-complex number u.

The exponential and trigonometric forms of the planar n-complex number u can
be obtained conveniently in a rotated system of axes defined by the transformation

vk =
√
n
2
ξk, ṽk =

√
n
2
ηk, (3.8)

for k = 1, . . . ,n/2. This transformation from the coordinates x0, . . . ,xn−1 to the vari-
ables ξk,ηk is unitary.

The position of the point A of coordinates (x0,x1, . . . ,xn−1) can also be described
with the aid of the distance d, equation (2.10), and of n−1 angles defined further.
Thus, in the plane of the axes vk,ṽk, the radius ρk and the azimuthal angle φk can be
introduced by the relations

cosφk = vkρk , sinφk = ṽkρk , (3.9)

for 0 ≤ φk < 2π , k = 1, . . . ,n/2, so that there are n/2 azimuthal angles. If the pro-
jection of the point A on the plane of the axes vk,ṽk is Ak, and the projection of the
point A on the 4-dimensional space defined by the axes v1, ṽ1,vk, ṽk is A1k, the angle
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ψk−1 between the line OA1k and the 2-dimensional plane defined by the axes vk,ṽk is

tanψk−1 = ρ1ρk , (3.10)

where 0 ≤ ψk ≤ π/2, k = 2, . . . ,n/2, so that there are n/2− 1 planar angles. Thus,
the position of the point A is described by the distance d, by n/2 azimuthal angles
and by n/2−1 planar angles. The variables ν,ρ,ρk,tanψk are multiplicative and the
azimuthal anglesφk are additive upon themultiplication of polarn-complex numbers.

3.3. The planar n-dimensional cosexponential functions. The exponential func-
tion of the planar n-complex variable u can be defined by the series expu = 1+
u+u2/2!+u3/3!+··· . It can be checked by direct multiplication of the series that
exp(u+u′)= expu·expu′, so that expu= expx0 ·exp(h1x1)···exp(hn−1xn−1).

It can be seen with the aid of the representation in Figure 3.1 that

hn+pk =−hpk , (3.11)

for integer p, k= 1, . . . ,n−1. For k even, ehky can be written as

ehky =
n−1∑
p=0
(−1)[kp/n]hkp−n[kp/n]gnp(y), (3.12)

where gnp are the polar n-dimensional cosexponential functions. For odd k, ehky is

ehky =
n−1∑
p=0
(−1)[kp/n]hkp−n[kp/n]fnp(y), (3.13)

where the functions fnk, which will be called planar cosexponential functions in n
dimensions, are

fnk(y)=
∞∑
p=0
(−1)p yk+pn

(k+pn)! , (3.14)

for k= 0,1, . . . ,n−1.
The planar cosexponential functions of even index k are even functions, fn,2l(−y)=

fn,2l(y), and the planar cosexponential functions of odd index are odd functions,
fn,2l+1(−y)=−fn,2l+1(y), l= 0, . . . ,n/2−1.

The planar n-dimensional cosexponential function fnk(y) is related to the polar
n-dimensional cosexponential function gnk(y) by the relation

fnk(y)= e−iπk/ngnk
(
eiπ/ny

)
, (3.15)

for k = 0, . . . ,n−1. The expression of the planar n-dimensional cosexponential func-
tions is then

fnk(y)= 1
n

n∑
l=1

exp

[
y cos

(
π(2l−1)
n

)]
cos

[
y sin

(
π(2l−1)
n

)
−π(2l−1)k

n

]
, (3.16)

k= 0,1, . . . ,n−1. The planar cosexponential function defined in (3.14) has the expres-
sion given in (3.16) for any natural value of n, this result is not restricted to even
values of n.
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It can be shown from (3.16) that

n−1∑
k=0
f 2
nk(y)=

1
n

n∑
l=1

exp

[
2y cos

(
π(2l−1)

n

)]
. (3.17)

