
IJMMS 25:6 (2001) 383–387
PII. S0161171201004665
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON THE SHARP CONSTANT FOR STARLIKENESS

CHEN KEYING

(Received 24 February 2000)

Abstract. We obtain a sharp constant of the sufficient condition for p-valently star-
likeness, which had been studied by Nunokawa (1991), Obradovíc and Owa (1989), and
Li (1993).
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1. Introduction. Let A(p) denote the class of functions of the form

f(z)= zp+
∞∑

n=p+1
anzn (p ∈N) (1.1)

which are analytic in U = {z : |z|< 1}. A function f(z) in A(p) is said to be p-valently
starlike if and only if

R

[
zf ′(z)
f(z)

]
> 0 in U. (1.2)

Let S(p) denote the subclass of A(p) consisting of all functions f(z) which are
p-valently starlike in U (cf. [1]). For a function g(z) in A(p), the interesting problem
is to find the best constant A such that g(z) is in S(p) whenever

∣∣∣∣∣1+ zg
(p+1)(z)
g(p)(z)

∣∣∣∣∣<A
∣∣∣∣∣ zg

(p)(z)
g(p−1)(z)

∣∣∣∣∣ in U. (1.3)

In 1989, Obradovíc and Owa [6] obtained that A = 5/4 for the case of p = 1. For
the general case, Nunokawa [5] gained that A = log4. Recently, Li [2] improved these
results and obtained that A = 3/2. In this paper, we will solve this problem com-
pletely and give the sharp constant A= 1.80898 . . . , where A is the unique solution of
the equation

xe1/(x
2−1) = x+1. (1.4)

For proving our result, we should recall the concept of subordination between ana-
lytic functions. Given two analytic functions f(z) and F(z), the function f(z) is said
to be subordinate to F(z) if F(z) is univalent in U, f(0)= F(0), and f(U)⊂ F(U). We
denote this subordination by f(z)≺ F(z) (see [7]).

Suppose thath(z) is analytic inU, and thatΦ(z) is analytic in an appropriate domain
D, we consider the following first-order differential subordination

β+zp′(z)Φ(p(z))≺ h(z), (1.5)
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where p(z) is analytic in U, β is a complex constant. Changing the “≺” of (1.5) to “=”,
we get the corresponding first-order differential equation

β+zp′(z)Φ(p(z))= h(z). (1.6)

2. Main results. Our results rest on the following lemma, which is the special case
of [3, Theorem 3].

Lemma 2.1. Suppose that h(z) is a starlike function in U, Φ(z) is analytic in the
domain D and p(z), q(z) are two analytic functions in U. If p(z) satisfies the relation
(1.5), q(z) is a univalent solution of the corresponding equation (1.6) and p(0)= q(0),
then p(z)≺ q(z).

Theorem 2.2. Let g(z)∈A(p), and suppose that
∣∣∣∣∣1+ zg

(p+1)(z)
g(p)(z)

∣∣∣∣∣<A
∣∣∣∣∣ zg

(p)(z)
g(p−1)(z)

∣∣∣∣∣ in U, (2.1)

where the constant A is given by (1.4). Then g(z)∈ S(p) and the result is sharp.
Proof. Let

f(z)= g
(p−1)(z)
p!

. (2.2)

Then f(z)∈A(1). From the assumption (2.1), f(z) satisfies
∣∣∣∣∣1+ zf

′′(z)
f ′(z)

∣∣∣∣∣<A
∣∣∣∣∣zf

′(z)
f(z)

∣∣∣∣∣ in U. (2.3)

By putting p(z)= zf ′(z)/f(z), equation (2.3) can be rewritten as
∣∣∣∣∣1+ zp

′(z)
p2(z)

∣∣∣∣∣<A. (2.4)

Let ϕ(z) = A(1+Az)/(A+z) for z ∈ U. Obviously ϕ(z) is a conformal mapping
from U to Ω = {w : |w| < A} and ϕ(0) = 1. Combining (2.4) with the definition of
subordination, we obtain

