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Abstract. We show that for certain bounded cylinder functions of the form F(x) =
µ̂((h1,x)∼, . . . ,(hn,x)∼), x ∈ B, where µ̂ :Rn → C is the Fourier-transform of the complex-
valued Borel measure µ on �(Rn), the Borel σ -algebra of Rn with ‖µ‖ <∞, the analytic
Feynman integral of F exists, although the analytic Feynman integral, limz→−iq Iaw(F ;z)=
limz→−iq(z/2π)n/2

∫
Rn f( �→u)exp{−(z/2)| �→u|2}d �→u, do not always exist for bounded cylin-

der functions F(x)= f((h1,x)∼, . . . ,(hn,x)∼), x ∈ B. We prove a change of scale formula
for Wiener integrals of F on the abstract Wiener space.
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1. Introduction. In [3], Kim showed that for F ∈ �(n;p), 1 ≤ p ≤ ∞, the ana-
lytic Wiener integral exists and for F ∈ �(n;1), the analytic Feynman integral ex-
ists and can be expressed as the limit of Wiener integrals and later he proved the
change of scale formula for Wiener integrals for F ∈ �(n;p), 1 ≤ p ≤ ∞, where
for 1 ≤ p < ∞, �(n;p) is the class of cylinder functions F of the form F(x) =
f((h1,x)∼, . . . ,(hn,x)∼) and f :Rn→R is in Lp(Rn), and �(n;∞) is the class of such
cylinder functions F , where f : Rn → R is in C0(Rn), the space of bounded continu-
ous functions on Rn that vanish at infinity. But for 1 < p ≤∞, the analytic Feynman
integral of F ∈ �(n;p) do not always exist even if F(x) = f((h1,x)∼, . . . ,(hn,x)∼)
is a bounded cylinder function, as we cannot apply the Lebesgue dominated con-
vergence theorem to the limit whenever z → −iq through C+; limz→−iq Iaw(F ;z) =
limz→−iq(z/2π)n/2

∫
Rn f ( �→u)exp{−(z/2)| �→u|2}d �→u.

In this paper, we show that the analytic Feynman integral of F exists for certain
bounded cylinder functions of the form F(x)= µ̂((h1,x)∼, . . . ,(hn,x)∼), x ∈ B, where
µ̂ :Rn→ C is the Fourier-transform of the complex-valued Borel measure µ on �(Rn),
the Borel σ -algebra of Rn with ‖µ‖<∞. We establish the relationships between ana-
lytic Wiener integrals, and analytic Feynman integrals, and we show that the analytic
Feynman integral of F can be expressed as the limit of a sequence of Wiener integrals.
Later, we prove a change of scale formula for Wiener integrals of F on the abstract
Wiener space.

2. Definitions. Let H be a real separable infinite-dimensional Hilbert space with
inner product 〈·,·〉 and norm ‖·‖ = √〈·,·〉. Let ‖·‖0 be a measurable norm on H with
respect to the Gauss measure µ. Let B denote the completion of H with respect to
‖·‖0. Let i denote the natural injection from H into B. The adjoint operator i∗ of i is
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one-to-one and maps B∗ continuously onto a dense subset of H∗, where H∗ and B∗

are topological duals of H and B, respectively. By identifying H with H∗ and B∗ with
i∗B∗, we have a triplet (B∗,H,B) such that B∗ ⊂H∗ ≡H ⊂ B and 〈h,x〉 = (h,x) for all
h in B∗ and x in H, where (·,·) denotes the natural dual pairing between B∗ and B.
By a well-known result of Gross [3], µ ·i−1 has a unique countably additive extension
m to the Borel σ -algebra �(B) on B. The triplet (B,H,m) is called an abstract Wiener
space andm is called a Wiener measure. We denote the Wiener integral of a functional
F by

∫
B F(x)dm(x). For more details see [1, 3].

