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A NEW COMBINATORIAL IDENTITY

JOSEPH SINYOR, TED SPEEVAK, and AKALU TEFERA

(Received 5 June 2000)

Abstract. We prove a combinatorial identity which arose from considering the relation
rp(x,y,z)= (x+y−z)p−(xp+yp−zp) in connection with Fermat’s last theorem.
2000 Mathematics Subject Classification. Primary 05-02.

The following combinatorial identity:
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for allm> l≥ 0, wherem, l, and j are nonnegative integers and 0≤ j ≤ 2l+1, arose
from considering

rp(x,y,z)= (x+y−z)p−
(
xp+yp−zp) (2)

in connection with Fermat’s last theorem (FLT), which was proved in 1994 by Wiles
and Taylor. Recall that FLT states that xp +yp − zp ≠ 0, where x, y , z, p are any
nonzero integers and p > 2. We take, without loss of generality, that x, y , and z are
relatively prime and p is prime. In general, rp(x,y,z) can be factored as p(z−x)(z−
y)(x+y)fp(x,y,z) which are powers of p if xp+yp−zp = 0. These factors result
in the elementary Abel-Barlow relations known since the 1820’s (see [2]).
However, the last factor fp(x,y,z) is
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(3)

where p = 2m+1≥ 5 and k > 0. This formulation of fp(x,y,z), which is believed to
be novel, establishes the new identity. However, it appears to offer no new insights
into a possible elementary proof of FLT.
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To discover the identity, note that

rp(x,y,z)= p
2m∑
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2m∑
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)
xjyp−j−lzl, (4)

where j+l≠ 0.
Alternatively, we have
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Equating (4) and (5) for a given j and l, we get the recurrence
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satisfies the recurrence (6). Substituting the expression for aj,m−l and rearranging, we
obtain the new identity.
The authors have reviewed the literature, notably Gould [1] and Riordan [3] as well

as the relevant journals since 1980. Based on this review, (1) is believed to be novel.

Proof of the identity. We consider two special cases.
Case 1 (j = 0). Equation (1) reduces to:
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Divide both sides of (8) by the right-hand side and denote the resulting left-hand side
by S(m, l). Then S(m, l) satisfies the recurrence equation S(m+1, l)−S(m,l) = 0—
obtained by using Zeilberger’s [5] Ekhad, a computer algebra package which is avail-
able from http://www.math.temple.edu/˜zeilberg/—and hence the identity follows
from the fact that S(1,0)= 1.

Case 2 (j ≠ 0). Equation (1) reduces to
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which by multiplying both sides by (2l−j+1)/j is also expressible as
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where (
a
b,c

)
:= a!
b!c!(a−b−c)! . (11)
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Equation (10) follows from the identity
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with p =m and k= 2l−j.
Denote the left-hand side of (12) by S(m,p,j,k). S(m,p,j,k) satisfies S(m+1,p,j,k)

= S(m,p,j,k) and hence S(m,p,j,k)= S(m+p,0,j,k). Hence to prove (12) it suffices
to prove

S(n,0,j,k)=
(
n
j,k

)
∀n,j,k∈ Z≥0. (13)

Clearly (13) is true for n = 0. Now, let n > 0 and set S(n,j,k) := S(n,0,j,k).
Then S(n,j,k) satisfies the recurrence equation

(−1+j−n)S(n−1,j−1,k)−(1+k)S(n−1,j,k−1)
+(j−k−n−1)S(n−1,j,k)+(j+k−n−1)S(n,j−1,k)
+(k+1)S(n,j−1,k+1)+(j+2k−n+1)S(n,j,k)+2(1+k)S(n,j,k+1)= 0

(14)

that is obtained by using Wegschaider’s [4] MultiSum, a computer algebra package
which is available from http://www.risc.uni-linz.ac.at/research/combinat/risc/
software/. Note that the right-hand side of (13) also satisfies (14). Hence by induc-
tion it follows that

S(n,j,k)=
(
n
j,k

)
∀n,j,k∈ Z≥0. (15)
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