It can be seen that the right-hand side of (3.17) does not contain oscillatory terms. If
n is a multiple of 4, it can be shown by replacing y by iy in (3.17) that

n−1∑
k=0
(−1)kf 2

nk(y)=
4
n

n/4∑
l=1

cos

[
2y cos

(
π(2l−1)

n

)]
, (3.18)

which does not contain exponential terms.
For odd n, the planar n-dimensional cosexponential function fnk(y) is related to

the n-dimensional cosexponential function gnk(y) also by the relation

fnk(y)= (−1)kgnk(−y), (3.19)

as can be seen by comparing the series for the two classes of functions.
Addition theorems for the planar n-dimensional cosexponential functions can be

obtained from the relation exph1(y+z) = exph1y ·exph1z, by substituting the ex-
pression of the exponentials as given by eh1y =∑n−1

p=0hpfnp(y),

fnk(y+z)=fn0(y)fnk(z)+fn1(y)fn,k−1(z)+···+fnk(y)fn0(z)
−fn,k+1(y)fn,n−1(z)−fn,k+2(y)fn,n−2(z)−···−fn,n−1(y)fn,k+1(z), (3.20)

for k= 0,1, . . . ,n−1. It can also be shown that

{
fn0(y)+h1fn1(y)+···+hn−1fn,n−1(y)

}l=fn0(ly)+h1fn1(ly)+···+hn−1fn,n−1(ly).
(3.21)

For n = 2, equation (3.13) has the form eh1y = f20+h1f21, and the planar cosexpo-
nential functions are f20(y)= cosy and f21(y)= siny .

The planar n-dimensional cosexponential functions are solutions of the nth-order
differential equation

dnζ
dun

=−ζ (3.22)

whose solutions are of the form ζ(u) = A0fn0(u)+A1fn1(u)+···+An−1fn,n−1(u).
It can be checked that the derivatives of the planar cosexponential functions are
related by

dfn0
du

=−fn,n−1, dfn1du
= fn0, . . . , dfn,n−2du

= fn,n−3, dfn,n−1du
= fn,n−2. (3.23)

3.4. Exponential and trigonometric forms of planarn-complex numbers. In order
to obtain the exponential and trigonometric forms of planar n-complex numbers, a
new set of hypercomplex bases will be introduced by the relations

ek = 2
n

n−1∑
p=0
hp cos

(
π(2k−1)p

n

)
, ẽk = 2

n

n−1∑
p=0
hp sin

(
π(2k−1)p

n

)
, (3.24)
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for k= 1, . . . ,n/2. The multiplication relations for the new hypercomplex bases are

e2k = ek, ẽ2k =−ek, ekẽk = ẽk, ekel = 0, ekẽl = 0, ẽkẽl = 0, k �= l, (3.25)

for k,l= 1, . . . ,n/2. It can be shown that

x0+h1x1+···+hn−1xn−1 =
n/2∑
k=1

(
ekvk+ ẽkṽk

)
. (3.26)

The exponential form of the planar n-complex number u is

u= ρexp


n−1∑
p=1
hp


− 2

n

n/2∑
k=2

cos
(
π(2k−1)p

n

)
lntanψk−1


+n/2∑

k=1
ẽkφk


, (3.27)

where the amplitude is

ρ = (
ρ2
1 ···ρ2

n/2
)1/n. (3.28)

The trigonometric form of the planar n-complex number u is

u= d
(
n
2

)1/2
(
1+ 1

tan2ψ1
+ 1

tan2ψ2
+···+ 1

tan2ψn/2−1

)−1/2

×

e1+

n/2∑
k=2

ek
tanψk−1


exp


n/2∑
k=1
ẽkφk


.

(3.29)

For n = 2, e1 = 1, ẽ1 = h1, ρ = d, there is no planar angle, and (3.27) and (3.29) have
both the form u= ρexp(h1φ1).

3.5. Elementary functions of a planar n-complex variable. The logarithm u1 of
the planar n-complex number u, u1 = lnu, can be defined as the solution of the equa-
tion u = eu1 . The logarithm exists as a planar n-complex function with real compo-
nents for all values of x0, . . . ,xn−1 for which ρ �= 0. The expression of the logarithm is

lnu= lnρ+
n−1∑
p=1
hp


− 2

n

n/2∑
k=2

cos
(
π(2k−1)p

n

)
lntanψk−1


+n/2∑

k=1
ẽkφk. (3.30)

The function lnu is multivalued because of the presence of the terms ẽkφk.
The power function um of the planar n-complex variable u can be defined for real

values ofm as um = em lnu. It can be shown that

um =
n/2∑
k=1
ρmk

(
ek cosmφk+ ẽk sinmφk

)
. (3.31)

The power function is multivalued unlessm is an integer.

