ON CERTAIN ANALYTIC UNIVALENT FUNCTIONS

B. A. FRASIN and M. DARUS

(Received 10 March 2000)

Abstract

We consider the class of analytic functions $B(\alpha)$ to investigate some properties for this class. The angular estimates of functions in the class $B(\alpha)$ are obtained. Finally, we derive some interesting conditions for the class of strongly starlike and strongly convex of order α in the open unit disk.

2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction. Let \mathbb{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. A function $f(z)$ belonging to \mathbb{A} is said to be starlike of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by S_{α}^{*} the subclass of \mathbb{A} consisting of functions which are starlike of order α in U. Also, a function $f(z)$ belonging to \mathbb{A} is said to be convex of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by C_{α} the subclass of \mathbb{A} consisting of functions which are convex of order α in U.

If $f(z) \in \mathbb{A}$ satisfies

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{1.4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, then $f(z)$ said to be strongly starlike of order α in U, and this class denoted by \bar{S}_{α}^{*}.

If $f(z) \in \mathbb{A}$ satisfies

$$
\begin{equation*}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{1.5}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, then we say that $f(z)$ is strongly convex of order α in U, and we denote by \bar{C}_{α} the class of all such functions.

The object of the present paper is to investigate various properties of the following class of analytic functions defined as follows.

DEFINITION 1.1. A function $f(z) \in \mathbb{A}$ is said to be a member of the class $B(\alpha)$ if and only if

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1-\alpha \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and for all $z \in U$.
Note that condition (1.6) implies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right)>\alpha \tag{1.7}
\end{equation*}
$$

2. Main results. In order to derive our main results, we have to recall here the following lemmas.

Lemma 2.1 (see [2]). Let $f(z) \in \mathbb{A}$ satisfy the condition

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1 \quad(z \in U) \tag{2.1}
\end{equation*}
$$

then f is univalent in U.
Lemma 2.2 (see [1]). Let $w(z)$ be analytic in U and such that $w(0)=0$. Then if $|w(z)|$ attains its maximum value on circle $|z|=r<1$ at a point $z_{0} \in U$, we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.2}
\end{equation*}
$$

where $k \geq 1$ is a real number.
LemmA 2.3 (see [3]). Let a function $p(z)$ be analytic in $U, p(0)=1$, and $p(z) \neq$ $0(z \in U)$. If there exists a point $z_{0} \in U$ such that

$$
\begin{equation*}
|\arg (p(z))|<\frac{\pi}{2} \alpha, \quad \text { for }|z|<\left|z_{0}\right|, \quad\left|\arg \left(p\left(z_{0}\right)\right)\right|=\frac{\pi}{2} \alpha, \tag{2.3}
\end{equation*}
$$

with $0<\alpha \leq 1$, then we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha \tag{2.4}
\end{equation*}
$$

where

$$
\begin{gather*}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1 \quad \text { when } \arg \left(p\left(z_{0}\right)\right)=\frac{\pi}{2} \alpha, \\
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1 \quad \text { when } \arg \left(p\left(z_{0}\right)\right)=-\frac{\pi}{2} \alpha, \tag{2.5}\\
p\left(z_{0}\right)^{1 / \alpha}= \pm a i, \quad(a>0) .
\end{gather*}
$$

We begin with the statement and the proof of the following result.

Theorem 2.4. If $f(z) \in \mathbb{A}$ satisfies

$$
\begin{equation*}
\left|\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right|<\frac{1-\alpha}{2-\alpha} \quad(z \in U) \tag{2.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, then $f(z) \in B(\alpha)$.
Proof. We define the function $w(z)$ by

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=1+(1-\alpha) w(z) \tag{2.7}
\end{equation*}
$$

Then $w(z)$ is analytic in U and $w(0)=0$. By the logarithmic differentiations, we get from (2.7) that

$$
\begin{equation*}
\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}=\frac{(1-\alpha) z w^{\prime}(z)}{1+(1-\alpha) w(z)} \tag{2.8}
\end{equation*}
$$

Suppose there exists $z_{0} \in U$ such that

$$
\begin{equation*}
\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1 \tag{2.9}
\end{equation*}
$$

then from Lemma 2.2, we have (2.2).
Letting $w\left(z_{0}\right)=e^{i \theta}$, from (2.8), we have

$$
\begin{equation*}
\left|\frac{\left(z_{0} f\left(z_{0}\right)\right)^{\prime \prime}}{f^{\prime}\left(z_{0}\right)}-\frac{2 z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|=\left|\frac{(1-\alpha) k e^{i \theta}}{1+(1-\alpha) e^{i \theta}}\right| \geq \frac{1-\alpha}{2-\alpha}, \tag{2.10}
\end{equation*}
$$

which contradicts our assumption (2.6). Therefore $|w(z)|<1$ holds for all $z \in U$. We finally have

