A NEW COMBINATORIAL IDENTITY
 JOSEPH SINYOR, TED SPEEVAK, and AKALU TEFERA

(Received 5 June 2000)

AbSTRACT. We prove a combinatorial identity which arose from considering the relation $r_{p}(x, y, z)=(x+y-z)^{p}-\left(x^{p}+y^{p}-z^{p}\right)$ in connection with Fermat's last theorem.
2000 Mathematics Subject Classification. Primary 05-02.

The following combinatorial identity:

$$
\begin{array}{r}
\sum_{l^{\prime} \leq l} \sum_{j^{\prime} \leq j} \frac{1}{\left(m-l^{\prime}\right)}\binom{m+l^{\prime}-j^{\prime}}{2 l^{\prime}-j^{\prime}+1}\binom{m-l^{\prime}+j^{\prime}-1}{j^{\prime}}\binom{m-l^{\prime}}{2\left(l-l^{\prime}\right)-\left(j-j^{\prime}\right)}\binom{m-l^{\prime}}{j-j^{\prime}} \tag{1}\\
=\frac{1}{2(m-l)}\binom{2 m}{2 l+1}\binom{2 l+1}{j}=\frac{1}{(2 l+1)}\binom{2 m}{2 l}\binom{2 l+1}{j}
\end{array}
$$

for all $m>l \geq 0$, where m, l, and j are nonnegative integers and $0 \leq j \leq 2 l+1$, arose from considering

$$
\begin{equation*}
r_{p}(x, y, z)=(x+y-z)^{p}-\left(x^{p}+y^{p}-z^{p}\right) \tag{2}
\end{equation*}
$$

in connection with Fermat's last theorem (FLT), which was proved in 1994 by Wiles and Taylor. Recall that FLT states that $x^{p}+y^{p}-z^{p} \neq 0$, where x, y, z, p are any nonzero integers and $p>2$. We take, without loss of generality, that x, y, and z are relatively prime and p is prime. In general, $r_{p}(x, y, z)$ can be factored as $p(z-x)(z-$ $y)(x+y) f_{p}(x, y, z)$ which are powers of p if $x^{p}+y^{p}-z^{p}=0$. These factors result in the elementary Abel-Barlow relations known since the 1820's (see [2]).

However, the last factor $f_{p}(x, y, z)$ is

$$
\begin{array}{r}
\sum_{l=0}^{m-1} \sum_{i=0}^{2 l} \sum_{j=0}^{i} \frac{(-1)^{i-j}}{(m-l)}\binom{m+l-j}{2 l-j+1}\binom{m-l+j-1}{j} x^{2 l-i} y^{i}(z-x)^{m-l-1}(z-y)^{m-l-1} \\
= \begin{cases}p^{k p-1} d^{p}, & p \nmid x y z \\
d^{p}, & p \mid x y z\end{cases} \tag{3}
\end{array}
$$

where $p=2 m+1 \geq 5$ and $k>0$. This formulation of $f_{p}(x, y, z)$, which is believed to be novel, establishes the new identity. However, it appears to offer no new insights into a possible elementary proof of FLT.

To discover the identity, note that

$$
\begin{equation*}
r_{p}(x, y, z)=p \sum_{l=0}^{2 m} \sum_{j=0}^{2 m} \frac{(-1)^{l}}{p}\binom{p}{l}\binom{p-l}{j} x^{j} y^{p-j-l} z^{l}, \tag{4}
\end{equation*}
$$

where $j+l \neq 0$.
Alternatively, we have

$$
\begin{equation*}
r_{p}(x, y, z)=p \sum_{l^{\prime}=0}^{m}(z-x)^{m-l^{\prime}}(z-y)^{m-l^{\prime}} \sum_{j^{\prime}=0}^{2 l^{\prime}+1} a_{j^{\prime}, m-l^{\prime}} x^{2 l^{\prime}-j^{\prime}+1} y^{j^{\prime}} . \tag{5}
\end{equation*}
$$

Equating (4) and (5) for a given j and l, we get the recurrence

$$
\begin{equation*}
a_{j, m-l}=\frac{1}{2(m-l)}\binom{2 m}{2 l+1}\binom{2 l+1}{j}-\sum_{l^{\prime}<l} \sum_{j^{\prime} \leq j} a_{j^{\prime}, m-l^{\prime}}\binom{m-l^{\prime}}{2\left(l-l^{\prime}\right)-\left(j-j^{\prime}\right)}\binom{m-l^{\prime}}{j-j^{\prime}} . \tag{6}
\end{equation*}
$$

Now,

$$
\begin{equation*}
a_{j, m-l}=\frac{1}{(m-l)}\binom{m+l-j}{2 l-j+1}\binom{m-l+j-1}{j} \tag{7}
\end{equation*}
$$

satisfies the recurrence (6). Substituting the expression for $a_{j, m-l}$ and rearranging, we obtain the new identity.

The authors have reviewed the literature, notably Gould [1] and Riordan [3] as well as the relevant journals since 1980. Based on this review, (1) is believed to be novel.