3.6. Power series of planar n-complex numbers. A power series of the planar n-
complex variable u is a series of the form

a0+a1u+a2u2+···+alul+··· . (3.32)
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Using the inequality ∣∣u′u′′∣∣≤
√
n
2

∣∣u′∣∣∣∣u′′∣∣, (3.33)

which replaces the relation of equality extant for 2-dimensional complex numbers,
it can be shown that the series (3.32) is absolutely convergent for |u| < c, where
c = liml→∞ |al|/

√
n/2|al+1|.

The convergence of the series (3.32) can be also studied with the aid of the formulas
(3.31), which for integer values of m are valid for any values of x0, . . . ,xn−1. If al =∑n−1
p=0hpalp , and

Alk =
n−1∑
p=0
alp cos

π(2k−1)p
n

, Ãlk =
n−1∑
p=0
alp sin

π(2k−1)p
n

, (3.34)

for k= 1, . . . ,n/2, the series (3.32) can be written as

∞∑
l=0

n/2∑
k=1

(
ekAlk+ ẽkÃlk

)(
ekvk+ ẽkṽk

)l. (3.35)

The series in (3.32) is absolutely convergent for

ρk < ck, (3.36)

for k= 1, . . . ,n/2, where

ck = lim
l→∞

[
A2
lk+Ã2

lk
]1/2

[
A2
l+1,k+Ã2

l+1,k
]1/2 . (3.37)

These relations show that the region of convergence of the series (3.32) is an n-
dimensional cylinder.

3.7. Analytic functions of planar n-complex variables. If the n-complex function
f(u) of the planar n-complex variable u is written in terms of the real functions
Pk(x0, . . . ,xn−1), k= 0,1, . . . ,n−1 of the real variables x0,x1, . . . ,xn−1 as

f(u)=
n−1∑
k=0
hkPk

(
x0, . . . ,xn−1

)
, (3.38)

then relations of equality exist between the partial derivatives of the functions Pk,

∂Pk
∂x0

= ∂Pk+1
∂x1

= ··· = ∂Pn−1
∂xn−k−1

=− ∂P0
∂xn−k

= ··· = − ∂Pk−1
∂xn−1

, (3.39)

for k = 0,1, . . . ,n−1. The relations (3.39) are analogous to the Riemann relations for
the real and imaginary components of a complex function. It can be shown from (3.39)
that the components Pk fulfill the second-order equations

∂2Pk
∂x0∂xl

= ∂2Pk
∂x1∂xl−1

= ··· = ∂2Pk
∂x[l/2]∂xl−[l/2]

=− ∂2Pk
∂xl+1∂xn−1

=− ∂2Pk
∂xl+2∂xn−2

= ··· = − ∂2Pk
∂xl+1+[(n−l−2)/2]∂xn−1−[(n−l−2)/2]

,
(3.40)

for k,l= 0,1, . . . ,n−1.
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3.8. Integrals of planar n-complex functions. The singularities of planar n-
complex functions arise from terms of the form 1/(u−u0)m, withm> 0. Functions
containing such terms are singular not only at u = u0, but also at all points of the
hypersurfaces passing through u0 and which are parallel to the nodal hypersurfaces.

The integral of a planar n-complex function between two points A,B along a path
situated in a region free of singularities is independent of path, which means that the
integral of an analytic function along a loop situated in a region free of singularities
is zero, ∮

Γ
f(u)du= 0, (3.41)

where it is supposed that a surface
∑

spanning the closed loop Γ is not intersected
by any of the hypersurfaces associated with the singularities of the function f(u).
Using the expression, equation (3.38), for f(u) and the fact that du = ∑n−1

k=0 hkdxk,
the explicit form of the integral in (3.41) is

∮
Γ
f(u)du=

∮
Γ

n−1∑
k=0
hk

n−1∑
l=0
(−1)[(n−k−1+l)/n]Pl dxk−l+n[(n−k−1+l)/n]. (3.42)

If the functions Pk are regular on a surface
∑

spanning the loop Γ , the integral along
the loop Γ can be transformed in an integral over the surface

∑
of terms of the

form ∂Pl/∂xk−m+n[(n−k+m−1)/n] −(−1)s∂Pm/∂xk−l+n[(n−k+l−1)/n], where s = [(n−k+
m−1)/n]−[(n−k+l−1)/n]. The integrals of these terms are equal to zero by (3.39),
and this proves (3.41).