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|=(1-\alpha)|w(z)|<1-\alpha \quad(z \in U) \tag{2.11}
\end{equation*}
$$

that is, $f(z) \in B(\alpha)$.
Taking $\alpha=0$ in Theorem 2.4 and using Lemma 2.1 we have the following corollary.
Corollary 2.5. If $f(z) \in \mathbb{A}$ satisfies

$$
\begin{equation*}
\left|\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right|<\frac{1}{2} \quad(z \in U) \tag{2.12}
\end{equation*}
$$

then f is univalent in U.
Next, we prove the following theorem.
Theorem 2.6. Let $f(z) \in \mathbb{A}$. If $f(z) \in B(\alpha)$, then

$$
\begin{equation*}
\left|\arg \left(\frac{f(z)}{z}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{2.13}
\end{equation*}
$$

for some $\alpha(0<\alpha<1)$ and $(2 / \pi) \tan ^{-1} \alpha-\alpha=1$.

Proof. We define the function $p(z)$ by

$$
\begin{equation*}
\frac{f(z)}{z}=p(z)=1+\sum_{n=2}^{\infty} a_{n} z^{n-1} . \tag{2.14}
\end{equation*}
$$

Then we see that $p(z)$ is analytic in $U, p(0)=1$, and $p(z) \neq 0(z \in U)$. It follows from (2.14) that

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=\frac{1}{p(z)}\left(1+\frac{z p^{\prime}(z)}{p(z)}\right) \tag{2.15}
\end{equation*}
$$

Suppose there exists a point $z_{0} \in U$ such that

$$
\begin{equation*}
|\arg (p(z))|<\frac{\pi}{2} \alpha, \quad \text { for }|z|<\left|z_{0}\right|, \quad\left|\arg \left(p\left(z_{0}\right)\right)\right|=\frac{\pi}{2} \alpha . \tag{2.16}
\end{equation*}
$$

Then, applying Lemma 2.3, we can write that

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha \tag{2.17}
\end{equation*}
$$

where

$$
\begin{gather*}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1 \quad \text { when } \arg \left(p\left(z_{0}\right)\right)=\frac{\pi}{2} \alpha, \\
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1 \quad \text { when } \arg \left(p\left(z_{0}\right)\right)=-\frac{\pi}{2} \alpha, \tag{2.18}\\
p\left(z_{0}\right)^{1 / \alpha}= \pm a i, \quad(a>0) .
\end{gather*}
$$

Therefore, if $\arg \left(p\left(z_{0}\right)\right)=\pi \alpha / 2$, then

$$
\begin{equation*}
\frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)}=\frac{1}{p\left(z_{0}\right)}\left(1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)=a^{-\alpha} e^{-i \pi \alpha / 2}(1+i k \alpha) . \tag{2.19}
\end{equation*}
$$

This implies that

$$
\begin{align*}
\arg \left(\frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)}\right) & =\arg \left(\frac{1}{p\left(z_{0}\right)}\left(1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right) \\
& =-\frac{\pi}{2} \alpha+\arg (1+i \alpha k) \geq-\frac{\pi}{2} \alpha+\tan ^{-1} \alpha \tag{2.20}\\
& =\frac{\pi}{2}\left(\frac{2}{\pi} \tan ^{-1} \alpha-\alpha\right)=\frac{\pi}{2}
\end{align*}
$$

if

$$
\begin{equation*}
\frac{2}{\pi} \tan ^{-1} \alpha-\alpha=1 . \tag{2.21}
\end{equation*}
$$

Also, if $\arg \left(p\left(z_{0}\right)\right)=-\pi \alpha / 2$, we have

$$
\begin{equation*}
\arg \left(\frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)}\right) \leq-\frac{\pi}{2} \tag{2.22}
\end{equation*}
$$

if

$$
\begin{equation*}
\frac{2}{\pi} \tan ^{-1} \alpha-\alpha=1 \tag{2.23}
\end{equation*}
$$

These contradict the assumption of the theorem.

Thus, the function $p(z)$ has to satisfy

$$
\begin{equation*}
|\arg (p(z))|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{2.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\arg \left(\frac{f(z)}{z}\right)\right|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{2.25}
\end{equation*}
$$

This completes the proof.
Now, we prove the following theorem.
Theorem 2.7. Let $p(z)$ be analytic in $U, p(z) \neq 0$ in U and suppose that

$$
\begin{equation*}
\left|\arg \left(p(z)+\frac{z^{3} f^{\prime}(z)}{f^{2}(z)} p^{\prime}(z)\right)\right|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{2.26}
\end{equation*}
$$

where $0<\alpha<1$ and $f(z) \in B(\alpha)$, then we have

$$
\begin{equation*}
|\arg (p(z))|<\frac{\pi}{2} \alpha \quad(z \in U) . \tag{2.27}
\end{equation*}
$$

