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A NEW COMBINATORIAL IDENTITY

JOSEPH SINYOR, TED SPEEVAK, and AKALU TEFERA
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ABSTRACT. We prove a combinatorial identity which arose from considering the relation
¥p(x,¥,2) = (x+y —2)? — (xP + P — z”) in connection with Fermat’s last theorem.
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The following combinatorial identity:
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for all m > [ = 0, where m, L, and j are nonnegative integers and 0 < j <21+1, arose
from considering

1p(x,,2) = (x+y—2z)P — (xF +y¥ —zP) (2)

in connection with Fermat’s last theorem (FLT), which was proved in 1994 by Wiles
and Taylor. Recall that FLT states that x? + y? — z? =+ 0, where x, y, z, p are any
nonzero integers and p > 2. We take, without loss of generality, that x, y, and z are
relatively prime and p is prime. In general, ¥, (x,y,z) can be factored as p(z—x)(z—
¥)(x+y)fp(x,y,z) which are powers of p if x¥ + y¥ —z¥ = 0. These factors result
in the elementary Abel-Barlow relations known since the 1820’s (see [2]).

However, the last factor f,(x,¥,z) is

m-1 21 i i P .
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where p =2m+1 = 5 and k > 0. This formulation of f,(x,y,z), which is believed to
be novel, establishes the new identity. However, it appears to offer no new insights
into a possible elementary proof of FLT.
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To discover the identity, note that

2m 2m (—l)l p p—l . i1
rp(x,,2)=p> > (l>< f )xfy”‘l‘z, (4)
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where j+1+0.
Alternatively, we have

m 21 +1
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Equating (4) and (5) for a given j and L, we get the recurrence
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satisfies the recurrence (6). Substituting the expression for a ,,—; and rearranging, we
obtain the new identity.

The authors have reviewed the literature, notably Gould [1] and Riordan [3] as well
as the relevant journals since 1980. Based on this review, (1) is believed to be novel.

Now,

PROOF OF THE IDENTITY. We consider two special cases.
CASE 1 (j = 0). Equation (1) reduces to:

Z 1 m+1l m-1 _ 1 2m )
o m-U\2U+1)\2l-2U 2l+1\ 21 )’

Divide both sides of (8) by the right-hand side and denote the resulting left-hand side
by S(m,1). Then S(m, ) satisfies the recurrence equation S(m +1,1) —S(m,l) = 0—
obtained by using Zeilberger’s [5] Ekhad, a computer algebra package which is avail-
able from http://www.math.temple.edu/~ zeilberg/—and hence the identity follows
from the fact that S(1,0) = 1.

CASE 2 (j #+ 0). Equation (1) reduces to

m+l—j\(m-U+j-1 m-1 Jj\ _(2m 21
IZJZ(H'—J"H)( -1 )(2<l—w—u—j'))<j'>(21)(1—1>' ©)

which by multiplying both sides by (2L—j +1)/j is also expressible as

ZZ m—-1-U+j\(m-U\(m+U'—j\(2l-j+1\ [(2m)(2]\ 2m
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where

a\. a!
(b,c) " blel(a-b-o) an


http://www.math.temple.edu/~zeilberg/

A NEW COMBINATORIAL IDENTITY 363

Equation (10) follows from the identity

S p-1-U'+j\(p-U\(m+l'-j k+1 _[(m+p (12)
G J’ j=J k 2QU—-j'+m-p+1) \ j,k

with p =m and k = 21—j.

Denote the left-hand side of (12) by S(m, p, j, k). S(m, p, j, k) satisfies S (m+1,p, j, k)
=S(m,p,j, k) and hence S(m,p,j, k) = S(m+p,0,j,k). Hence to prove (12) it suffices
to prove

S(1,0,4,k) = (J.”k) vn,j,k € Z-o. (13)

Clearly (13) is true for n = 0. Now, let n > 0 and set S(n,j,k) := S(n,0,j,k).
Then S (n, j, k) satisfies the recurrence equation

(-1+j-n)Sn-1,j-1,k)-(1+k)S(n-1,j,k-1)
+(j-k-n-1)S(n-1,j,k)+(j+k—-n-1)S(n,j-1,k)

+(k+1)S(n,j—-1,k+1)+(j+2k—-n+1)S(n,j,k)+2(1+k)S(n,j,k+1)=0
(14)

that is obtained by using Wegschaider’s [4] MultiSum, a computer algebra package
which is available from http://www.risc.uni-linz.ac.at/research/combinat/risc/
software/. Note that the right-hand side of (13) also satisfies (14). Hence by induc-
tion it follows that

sk =" vnjkez. 15)
Jrk O
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