The quantity du/(u−u0) is

du
u−u0

= dρ
ρ
+
n−1∑
p=1
hp


− 2

n

n/2∑
k=2

cos
(
2πkp
n

)
d lntanψk−1


+n/2∑

k=1
ẽk dφk. (3.43)

Since ρ and ln(tanψk−1) are single-valued variables, it follows that
∮
Γ dρ/ρ = 0, and∮

Γ d(lntanψk−1) = 0. On the other hand, since φk are cyclic variables, they may give
contributions to the integral around the closed loop Γ .

If f(u) is an analytic function of a polar n-complex variable which can be expanded
in a series which holds on the curve Γ and on a surface spanning Γ , then

∮
Γ

f(u)du
u−u0

= 2πf
(
u0

)n/2∑
k=1
ẽk int

(
u0ξkηk ,Γξkηk

)
. (3.44)

Forn= 2, equation (3.44) becomes
∮
Γ f(u)du/(u−u0)= 2πh1f(u0) int(u0,Γ), which

is the theorem of Cauchy for 2-complex numbers.

3.9. Factorization of planar n-complex polynomials. A polynomial of degree m
of the planar n-complex variable u has the form

Pm(u)=um+a1um−1+···+am−1u+am, (3.45)

where al, l= 1, . . . ,m, are in general planar n-complex constants. If al =
∑n−1
p=0hpalp ,

and with the notations of (3.34) applied for l= 1, . . . ,m, the polynomial Pm(u) can be
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written as

Pm =
n/2∑
k=1


(ekvk+ ẽkṽk)m+

m∑
l=1

(
ekAlk+ ẽkÃlk

)(
ekvk+ ẽkṽk

)m−l, (3.46)

where the constants Alk,Ãlk are real numbers.
These relations can be written with the aid of (3.24) as

Pm(u)=
m∏
p=1

(
u−up

)
, (3.47)

where

up =
n/2∑
k=1

(
ekvkp+ ẽkṽkp

)
, (3.48)

for p = 1, . . . ,m. For a given k, the roots ekvkp+ẽkṽkp defined in (3.46) may be ordered
arbitrarily. This means that (3.48) gives sets ofm roots u1, . . . ,um of the polynomial
Pm(u), corresponding to the various ways in which the roots ekvkp+ẽkṽkp are ordered
according to p for each value of k. Thus, while the planar hypercomplex components
in (3.46) taken separately have unique factorizations, the polynomial Pn(u) can be
written in many different ways as a product of linear factors.

For example, u2+1 = (u−u1)(u−u2), where u1 = ±ẽ1± ẽ2±···± ẽn/2,u2 = −u1,
so that there are 2n/2−1 independent sets of roots u1,u2 of u2+1. It can be checked
that (±ẽ1± ẽ2±···± ẽn/2)2 =−e1−e2−···−en/2 =−1.
3.10. Representation of planar n-complex numbers by irreducible matrices. The

planar n-complex number u can be represented by the matrix

U =




x0 x1 x2 ··· xn−1
−xn−1 x0 x1 ··· xn−2
−xn−2 −xn−1 x0 ··· xn−3

...
...

... ··· ...
−x1 −x2 −x3 ··· x0



. (3.49)

The product u = u′u′′ is, for even n, represented by the matrix multiplication U =
U ′U ′′. It can be shown that the irreducible form [15] of the matrix U , in terms of
matrices with real coefficients, is




v+ 0 ··· 0
0 V1 ··· 0
...

... ··· ...
0 0 ··· Vn/2


 , (3.50)

where

Vk =
(
vk ṽk
−ṽk vk

)
, (3.51)

for k= 1, . . . ,n/2. The relations between the variables vk,ṽk for the multiplication of
planar n-complex numbers are vk = v′kv′′k − ṽ′kṽ′′k , ṽk = v′kṽ′′k + ṽ′kv′′k .
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4. Conclusions. The polar and planar n-complex numbers described in this pa-
per have a geometric representation based on modulus, amplitude, and angular vari-
ables. The n-complex numbers have exponential and trigonometric forms, which can
be expressed with the aid of geometric variables. The exponential function of an n-
complex variable can be developed in terms of the cosexponential functions. The n-
complex functions defined by series of powers are analytic, and the partial derivatives
of the real components of n-complex functions are closely related. The integrals of
n-complex functions are independent of path in regions where the functions are reg-
ular. The fact that the exponential form of the n-complex numbers depends on the
cyclic azimuthal variables leads to the concept of pole and residue for n-complex in-
tegrals on closed paths. The polynomials of polar n-complex variables can be written
as products of linear or quadratic factors, and the polynomials of planar n-complex
variables can be written as products of linear factors.
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