Proof. Suppose there exists a point $z_{0} \in U$ such that

$$
\begin{equation*}
|\arg (p(z))|<\frac{\pi}{2} \alpha, \quad \text { for }|z|<\left|z_{0}\right|, \quad\left|\arg \left(p\left(z_{0}\right)\right)\right|=\frac{\pi}{2} \alpha . \tag{2.28}
\end{equation*}
$$

Then, applying Lemma 2.3, we can write that

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha \tag{2.29}
\end{equation*}
$$

where

$$
\begin{gather*}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \arg \left(p\left(z_{0}\right)\right)=\frac{\pi}{2} \alpha, \\
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \quad \text { when } \arg \left(p\left(z_{0}\right)\right)=-\frac{\pi}{2} \alpha, \tag{2.30}\\
p\left(z_{0}\right)^{1 / \alpha}= \pm a i, \quad(a>0) .
\end{gather*}
$$

Then it follows that

$$
\begin{align*}
\arg \left(p\left(z_{0}\right)+\frac{z_{0}^{3} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right) & =\arg \left(p\left(z_{0}\right)\left(1+\frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \frac{z p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right) \tag{2.31}\\
& =\arg \left(p\left(z_{0}\right)\left(1+i \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k\right)\right)
\end{align*}
$$

When $\arg \left(p\left(z_{0}\right)\right)=\pi \alpha / 2$, we have

$$
\begin{equation*}
\arg \left(p\left(z_{0}\right)+\frac{z_{0}^{3} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right)=\arg \left(p\left(z_{0}\right)\right)+\arg \left(1+i \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k\right)>\frac{\pi}{2} \alpha \tag{2.32}
\end{equation*}
$$

because

$$
\begin{equation*}
\operatorname{Re} \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k>0 \text { and therefore } \arg \left(1+i \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k\right)>0 . \tag{2.33}
\end{equation*}
$$

Similarly, if $\arg \left(p\left(z_{0}\right)\right)=-\pi \alpha / 2$, then we obtain that

$$
\begin{equation*}
\arg \left(p\left(z_{0}\right)+\frac{z_{0}^{3} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right)=\arg \left(p\left(z_{0}\right)\right)+\arg \left(1+i \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k\right)<-\frac{\pi}{2} \alpha \tag{2.34}
\end{equation*}
$$

because

$$
\begin{equation*}
\operatorname{Re} \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k<0 \text { and therefore } \arg \left(1+i \frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)} \alpha k\right)<0 \tag{2.35}
\end{equation*}
$$

Thus we see that (2.32) and (2.34) contradict our condition (2.26). Consequently, we conclude that

$$
\begin{equation*}
|\arg (p(z))|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{2.36}
\end{equation*}
$$

Taking $p(z)=z f^{\prime}(z) / f(z)$ in Theorem 2.7, we have the following corollary.
Corollary 2.8. If $f(z) \in \mathbb{A}$ satisfying

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}+\frac{z^{3} f^{\prime}(z)}{f^{3}(z)}\left(\left(z f^{\prime}(z)\right)^{\prime}-\frac{z\left(f^{\prime}(z)\right)^{2}}{f(z)}\right)\right)\right|<\frac{\pi}{2} \alpha \quad(z \in U) \tag{2.37}
\end{equation*}
$$

where $0<\alpha<1$ and $f(z) \in B(\alpha)$, then $f(z) \in \bar{S}_{\alpha}^{*}$.
Taking $p(z)=1+z f^{\prime \prime}(z) / f^{\prime}(z)$ in Theorem 2.7, we have the following corollary.
Corollary 2.9. If $f(z) \in \mathbb{A}$ satisfying

$$
\begin{equation*}
\left|\arg \left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}+\frac{z^{3}}{f^{3}(z)}\left(\left(z f^{\prime \prime}(z)\right)^{\prime}-\frac{z\left(f^{\prime \prime}(z)\right)^{2}}{f^{\prime}(z)}\right)\right)\right|<\frac{\pi}{2} \alpha \tag{2.38}
\end{equation*}
$$

where $0<\alpha<1$ and $f(z) \in B(\alpha)$, then $f(z) \in \bar{C}_{\alpha}$.

References

[1] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469474. MR 43\#7611. Zbl 224.30026.
[2] M. Nunokawa, On some angular estimates of analytic functions, Math. Japon. 41 (1995), no. 2, 447-452. MR 96c:30013. Zbl 822.30014.
[3] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392-394. MR 45\#8821. Zbl 233.30011.
B. A. Frasin: School of Mathematical Sciences, Faculty of Sciences and Technology, UKM, BANGI 43600 Selangor, MAlaysia
M. Darus: School of Mathematical Sciences, Faculty of Sciences and Technology, UKM, Bangi 43600 Selangor, MAlaysia

E-mail address: mas7ina@pkrisc.cc.ukm.my

