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STIELTJES TRANSFORMS ON NEW
GENERALIZED FUNCTIONS
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Abstract. We introduce a Stieltjes transform on the equivalence classes of a new gener-
alized function which has been successfully developed by Colombeau. Subsets of rapid
descent test functions, �(Rn), as well as tempered distributions, �′(Rn), are used to pre-
serve Fourier analysis techniques.
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1. Introduction. Schwartz was the recipient of the prestigious fields Medal in 1950
for his achievement in developing distributional theory. However he did indicate in
his paper [5] the impossibility of having a distributional multiplication satisfying the
associative, commutative as well as the multiplicative identity and multiplicative in-
verse axioms. Many users of generalized functions indicated partial solutions to many
of these problems.
A recent and rigorous mathematical development preserving distributional mul-

tiplication has been successfully developed by Colombeau [1, 2, 3]. His new theory
termed new generalized functions contain many new important discoveries. Integra-
tion techniques are also developed within the new generalized function framework.
The approach is algebraic in nature whereby a new generalized function has an equiv-
alence class of special functions representing it. It is within these equivalence classes
where Colombeau introducesmultiplication and integration. Wewill introduce a Stielt-
jes transform on these equivalence classes in much the same manner as Colombeau
introduces the Fourier transform. Subsets of rapid descent test functions, �(Rn), as
well as tempered distributions, �′(Rn), will be used so as to preserve Fourier analysis
techniques which are so well developed within these two spaces and required within
the framework of applying Stieltjes transforms on new generalized functions.

2. New generalized functions. We begin with a brief review for the construction
of new generalized functions. Colombeau reexamines the space of infinitely differen-
tiable functions having compact support,�(Rn), and defines a sequence of subspaces,

�q =
{
φ∈�

(
Rn
)
:
∫
Rn
φ(x)dx = 1,

∫
Rn
xαφ(x)dx = 0, 1≤α≤ q

}
(2.1)

whereby

�
(
Rn
)⊃�1

(
Rn
)⊃ ··· ⊃�q

(
Rn
)⊃ ··· , (2.2)

for q = 1,2, . . . , and xα = xα1 xα2 ···xαn .
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It is clear that φ(x)∈�q(Rn) if and only if the function

φε(x)� 1
εn
φ
(
x
ε

)
(2.3)

is also a member of �q(Rn). We now define the set of moderate functions, εm(Rn).

Definition 2.1.

R ∈ εm
(
Rn
)
if and only if R :�1×

(
Rn
) 	 �→ C, R : (φ,x) 	 �→ R(φ,x) (2.4)

are C∞ in x for each φ∈�1(Rn). Furthermore the function, R, must satisfy the con-
dition that if for each compact subset, K ⊂ Rn, and every partial derivative operator,

D = ∂|k|

∂xk11 ···∂xknn
, (2.5)

then there is an N ∈ N (positive integers) such that for φ ∈ �N, ∃η > 0, C > 0 such
that the inequality ∣∣DR(φε,x)∣∣≤ C

εN
(2.6)

is satisfied for every x ∈K and 0< ε < η. Herein we establish the notation convention,
|k| =∑ni=1ki, where the ki are positive integers.
Next the class of tempered moderate functions, εm,τ(Rn) are defined whereby the

requirement of a compact subset, K ⊂Rn, in Definition 2.1 is relaxed to be the entire
space, Rn, and moreover the inequality (2.6) is replaced with the inequality

∣∣DR(φε,x)∣∣≤ C
(
1+|x|N)
εN

(2.7)

for all x ∈Rn (see [2, 3]).
Example 2.2. If f(x) ∈ �(Rn) the Schwartz space of classical rapid descent test

functions, then the associated function

Rf (φ,x)�
∫
Rn
f (λ)φ(λ−x)dλ (2.8)

belongs to εm,τ(Rn).

Proof. Recall that

Rf
(
φε,x

)=
∫
Rn

1
εN
f(λ)φ

(
λ−x
ε

)
dλ, (2.9)

and denoting o(D) to be the order of the partial differential operator, D, we have

(
DRf

(
φε,x

))= (− 1
ε

)o(D)∫
Rn

1
εN
f(λ)(Dφ)

(
λ−x
ε

)
dλ

=
(
− 1
ε

)o(D)∫
Rn
f (x+εµ)(Dφ)(µ)dµ,

(2.10)

and for fixed φ ∈�1(Rn) these integrations are in compact sets and thus we imme-
diately have that R ∈ εm,τ(Rn).
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Notation convention. The set Γ will be the collection of all increasing func-
tions α on the set of positive integers N to the positive real numbers R+ satisfying
limα(q)→∞ as q→∞.