Proof of the identity. We consider two special cases.
CASE $1(j=0)$. Equation (1) reduces to:

$$
\begin{equation*}
\sum_{0 \leq l^{\prime} \leq l} \frac{1}{m-l^{\prime}}\binom{m+l^{\prime}}{2 l^{\prime}+1}\binom{m-l^{\prime}}{2 l-2 l^{\prime}}=\frac{1}{2 l+1}\binom{2 m}{2 l} . \tag{8}
\end{equation*}
$$

Divide both sides of (8) by the right-hand side and denote the resulting left-hand side by $S(m, l)$. Then $S(m, l)$ satisfies the recurrence equation $S(m+1, l)-S(m, l)=0-$ obtained by using Zeilberger's [5] Ekhad, a computer algebra package which is available from http://www.math.temple.edu/~zeilberg/-and hence the identity follows from the fact that $S(1,0)=1$.
CASE $2(j \neq 0)$. Equation (1) reduces to

$$
\begin{equation*}
\sum_{l^{\prime}} \sum_{j^{\prime}}\binom{m+l^{\prime}-j^{\prime}}{2 l^{\prime}-j^{\prime}+1}\binom{m-l^{\prime}+j^{\prime}-1}{j-1}\binom{m-l^{\prime}}{2\left(l-l^{\prime}\right)-\left(j-j^{\prime}\right)}\binom{j}{j^{\prime}}=\binom{2 m}{2 l}\binom{2 l}{j-1} \tag{9}
\end{equation*}
$$

which by multiplying both sides by $(2 l-j+1) / j$ is also expressible as

$$
\begin{equation*}
\sum_{l^{\prime}} \sum_{j^{\prime}}\binom{m-1-l^{\prime}+j^{\prime}}{j^{\prime}}\binom{m-l^{\prime}}{j-j^{\prime}}\binom{m+l^{\prime}-j^{\prime}}{2 l-j}\binom{2 l-j+1}{2 l^{\prime}-j^{\prime}+1}=\binom{2 m}{2 l}\binom{2 l}{j}=\binom{2 m}{j, 2 l-j}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\binom{a}{b, c}:=\frac{a!}{b!c!(a-b-c)!} . \tag{11}
\end{equation*}
$$

Equation (10) follows from the identity

$$
\begin{equation*}
\sum_{l^{\prime}} \sum_{j^{\prime}}\binom{p-1-l^{\prime}+j^{\prime}}{j^{\prime}}\binom{p-l^{\prime}}{j-j^{\prime}}\binom{m+l^{\prime}-j^{\prime}}{k}\binom{k+1}{2 l^{\prime}-j^{\prime}+m-p+1}=\binom{m+p}{j, k} \tag{12}
\end{equation*}
$$

with $p=m$ and $k=2 l-j$.
Denote the left-hand side of (12) by $S(m, p, j, k) . S(m, p, j, k)$ satisfies $S(m+1, p, j, k)$ $=S(m, p, j, k)$ and hence $S(m, p, j, k)=S(m+p, 0, j, k)$. Hence to prove (12) it suffices to prove

$$
\begin{equation*}
S(n, 0, j, k)=\binom{n}{j, k} \quad \forall n, j, k \in \mathbb{Z}_{\geq 0} \tag{13}
\end{equation*}
$$

Clearly (13) is true for $n=0$. Now, let $n>0$ and set $S(n, j, k):=S(n, 0, j, k)$. Then $S(n, j, k)$ satisfies the recurrence equation

$$
\begin{align*}
(-1+ & j-n) S(n-1, j-1, k)-(1+k) S(n-1, j, k-1) \\
& +(j-k-n-1) S(n-1, j, k)+(j+k-n-1) S(n, j-1, k) \\
& +(k+1) S(n, j-1, k+1)+(j+2 k-n+1) S(n, j, k)+2(1+k) S(n, j, k+1)=0 \tag{14}
\end{align*}
$$

that is obtained by using Wegschaider's [4] MultiSum, a computer algebra package which is available from http://www.risc.uni-linz.ac.at/research/combinat/risc/ software/. Note that the right-hand side of (13) also satisfies (14). Hence by induction it follows that

$$
\begin{equation*}
S(n, j, k)=\binom{n}{j, k} \quad \forall n, j, k \in \mathbb{Z}_{\geq 0} \tag{15}
\end{equation*}
$$

REFERENCES

[1] H. W. Gould, Combinatorial Identities. A standardized set of tables listing 500 binomial coefficient summations, Henry W. Gould, Morgantown, W. Va., 1972. MR 50\#6879. Zbl 241.05011.
[2] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag, New York, 1979. MR 81f:10023. Zbl 456.10006.
[3] J. Riordan, Combinatorial Identities, John Wiley \& Sons, New York, 1968. MR 38\#53. Zbl 194.00502.
[4] K. Wegschaider, Computer generated proofs of binomial multi-sum identities, Diploma thesis, RISC, J. Kepler University, Linz, May 1997.
[5] D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80 (1990), no. 2, 207-211. MR 91d:33006. Zbl 701.05001.

Joseph Sinyor: Bell Nexxia, Suite 350, 181 Bay St., Toronto, ON, Canada M5J 2T3
E-mail address: joseph.sinyor@be11nexxia.com
Ted Speevak: Bell Canada, Floor 4, 15 Asquith Ave, Toronto, On, Canada M4W1J7
E-mail address: ted.speevak@be11.ca
Akalu Tefera: Department of Mathematics and Statistics, Grand Valley State UniVERSITY, AlLENDALE, MI 49401, USA

E-mail address: teferaa@gvsu.edu