1+ zp
′(z)

p2(z)
≺ A(1+Az)

A+z . (2.5)

Setting

q(z)= 1
1+(A2−1

)
logA/(A+z) , (2.6)

we have

1+ zq
′(z)

q2(z)
= A(1+Az)

A+z (2.7)

and p(0)= q(0)= 1. As A> 1, we can choose a uniform analytic branch of log(A+z)
such that q(z) is univalent on this branch. By taking the real part of the denominator
of q(z) and combining (1.4), we conclude that

R
[
1+(A2−1

)
log

A
A+z

]
> 1+(A2−1

)
log

A
A+1

= 0. (2.8)
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It follows that R[q(z)] > 0, so q(z) is analytic and univalent. Let D = C\{0},
Φ(z)= 1/z2, β= 1, and h(z)=A(1+Az)/(A+z), where C is the complex plane. It is
clear that h(z) is a starlike function. From Lemma 2.1, we deduce that p(z) ≺ q(z).
Hence

R

[
zf ′(z)
f(z)

]
= R

[
p(z)

]≥ min
|z|=r<1

R
[
q(z)

]
> 0. (2.9)

This is equivalent to

R

[
zg(p)(z)
g(p−1)(z)

]
= R

[
zf ′(z)
f(z)

]
> 0 in U. (2.10)

From [4, Theorem 5], we have

R

[
zg′(z)
g(z)

]
> 0 in U. (2.11)

This proves g(z)∈ S(p).
For any A1 > A = 1.80898 . . . , we get a function q1(z) by replacing A in (2.6) with

A1 and choosing an appropriate branch of log(A1+z). We can easily observe that the
real part of q1(z) is not always positive. Through the relations q1(z) = zf ′(z)/f(z)
and f(z)= g(p−1)(z)/p!, we can construct an analytic function g(z) which belongs to
A(p) and satisfies (2.1), but it is not in S(p). This completes the proof.

Taking p = 1 in Theorem 2.2, we easily have the following corollary.

Corollary 2.3. If f(z)∈A(1) and it satisfies the condition
∣∣∣∣∣1+ zf

′′(z)
f ′(z)

∣∣∣∣∣<A
∣∣∣∣∣zf

′(z)
f(z)

∣∣∣∣∣ in U, (2.12)

where the constant A is given by (1.4), then f(z) is univalent and starlike in U.

The problem that Nunokawa proposed in [5] has been solved completely, but the
converse proposition of Theorem 2.2 is not true. We find a simple example f(z) =
z/(1−z) which belongs to S(1), but it does not satisfy (2.12). The following theorem
is better than (2.1) because it includes at least this example.

Theorem 2.4. Let g(z)∈A(p), and suppose that
∣∣∣∣∣1+ zg

(p+1)(z)
g(p)(z)

− zg(p)(z)
g(p−1)(z)

∣∣∣∣∣<
∣∣∣∣∣ zg

(p)(z)
g(p−1)(z)

∣∣∣∣∣ in U. (2.13)

Then g(z)∈ S(p).
Proof. Let

f(z)= g
(p−1)(z)
p!

. (2.14)

Then f(z)∈A(1). From the assumption (2.13), f(z) satisfies
∣∣∣∣∣1+ zf

′′(z)
f ′(z)

− zf
′(z)

f(z)

∣∣∣∣∣<
∣∣∣∣∣zf

′(z)
f(z)

∣∣∣∣∣ in U. (2.15)



386 CHEN KEYING

By setting p(z)= zf ′(z)/f(z), equation (2.15) can be rewritten as

∣∣∣∣∣zp
′(z)

p2(z)

∣∣∣∣∣< 1. (2.16)

From the definition of subordination, we obtain

zp′(z)
p2(z)

≺ z. (2.17)