Definition 2.3. An ideal, Nτ(Rn)⊂ εm,τ(Rn) is as follows:

Nτ
(
Rn
)� {R ∈ εm,τ(Rn) whereby ∀D,∃N ∈N,

α∈ Γ such that if q ≥N, φ∈�q

∃C > 0, η > 0 then∣∣DR(φε,x)∣∣≤ C(1+|x|n)εα(q)−N,
∀x ∈ (Rn) and 0< ε < η}.

(2.11)

The space of new generalized functions is now defined in an algebraic sense where
they are the collection of equivalence classes or coset classes as given by the quotient
set,

Gτ
(
Rn
)� εm,τ(Rn)/Nτ(Rn). (2.12)

That is to say two representatives, R1 and R2, belong to the same coset class if and
only if R1(φε,x)−R2(φε,x) belong to the ideal Nτ(Rn).

3. Integration on new tempered generalized functions. The Stieltjes transform
will require an integration process in a somewhat similar manner as does the Fourier
transform. Since distributional integration eluded the mathematical community, we
first give a brief review of new generalized function integration theory as developed
by Colombeau [2, 3].

Definition 3.1. Let G ∈ �τ(Rn) and R ∈ εm,τ(Rn) be a representative for G. The
integral, I, of R is defined by the formula

IR
(
φε
) ∆=

∫
Rn
R
(
φε,x

)(
φ̂ε
)
(x)dx, (3.1)

where φ̂ε is the Fourier transform of φ∈�N , where 0< ε < 1 (see [2, 3]).
Should φ �∈�N or if ε > 0 is not sufficiently small, we set

IR
(
φε
)= 0. (3.2)

We first observe that because φε(x)= (1/εn)φ(x/ε), we immediately have
(
φ̂ε
)
(w)=

∫
Rn
e−ixw

1
εn
φ
(
x
ε

)
dx =

∫
Rn
e−iηεwφ(η)dη= φ̂(εx), (3.3)

so that

IR
(
φε
)=

∫
Rn
R
(
φε,x

)(
φ̂ε
)
(x)dx =

∫
Rn
R
(
φε,x

)(
φ̂
)
(εx)dx. (3.4)

Now by the definition of εm,τ(Rn), our representative R satisfies

∣∣R(φε,x)∣∣≤ C
(
1+|x|N)
εN

(3.5)
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and moreover whenever φ∈�N we have φ̂∈�(Rn) so that

∣∣φ̂(x)∣∣≤ Cp(
1+|x|p) (3.6)

for all x ∈ (Rn). Putting p =N+n+1, we obtain
∣∣IR(φε)∣∣≤ C′

ε2N+n+1
, (3.7)

(see [3]). Therefore, we can consider the integral IR(φε) as a function from�N×Rn�R
satisfying themoderate estimate shown by inequality (3.7). Furthermore, using similar
estimates on a representative belonging to the ideal, Nτ(Rn), will also prove that its
integral is again a member belonging to the ideal, Nτ(Rn). Thus we conclude the inte-
gral of a new tempered generalized function does not depend upon the representative
selected from its coset class.
We also note that the extra component, (φ̂ε)(x), used in the kernel of the integrand

defined in expression (3.1) does not change the value of the integral. This is shown by
directly comparing it to the value

∫
|x|≤a

R
(
φε,x

)
dx. (3.8)

This is clear by applying a Fourier transform on a φ ∈ �q, where φ̂(0) = 1 and
(Dφ̂)(0) = 0 for 1 ≤ o(D) ≤ q. Using the Taylor formula on φ̂ one immediately has
that ∣∣φ̂(εx)−1∣∣≤ Cεq+1 (3.9)

for |x| ≤ a and the difference between ∫|x|≤aR(φε,x)dx and ∫Rn R(φε,x)(φ̂ε)(x)dx
can be made as small as we please (see [3]).