Let {ej}∞j=1 denote a complete orthonormal system in H such that ej ’s are in B∗.
For each h∈H and x ∈ B, we define a stochastic inner product (·,·)∼ between H and
B as follows:

(h,x)∼ =



lim
n→∞

n∑
j=1

〈
h,ej

〉(
ej,x

)
, if the limit exists,

0, otherwise.
(2.1)

It is well known [2] that for every h ∈H,(h,x)∼ exists for m-a.e. x in B and it has
a Gaussian distribution with mean zero and variance |h|2. Furthermore, it is easy to
show that (h,x)∼ = (h,x) form-a.e.x in B ifh∈ B∗, (h,x)∼ is essentially independent
of the complete orthonormal set used in its definition, and finally we show that if
{h1, . . . ,hk} is an orthonormal set of elements in H, then (h1,x)∼, . . . ,(hk,x)∼ are
independent Gaussian functionals with mean zero and variance one. Note that if both
h and x are in H, then (h,x)∼ = 〈h,x〉.
Throughout this paper, let Rn denote the n-dimensional Euclidean space and let

C, C+, and C∼+ denote the complex numbers, the complex numbers with positive real
part, and the nonzero complex numbers with nonnegative real part, respectively.

Definition 2.1. Let (B,H,m) be an abstract Wiener space. A function F is called
a cylinder function on B if there exists a finite subset {g1, . . . ,gk} of H such that

F(x)=ψ
((
g1,x

)∼, . . . ,(gk,x
)∼), x ∈ B, (2.2)

where ψ is a complex-valued Borel measurable function on Rk. It is easy to show
that there exists a linearly independent set {h1, . . . ,hn} of H such that every cylinder
function F of the form (2.2) is expressed as

F(x)= f
((
h1,x

)∼, . . . ,(hn,x
)∼), x ∈ B, (2.3)

where f is a complex-valued Borel measurable function on Rn. Thus we lose no gen-
erality in assuming that every cylinder function on B is of the form (2.3).

Definition 2.2. Let F be a complex-valued measurable function on B such that the
integral

J(F ;λ)=
∫
B
F
(
λ−1/2x

)
dm(x) (2.4)

exists for all real λ > 0. If there exists a function J∗(F ;z) analytic on C+ such that
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J∗(F ;λ) = J(F ;λ) for all real λ > 0, then we define J∗(F ;z) to be the analytic Wiener
integral of F over B with parameter z, and for each z ∈ C+, we write

Iaw(F ;z)= J∗(F ;z). (2.5)

Let q be a nonzero real number and let F be a function on B whose analytic Wiener
integral exists for each z in C+. If the following limit exists, then we call it the analytic
Feynman integral of F over B with parameter q, and we write

Iaf(F ;q)= lim
z→−iq

Iaw(F ;z), (2.6)

where z approaches −iq through C+ and i2 =−1.
Definition 2.3. Let �(Rn) denote the space of complex-valued Borel measures

on �(Rn), the Borel σ -algebra of Rn. It is well known that a complex-valued Borel
measure µ necessarily has a finite total variation ‖µ‖, and �(Rn) is a Banach algebra
under the norm ‖·‖ and with convolution as multiplication.
Let µ be in �(Rn). Then the Fourier transformation µ̂ of µ is a complex-valued

function defined on Rn by the formula

µ̂
(
#u
)=

∫
Rn

exp
{
i
〈 �→u, �→v 〉}µ(d �→v ), �→u ∈Rn, (2.7)

where �→u = (u1, . . . ,un) and
�→v = (v1, . . . ,vn) are in Rn, and 〈 �→u, �→v 〉 =∑n

j=1ujvj .

Wewill close this section bymentioning the following useful theoremwhich is called
the Wiener integration formula.

Theorem 2.4. Let (B,H,m) be an abstract Wiener space and let {h1, . . . ,hn} be an
orthonormal set of elements in H. Let F : B→ C be a function defined by the formula

F(x)= f
((
h1,x

)∼, . . . ,(hn,x
)∼), x ∈ B, (2.8)

where f :Rn→ C is a Lebesgue measurable function. Then

∫
B
f
((
h1,x

)∼, . . . ,(hn,x
)∼)dm(x)=

(
1
2π

)n/2∫
Rn

f
( �→u)exp{− 1

2

∣∣ �→u∣∣2}d �→u, (2.9)

where �→u = (u1, . . . ,un)∈Rn, | �→u|2 =∑n
j=1u

2
j , and d �→u = du1 ···dun.

In the next section, we use several times the following well-known integration for-
mula ∫

R
exp

{−au2+ibu
}
du=

√
π
a
exp

{
− b2

4a

}
, (2.10)

where a is a complex number with Rea> 0, b is a real number, and i2 =−1.