Let q(z)= 1/(1−z), we observe that zq′(z)/q2(z)=z,p(0)= q(0)= 1, and R[q(z)]
> 0. From Lemma 2.1, we know that p(z)≺ 1/(1−z). Therefore

R

[
zf ′(z)
f(z)

]
= R

[
p(z)

]≥ min
|z|=r<1

R
[
q(z)

]
> 0. (2.18)

This is equivalent to

R

[
zg(p)(z)
g(p−1)(z)

]
= R

[
zf ′(z)
f(z)

]
> 0 in U. (2.19)

From [4, Theorem 5], we have

R

[
zg′(z)
g(z)

]
> 0 in U. (2.20)

This completes the proof.

Taking p = 1 in Theorem 2.4, we obviously have the following corollary.

Corollary 2.5. If f(z)∈A(1) and it satisfies the condition
∣∣∣∣∣1+ zf

′′(z)
f ′(z)

− zf
′(z)

f(z)

∣∣∣∣∣<
∣∣∣∣∣zf

′(z)
f(z)

∣∣∣∣∣ in U, (2.21)

then f(z)∈ S(1).
Acknowledgements. I wish to express my gratitude to Professor Hu Ke and Pro-

fessor Fang Ainong for their guidance, advice, and encouragement in my work, past
and present. I am also grateful to the referee for his valuable advice.

This research was supported by China NSF (Grant No. 19531060) and Doctor Spot
Foundation (Grant No. 97024811).

References

[1] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans.
Amer. Math. Soc. 68 (1950), 204–223. MR 11,508d. Zbl 037.05502.

[2] J. L. Li,On a criterion of starlikeness, Math. Japon. 38 (1993), no. 5, 897–899. MR 94j:30012.
Zbl 786.30010.

[3] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations,
Michigan Math. J. 32 (1985), no. 2, 185–195. MR 86h:30046. Zbl 575.30019.

[4] M. Nunokawa, On the theory of multivalent functions, Tsukuba J. Math. 11 (1987), no. 2,
273–286. MR 89d:30013. Zbl 639.30014.

http://www.ams.org/mathscinet-getitem?mr=11:508d
http://www.emis.de/cgi-bin/MATH-item?037.05502
http://www.ams.org/mathscinet-getitem?mr=94j:30012
http://www.emis.de/cgi-bin/MATH-item?786.30010
http://www.ams.org/mathscinet-getitem?mr=86h:30046
http://www.emis.de/cgi-bin/MATH-item?575.30019
http://www.ams.org/mathscinet-getitem?mr=89d:30013
http://www.emis.de/cgi-bin/MATH-item?639.30014


ON THE SHARP CONSTANT FOR STARLIKENESS 387

[5] , On certain multivalent functions, Math. Japon. 36 (1991), no. 1, 67–70.
MR 92b:30017. Zbl 718.30010.

[6] M. Obradovíc and S. Owa, A criterion for starlikeness, Math. Nachr. 140 (1989), 97–102.
MR 90i:30020. Zbl 676.30009.

[7] C. Pommerenke, Univalent Functions. With a chapter on quadratic differentials by Gerd
Jensen, Studia Mathematica/Mathematische Lehrbücher, vol. 25, Vandenhoeck &
Ruprecht, Göttingen, 1975. MR 58#22526. Zbl 298.30014.

Chen Keying: Department of Applied Mathematics, Shanghai Jiaotong University,
Shanghai 200240, China

E-mail address: kychen801@mail1.sjtu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=92b:30017
http://www.emis.de/cgi-bin/MATH-item?718.30010
http://www.ams.org/mathscinet-getitem?mr=90i:30020
http://www.emis.de/cgi-bin/MATH-item?676.30009
http://www.ams.org/mathscinet-getitem?mr=58:22526
http://www.emis.de/cgi-bin/MATH-item?298.30014
mailto:kychen801@mail1.sjtu.edu.cn