4. Fourier transforms on new generalized functions. The Stieltjes transform on
new generalized functions will parallel the construction of the Fourier transform de-
veloped by Colombeau [2, 3]. We will require some Fourier techniques in the Stieltjes
transform development. Therefore, a very brief exposition is included on its con-
struction. As is well known the Fourier transform of a rapid descent test function,
φ(x)∈�(Rn), is defined by the integral

φ̂(w)=
∫
Rn
e−ixwφ(x)dx, (4.1)

where x ·w = x1w1+···+xnwn. The inverse Fourier transform is then defined by
the integral

ĝ−1(x)= (2π)−n
∫
Rn
e−ixwg(w)dw = (2π)−nĝ(−x). (4.2)

It is well known that these transforms give us a homeomorphism on the space, �(Rn).
We extend the Fourier transform to new generalized functions by applying the trans-

form to the representatives belonging to the coset class of functions identified with
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the new generalized function, G. Again let R be a member of the coset class belonging
to the space, εm,τ(Rn). Then for φ∈�N and ε > 0, we define

R̂
(
φε,w

)=
∫
Rn
e−ixwR

(
φε,x

)
φ̂(εx)dx (4.3)

for all w ∈Rn.
Since |e−ixw | = 1, we immediately have R̂ ∈ εm,τ(Rn) and its proof is completed in

a similar manner as the existence of the integral immediately following Definition 3.1.
Since the kernel of the Stieltjes transform is somewhat complicated as compared to the
kernel component, e−ixw , in the Fourier transform its application to new generalized
functions becomes difficult.
We also note that if f ∈�(Rn), then the extended Fourier transform

∫
Rn
e−ixwf(x)φ̂(εx)dx (4.4)

coincides with the classical Fourier transform∫
Rn
e−ixwf(x)dx. (4.5)

Again this is proved by considering the difference of the two Fourier transforms and
noting the special behavior of φ̂(εx), namely,

∣∣φ̂(εx)−1∣∣≤ Cεq+1. (4.6)

These details can be found in [2, 3].

5. Stieltjes transforms on new generalized functions. We now turn our focus to
the Stieltjes transform. A text [6] presents the classical Stieltjes transform whereby
the existence is proved whenever the function α(x) satisfies the “big θ” condition,

α(x)= θ(x1−δ), (5.1)

for δ sufficiently small. We will implement this result in our present situation.
We first prove two technical lemmas.

Lemma 5.1. If φ(x)∈�, then φ(x)= θ(x1−δ) for δ small and positive.
Proof. We show that limx→∞ |φ(x)|/x1−δ ≤ C .
Since φ(x)∈�, we have

|φ(x)|< C(
1+x2)m = C(

1+x2)m
x1−δ

x1−δ
=
[
C
x1−δ

][
x1−δ(
1+x2)m

]
. (5.2)

Letm= 1 in (5.2) and then we have

lim
x→∞

[
C
x1−δ

][
x1−δ(
1+x2)

]
= lim
x→∞

[
C
x1−δ

]
lim
x→∞

[
1(

xδ−1
)+x1−δ

]
= 0. (5.3)

Thus the result immediately follows.
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Now since φ(x)∈�, then φ̂(x) is also a member of � satisfying condition,

∣∣φ̂(x)∣∣≤ Cp(
1+|x|p) , p ∈N. (5.4)

Lemma 5.2. If φ(x)∈� and R(φε,x)∈ εm,τ (Rn), then φ̂(εx)·R(φε,x)= θ(x1−δ)
for δ sufficiently small and positive.

Proof. Again we show that

lim
x→∞

∣∣φ̂(εx)·R(φε,x)∣∣
x1−δ

≤ C. (5.5)

By condition (2.7), it is clear that R(φε,x) satisfies

∣∣R(φε,x)∣∣≤ C
(
1+|x|N)
εN

, (5.6)

and it can then be clearly shown [4] that |φ̂(εx)|<Cp/εp(1+|x|p) for all x.
Then the product, φ̂(εx)·R(φε,x) satisfies

∣∣φ̂(εx)R(φε,x)∣∣< Cp
εp
(
1+|x|p) ·C

(
1+|x|N)
εn

x1−δ

x1−δ

≤ k
x1−δ

[
1+|x|N+1
εN+p

][
1

1+|x|p
]
,

(5.7)

and selecting p >N+1 proves the desired result.
We now define the Stieltjes transform of G to be the following integral transform.

Definition 5.3. For R(φε,x)∈ εm,τ(Rn) and being a representative for G together
with φ̂(εx), the Stieltjes transform of G is defined by the integral transform formula

G Stieltjes (S)=
∫∞
0

d
(
R(φε,x)·φ̂(εx)

)
S+x . (5.8)

Implementing the requirement in expression (5.1) this transform is well defined.
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