3. The main results. In this paper, we give a class of a certain bounded cylinder
functions of the form F(x) = f((h1,x)∼, . . . ,(hn,x)∼), x ∈ B, such that f : Rn → C
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is bounded, whose analytic Wiener and analytic Feynman integral of F exist and we
show that the analytic Feynman integral of such cylinder functions can be expressed
as the limit of Wiener integrals. Later, we prove a change of scale formula for Wiener
integrals of such cylinder functions on the abstract Wiener space.
Define the function F : B→ C by

F(x)= µ̂
((
h1,x

)∼, . . . ,(hn,x
)∼), x ∈ B, (3.1)

where µ̂ is the Fourier transform of complex-valued Borel measures µ in �(Rn) and
�(Rn) is as in Definition 2.3. Then F : B → C is a bounded cylinder function, as
|µ̂(#u)| ≤ ‖µ‖<∞.
First, we show that the analytic Wiener and the analytic Feynman integrals of the

function F exist.

Theorem 3.1. Let (B,H,m) be an abstract Wiener space and let {h1, . . . ,hn} be an
orthonormal set of elements in H. Let F : B → C be given by (3.1). Then the analytic
Wiener and the analytic Feynman integrals of F exist, and for every z ∈ C+,

Iaw(F ;z)=
∫
Rn

exp
{
− 1
2z
∣∣ �→v∣∣2}µ(d �→v ) (3.2)

and for every nonzero real number q,

Iaf(F ;q)=
∫
Rn

exp
{
− i
2q
∣∣ �→v∣∣2}µ(d �→v ), (3.3)

where �→v = (v1, . . . ,vn)∈Rn and | �→v |2 =∑n
j=1v

2
j .

Proof. By Fubini’s theorem and by Theorem 2.4 and by (2.10), we have that for all
positive real number λ,

J(F : λ)≡
∫
B
F
(
λ−1/2x

)
dm(x)=

∫
B
µ̂
((
h1,λ−1/2x

)∼, . . . ,(hn,λ−1/2x
)∼)dm(x)

=
∫
Rn

∫
B
exp

[
iλ−1/2

n∑
j=1

vj
(
hj,x

)∼]dm(x)dµ
(
#v
)

=
(

1
2π

)n/2∫
Rn

∫
Rn

exp

[
iλ−1/2

n∑
j=1

vjuj

]
exp

[
−1
2

n∑
j=1

u2
j

]
du1 ···dundµ

(
#v
)

=
∫
Rn

exp

[
− 1
2λ

n∑
j=1

v2
j

]
dµ
(
#v
)
.

(3.4)

Now let J∗(F : z) = ∫Rn exp
{− (1/2z)

∑n
j=1v

2
j
}
dµ(#v), z ∈ C+. Then J∗(F : λ) =

J(F : λ) for all real λ > 0. By dominated convergence theorem, J∗(F : z) is continuous
on C+. Since exp

{−(1/2z)
∑n

j=1v
2
j
}
is analytic on C+ for each #v = (v1, . . . ,vn) ∈ Rn,

we have that
∫
Γ exp

{− (1/2z)
∑n

j=1v
2
j
}
dz = 0 for all rectifiable simple closed curve

Γ lying C+ by Cauchy integral theorem. As
∣∣exp{− (1/2z)

∑n
j=1v

2
j
}∣∣ ' 1 for all z ∈

C+, we can apply Fubini’s theorem to the integral
∫
Γ J∗(F : z)dz and then we have∫

Γ J∗(F : z)dz = 0. By Morera’s theorem, J∗(F : z) is an analytic function of z in C+.



A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS . . . 235

Therefore the analytic Wiener integral Iaw(F : z) exist and we have (3.2). To prove
(3.3), let fn(#v)= exp{−(1/zn)|#v|2}, zn ∈ C+ and let zn→−iq whenever n→∞. Then
fn(#v)→ f(#v)≡ exp−{(i/2q)#v2}, whenever zn→−iq and |fn(#v)| ≤ 1, for all zn ∈ C+.
By the bounded convergence theorem, we have (3.3), as ‖µ(Rn)‖<∞.
In order to obtain our main results, we need the following lemma.

Lemma 3.2. Let (B,H,m) be an abstract Wiener space and let {h1, . . . ,hn} be an
orthonormal set of elements inH. Let F : B→ C be given by (3.1). Then for every z ∈ C+,
the functional

exp

{
1−z
2

n∑
j=1

[(
hj,x

)∼]2}F(x) (3.5)

is Wiener integrable on B.

