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NOTE ON THE QUADRATIC GAUSS SUMS

GEORGE DANAS

(Received 17 March 2000)

Abstract. Let p be an odd prime and {χ(m) = (m/p)}, m = 0,1, . . . ,p − 1 be a finite
arithmetic sequence with elements the values of a Dirichlet character χ modp which are
defined in terms of the Legendre symbol (m/p), (m,p)= 1. We study the relation between
the Gauss and the quadratic Gauss sums. It is shown that the quadratic Gauss sumsG(k;p)
are equal to the Gauss sums G(k,χ) that correspond to this particular Dirichlet charac-
ter χ. Finally, using the above result, we prove that the quadratic Gauss sums G(k;p),
k = 0,1, . . . ,p−1 are the eigenvalues of the circulant p×p matrix X with elements the
terms of the sequence {χ(m)}.

2000 Mathematics Subject Classification. Primary 11L05; Secondary 11T24, 11L10.

1. Introduction. The notions of Gauss and quadratic Gauss sums play an important
role in number theory with many applications [10]. In particular, they are used as tools
in the proofs of quadratic, cubic, and biquadratic reciprocity laws [5, 7].
In this article, we study the relation between the quadratic Gauss sums and the

Gauss sums related to a particular Dirichlet character defined in terms of the Legendre
symbol and prove that the Gauss sums G(k,χ), k= 0,1, . . . ,p−1 which correspond to
the Dirichlet character χ(m)= (m/p) are actually the quadratic Gauss sums G(k;p),
(k,p)= 1.
More precisely, consider the finite arithmetic sequence {χ(m) = (m/p)} with ele-

ments the values of a Dirichlet character χ modp which are defined in terms of the
Legendre symbol (m/p), (m,p) = 1 and a circulant p×p matrix X with elements
these values. If f(x) is a polynomial of degree p−1 with coefficients the elements
of the arithmetic sequence {χ(m)}, m = 0,1, . . . ,p−1, then X = f(T), where T is a
suitable p×p circulant matrix, namely the rotational matrix; T is orthogonal, diago-
nalizable with eigenvalues the pth roots of unity. In addition, the matrices X,T have
the same eigenvectors while if λ is an eigenvalue of T , then f(λ) is the eigenvalue of
X that corresponds to the same eigenvector [3, 12, 13].
Finally, using the above results, we give an algebraic interpretation of the quadratic

Gauss sums, which also leads to a different way of computing them, by proving that
they are the eigenvalues of the circulant p×p matrix X.

2. Preliminaries. For an extended overview on eigenvalues and eigenvectors the
reader may consult [4, 8, 11] while for quadratic residues, Legendre symbol, character
functions, and Dirichlet characters [1, 5, 7].
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Let C be the set of complex numbers, A an n×n matrix with entries in C and

f(x)= anxn+···+a1x+a0, ai ∈ C, i= 0,1, . . . ,n (2.1)

be a polynomial of degree n, where n is an integer greater than 1.

Proposition 2.1. If λ is an eigenvalue of the n×n matrix A that corresponds to
the eigenvector v , then the n×n matrix

f(A)= anAn+···+a1A+a0In (2.2)

has
f(λ)= anλn+···+a1λ+a0 (2.3)

as an eigenvalue that corresponds to the same eigenvector v .

Corollary 2.2. If
PA(λ)=

(
λ−λ1

)···(λ−λn) (2.4)

is the characteristic polynomial of the matrix A with eigenvalues λ1, . . . ,λn, then

Pf(A)(λ)=
(
λ−f (λ1))···(λ−f (λn)) (2.5)

is the characteristic polynomial of the matrix f(A).

Proposition 2.3. If an n×n matrix A has n distinct eigenvalues, then so has the
matrix f(A). Moreover, if the matrix A is diagonalized by an n×nmatrix S, then f(A)
is also diagonalized by S.

Definition 2.4. Letm be an integer greater than 1, and suppose that (m,n)= 1.
If x2 ≡ n modm is soluble, then we call n a quadratic residue modm; otherwise we
call n a quadratic nonresidue modm.

Definition 2.5 (Legendre’s symbol). Let p be an odd prime, and suppose that
p �n. We let

(
n
p

)
=


1 if n is a quadratic residue modp,

−1 if n is a quadratic nonresidue modp.
(2.6)

It is easy to see that if n≡n′ modp and p �n, then (n/p)= (n′/p) which implies
that the Legendre symbol is periodic with period p.
Let now {ai}, i= 0,1, . . . ,n−1 be a finite arithmetic sequence in C.
Definition 2.6. An n×n matrix

A=




a0 a1 · · an−1
an−1 a0 · · an−2
· · · · ·
a1 a2 · · a0


 (2.7)

whose rows come by cyclic permutations to the right of the terms of the arithmetic
sequence {ai}, i= 0,1, . . . ,n−1 is called a circulant matrix.



NOTE ON THE QUADRATIC GAUSS SUMS 169

In case that

ai =


1 if i= 1,
0 otherwise,

(2.8)

the matrix A becomes

T =




0 1 0 · · 0
0 0 1 · · 0
· · · · · ·
0 0 0 · 0 1
1 0 0 · · 0



. (2.9)

The n×n matrix T , which is called the rotational matrix, is orthogonal, that is,
T−1 = T ′, such that Tn = In and having as eigenvalues the nth roots of unity [3, 12].
Moreover, T is diagonalizable and if W is the n×n matrix whose columns are the
eigenvectors of T ,

W(k) = (1wkw2k ···w(n−1)k)′, k= 0,1, . . . ,n−1, (2.10)

where w = e2πi/n, then

W−1TW =




1 0 0 · · 0
0 w 0 · · 0
0 0 w2 · · 0
· · · · · ·
0 0 0 · · wn−1



. (2.11)

3. Gauss and quadratic Gauss sums. In this section, we study the relation between
the quadratic Gauss sums and the Gauss sums related to a particular Dirichlet char-
acter defined in terms of the Legendre symbol.

Definition 3.1. For every Dirichlet character χ modn the sum

G(k,χ)=
n−1∑
m=0

χ(m)e2πimk/n, k= 0,1, . . . ,n−1, (3.1)

is called the Gauss sum that corresponds to χ.

Definition 3.2. If k,n are integers with n> 0, then the trigonometric sum

G(k;n)=
n−1∑
r=0

e2πir
2k/n, (k,n)= 1, (3.2)

is called quadratic Gauss sum.
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Theorem 3.3. If p is an odd prime with χ(m)= (m/p), (m,p)= 1, then

G(k;p)=
p−1∑
r=0

e2πir
2k/p =

p−1∑
m=0

χ(m)e2πimk/p =G(k,χ), (k,p)= 1, (3.3)

Proof. The number of solutions of the congruence

r 2 ≡m modp (3.4)

is

1+
(
m
p

)
(3.5)

and therefore

G(k;p)=
p−1∑
r=0

e2πir
2k/p =

p−1∑
m=0

(
1+

(
m
p

))
e2πimk/p

=
p−1∑
m=0

(
m
p

)
e2πimk/p =

p−1∑
m=0

χ(m)e2πimk/p =G(k,χ)
(3.6)

which is the required result.

4. The quadratic Gauss sums as eigenvalues of a suitable circulant matrix. In
this section, we give an algebraic interpretation of the quadratic Gauss sums that
correspond to a Dirichlet character χ modp which is defined in terms of the Legendre
symbol (m/p), (m,p) = 1. In fact, we prove that the quadratic Gauss sums G(k;p),
(k,p)= 1, are the eigenvalues of the circulant p×pmatrix X with elements the values
χ(m)= (m/p), (m,p)= 1.
Let now n = p be an odd prime, χ(m) = (m/p) be a Dirichlet character modp

that is defined in terms of the Legendre symbol (m/p), (m,p) = 1 and consider the
circulant p×p matrix

X =




χ(0) χ(1) · · χ(p−1)
χ(p−1) χ(0) · · χ(p−2)

· · · · ·
χ(1) χ(2) · · χ(0)


 (4.1)

whose rows come by cyclic permutation to the right of the terms of the arithmetic
sequence {χ(m)},m= 0,1, . . . ,p−1.

Proposition 4.1. If f(x) = χ(0)+ χ(1)x + ··· + χ(p − 1)xp−1 is a polynomial
with coefficients the terms of the arithmetic sequence {χ(m)},m= 0,1, . . . ,p−1, then
X = f(T).