Proof. By Theorem 2.4, we have that for every z ∈ C+,∫
B
exp

{
1−z
2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x)=
(

1
2π

)n/2∫
Rn

µ̂
( �→u)exp{− z

2

∣∣ �→u∣∣2}d �→u,

(3.6)
where �→u = (u1, . . . ,un) ∈ Rn, | �→u|2 = ∑n

j=1u
2
j , and d �→u = du1 ···dun. Because the

absolute value of the last integral is less than ‖µ‖·z−n/2, the proof of this lemma is
complete.

Theorem 3.3. Let (B,H,m) be an abstract Wiener space and let {h1, . . . ,hn} be as
in Definition 2.3. Let F : B → C be given by (3.1). Then for every z ∈ C+, the analytic
Wiener integral Iaw(F ;z) of F is expressed as follows:

Iaw(F ;z)= zn/2
∫
B
exp

{
(1−z)

2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x). (3.7)

Proof. By Lemma 3.2, the right-hand side of (3.7) has a finite value. Now let us
calculate the following Wiener integral:

∫
B
exp

{
(1−z)

2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x)

=
(

1
2π

)n/2∫
Rn

µ̂
( �→u)exp{− z

2

∣∣ �→u∣∣2}d �→u
=
(

1
2π

)n/2∫
Rn

[∫
Rn

exp

{
i

n∑
j=1

vjuj

}
µ
(
d �→v )

]
exp

{
− z
2

∣∣ �→u∣∣2}d �→u

=
(

1
2π

)n/2∫
Rn

[ n∏
j=1

{∫
R
exp

{
− z
2
u2

j +ivjuj

}
duj

}]
µ
(
d �→v )

= z−n/2
∫
Rn

exp
{
− 1
2z
∣∣ �→v∣∣2}µ(d �→v ).

(3.8)

Here, the first equality comes from Theorem 2.4, the second equality comes from
the definition of Fourier transform µ̂ of µ ∈ �(Rn), the third equality follows from
Fubini’s theorem, and the last equality follows from the formula (2.10). From (3.2) and
(3.8), we have the desired result (3.7).
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Nowwe express the analytic Feynman integral Iaf(F ;q) of F as the limit of a sequence
of Wiener integrals on the abstract Wiener space.

Theorem 3.4. Let (B,H,m) be an abstract Wiener space and let {h1, . . . ,hn} be an
orthonormal set of elements in H. Let F : B→ C be given by (3.1). If {zk}∞k=1 is a sequence
of complex numbers from C+ such that zk approaches −iq through C+, where q is a
nonzero real number and i2 =−1, then the analytic Feynman integral Iaf(F ;q) of F is
expressed as follows:

Iaf(F ;q)= lim
k→∞

(
zk
)n/2∫

B
exp

{
1−zk
2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x). (3.9)

Proof. We can obtain from (3.8) that

zn/2
k

∫
B
exp

{(
1−zk

)
2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x)=
∫
Rn

exp
{
− 1
2zk

∣∣ �→v∣∣2}µ(d �→v ).
(3.10)

Letting k→∞ in (3.10) and using the dominated convergence theorem, we have

lim
k→∞

(
zk
)n/2∫

B
exp

{
1−zk
2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x)

= lim
k→∞

∫
Rn

exp
{
− 1
2zk

∣∣ �→v∣∣2}µ(d �→v )

=
∫
Rn

exp
{
− i
2q
∣∣ �→v∣∣2}µ(d �→v ).

(3.11)

From (3.2) and (3.11), (3.9) follows immediately.

Finally, we obtain a change of scale formula for Wiener integrals for F : B→ C which
was given by (3.1).

Theorem 3.5. Let (B,H,m) be an abstract Wiener space. Let ρ > 0 be given and
let
{
h1, . . . ,hn

}
be an orthonormal set of elements in H. Then for F : B → C which was

given by (3.1),
∫
B
F(ρx)dm(x)= ρ−n

∫
B
exp

{
ρ2−1
2ρ2

n∑
j=1

[(
hj,x

)∼]2}F(x)dm(x). (3.12)

Proof. First, we know that for all real z > 0, Iaw(F ;z) = ∫B F(z−1/2x)dm(x) by
Definition 2.2. Using Theorem 3.3 and taking z = ρ−2 in the above equality, we have
the desired result.
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