Proof. We can write T = (epe1 ···ep−1), since the columns of T are the vectors
ep,e1, . . . ,ep−1 relative to the standard basis of Cp .
Observe also that

T 2 = (ep−1ep ···ep−2), . . . , Tp = (e1e2 ···ep)= Ip. (4.2)
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Therefore,

f(T)= χ(0)Ip+χ(1)T +···+χ(p−1)Tp−1
= χ(0)(e1e2 ···ep)+χ(1)(epe1 ···ep−1)+···+χ(p−1)(e2e3 ···e1)

=




χ(0) χ(1) · · χ(p−1)
χ(p−1) χ(0) · · χ(p−2)

· · · · ·
χ(1) χ(2) · · χ(0)


=X.

(4.3)

Thus, according to Proposition 2.1, the matrix X has the same eigenvectors with T ,
which are the row vectors

v0 = (11···1), v1 =
(
1w ···wp−1), . . . , vp−1 =

(
1wp−1 ···w(p−1)2

)
, (4.4)

where w = e2πi/p , while its corresponding eigenvalues are
f(1)= χ(0)+χ(1)+···+χ(p−1)
f (w)= χ(0)+χ(1)w+···+χ(p−1)wp−1

f
(
w2)= χ(0)+χ(1)w2+···+χ(p−1)w2(p−1)

...

f
(
wp−1)= χ(0)+χ(1)wp−1+···+χ(p−1)w(p−1)2 .

(4.5)

Combining now the above results and Theorem 3.3, we obtain the following theorem.

Theorem 4.2. The eigenvalues of the p×p circulant matrix X are

G(k;p)=G(k,χ)= f (wk)=
p−1∑
m=0

χ(m)e2πimk/p, k= 0,1, . . . ,p−1, (4.6)

the quadratic Gauss sums.

Notice that, equations (4.5) can be written in matrix notation as



f(1)
f (w)
f
(
w2
)

·
·

f
(
wp−1)



=




1 1 1 · · 1
1 w w2 · · wp−1

1 w2 w4 · · w2(p−1)

· · · · · ·
· · · · · ·
1 wp−1 w2(p−1) · · w(p−1)2







χ(0)
χ(1)
χ(2)
·
·

χ(p−1)



. (4.7)

Furthermore, the p×p matrix

W =




1 1 1 · · 1
1 w w2 · · wp−1

1 w2 w4 · · w2(p−1)

· · · · · ·
· · · · · ·
1 wp−1 w2(p−1) · · w(p−1)2




(4.8)



172 GEORGE DANAS

whose columns are the eigenvectors of X, diagonalize X, that is,

W−1XW =




f(1) 0 0 · · 0
0 f(w) 0 · · 0
0 0 f

(
w2
) · · 0

· · · · · ·
· · · · · ·
0 0 0 · · f

(
wp−1)



. (4.9)

Remark 4.3. Since every Dirichlet character χ modp is periodic modp, it has a
finite Fourier expansion [1, 7],

χ(m)=
p−1∑
k=0

αp(k)e2πimk/p, m= 0,1, . . . ,p−1, (4.10)

where the coefficients αp(k) are given by

αp(k)= 1
p

p−1∑
m=0

χ(m)e−2πimk/p, k= 0,1, . . . ,p−1 (4.11)

or equivalently

αp(k)= 1
p
G(−k,χ). (4.12)

If we consider now the Dirichlet character χ(m) = (m/p) which is defined in terms
of the Legendre symbol (m/p), (m,p)= 1, then we deduce that the quadratic Gauss
sum G(k;p)=G(k,χ), k= 0,1, . . . ,p−1 is the Fourier transform of χ evaluated at k.

5. Conclusion. We have shown that the quadratic Gauss sums G(k;p), (k,p)= 1
can be considered as the eigenvalues of a suitable circulant p×p matrix X with el-
ements the terms of the arithmetic sequence {χ(m) = (m/p)}. This leads both to
an algebraic characterization and also to a different way of computing the quadratic
Gauss sums by calculating the roots of the characteristic polynomial that correspond
to the matrix X.
Moreover, this new point of view for the quadratic Gauss sums gives, in many cases,

an easier way to calculate them (to my best knowledge) instead of a direct computa-
tion, since one can find several methods for computing the eigenvalues of a matrix or
the roots of a polynomial [2, 6, 9].
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