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1. Introduction. In recent years, there have been many papers considering the im-
pulsive differential equations, see, for example, [2, 3, 1, 4, 5] and the references cited
in [3]. In this paper, our results extend those in [6]. We consider the second-order
nonlinear impulsive differential equation(

p(t)y ′(t)
)′ = f

(
t,y(t),y ′(t)

)
, t �= tk, t ≥ 0, (1.1)

y
(
t+k
)−y(tk)= Ik

(
y
(
tk
))
, (1.2)

y ′
(
t+k
)−y ′(tk)= Jk

(
y ′
(
tk
))
, k= 1,2, . . . , (1.3)

under the following standing assumptions on p,f ,Ik and Jk:
(A1) p : [0,∞)→ (0,∞) is continuous and

P(t)=
∫ t

0

1
p(s)

ds �→∞ as t �→∞; (1.4)

(A2) f : [0,∞)×R×R → (0,∞) is continuous and f(t,u,v) is nondecreasing in u
and v ;

(A3) Ik and Jk : R → (0,∞) are continuous and Ik and Jk are nondecreasing for
k= 1,2, . . . ;

(A4) 0≤ t0 < t1 < t2 < ···< tn < ··· with limn→∞ tn =∞;
(A5) Every Cauchy problem for (1.1), (1.2), and (1.3) has a unique solution.
Let y(t) be a solution of (1.1), (1.2), and (1.3) with the maximal interval of existence

[0,Ty). From (1.1), (1.2), and (1.3) we have (p(t)y ′(t))′ > 0 for t �= tk, so that p(t)y ′(t)
is increasing on [0,Ty). It happens that either Ty <∞ and limt→Ty p(t)y ′(t) =∞, or
else Ty =∞ and limt→∞p(t)y ′(t) exists in R∪{∞}. In the former case y(t) is called a
singular solution, and in the latter y(t) is called a proper solution. The set of proper
solutions of (1.1), (1.2), and (1.3) is further classified into the following four classes:

(i) the class of strongly increasing solutions consisting of all solutions y(t) such
that limt→∞p(t)y ′(t)=∞;

(ii) the class of weakly increasing solutions consisting of all solutions y(t) such
that limt→∞p(t)y ′(t)∈ (0,∞);
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(iii) the class of weakly decreasing solutions consisting of all solutions y(t) such
that limt→∞p(t)y ′(t)= 0;

(iv) the class of strongly decreasing solutions consisting of all solutions y(t) such
that limt→∞p(t)y ′(t)∈ (−∞,0).

Themain objective of this paper is to give explicit sufficient conditions for existence
of some or all of these classes of proper solutions of (1.1), (1.2), and (1.3) defined on
the given interval [0,∞).

2. Main results. We begin by giving a condition under which (1.1), (1.2), and (1.3)
have strongly decreasing solutions.

Theorem 2.1. Suppose that there exist constants c > 0 and I0 > 0 such that∫∞
0
f
(
t,−cP(t),− c

p(t)

)
dt <∞,

∞∑
k=1

Ik(·) < I0,
∞∑
k=1

p
(
tk
)
Jk
(
− c
p
(
tk
))<∞. (2.1)

Then, for any b ∈ (c,∞) and γ ∈ R, (1.1), (1.2), and (1.3) have a strongly decreasing
solution y(t) satisfying

y(0)= γ, lim
t→∞

p(t)y ′(t)=−b. (2.2)

Proof. From (2.1), (A2), and (A3), we have

∫∞
0
f
(
t,γ+I0−bP(t),− b

p(t)

)
dt <∞,

∞∑
k=1

p
(
tk
)
Jk
(
− b
p
(
tk
))<∞. (2.3)

Let Ω denote the Frechet space of all functions y(t) : [0,∞) → R, such that y(t) is
twice continuously differentiable for t �= tk, y(t−), y(t+), y ′(t−), y ′(t+) exist and
y(t−) = y(t), y ′(t−) = y ′(t) at t = tk, with the usual metric topology, and M be the
set of all y(t)∈Ω that satisfy the following inequalities:

γ−bP(t)−
∫ t

0

1
p(s)

∫∞
s
f
(
τ,γ+I0−bP(τ),− b

p(τ)

)
dτds

−P(t)
∑
t≤tk

p
(
tk
)
Jk
(
− b
p
(
tk
))− ∑

t≤tk
Ik
(
γ+I0−bP

(
tk
))≤y(t)≤ γ+I0−bP(t),

−b−
∫∞
t
f
(
s,γ+I0−bP(s),− b

p(s)

)
ds−

∑
t≤tk

p
(
tk
)
Jk
(
− b
p
(
tk
))≤p(t)y ′(t)≤−b, t≥0.

(2.4)

Clearly,M is a nonempty closed convex subset of Ω. Define the operator U :M →Ω by

Uy(t)= γ−bP(t)−
∫ t

0

1
p(s)

∫∞
s
f
(
τ,y(τ),y ′(τ)

)
dτds

−P(t)
∑
t≤tk

p
(
tk
)
Jk
(
y ′
(
tk
))+ ∑

tk<t
Ik
(
y
(
tk
))
, t ≥ 0.

(2.5)
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It is easy to verify that UM ⊂M , U is continuous and UM is compact. So, the Schauder-
Tychonoff fixed point theorem implies that U has a fixed point y in M . This fixed
point y(t) is a strongly decreasing solution of (1.1), (1.2), and (1.3) satisfying (2.2).
This completes the proof.

Example 2.2. Consider the equation

y ′′ = a(t)ey
′
, t ≠ tk, t ≥ 0,

y
(
t+k
)−y(tk)=mk

(
π
2
+arctany

(
tk
))
,

y ′
(
t+k
)−y ′(tk)= ln

(
1+Mkey

′(tk)
)
, k= 1,2, . . . .

(2.6)

If
∫∞
0 a(t)dt < ∞, and

∑∞
k=1mk < ∞ and

∑∞
k=1Mk < ∞, then for any b ∈ (c,∞) and

γ ∈R, (2.6) has a strongly decreasing solution

y(t)= γ−
∫ t

0
ln

[
eb+

∫∞
s
a(u)du+

∑
tk≥s

Mk

1+Mkey
′(tk)

]
ds+

∑
tk<t

mk

(
π
2
+arctany

(
tk
))

(2.7)
satisfying y(0)= γ and limt→∞y ′(t)=−b.

We now give a simple lemma which will be useful in the following discussions, and
the proof of the lemma is straightforward by induction and will be omitted.

Lemma 2.3. Together with (1.1), (1.2), and (1.3) we consider the equation

(
p(t)z′(t)

)′ = g
(
t,z(t),z′(t)

)
, t �= tk, t ≥ 0,

z
(
t+k
)−z(tk)= I∗k

(
z
(
tk
))
,

z′
(
t+k
)−z′(tk)= J∗k

(
z′
(
tk
))
, k= 1,2, . . . ,

(2.8)

where p(t) is as in (1.1), g : [0,∞)×R×R→ (0,∞) is continuous and nondecreasing in
the last two variables, I∗k ,J

∗
k are also continuous and nondecreasing from R to (0,∞),

and

f(t,u,v)≥ g(t,u,v), (t,u,v)∈ [0,∞)×R×R,
Ik
(
u
(
tk
))≥ I∗k

(
u
(
tk
))
,

Jk
(
u′
(
tk
))≥ J∗k

(
u′
(
tk
))
, k= 1,2, . . . .

(2.9)

Let y(t) and z(t) be solutions of (1.1), (1.2), (1.3), and (2.8), respectively, satisfying
z(a+) ≤ y(a+) and z′(a+) < y ′(a+). If y(t) is defined on [a,b), then z(t) exists on
[a,b) and satisfies z(t) < y(t) and z′(t) < y ′(t) for t ∈ (a,b).

Theorem 2.4. Suppose that (2.1) hold for all c > 0. Then for any γ ∈R, (1.1), (1.2),
and (1.3) have a unique weakly decreasing solution y(t) satisfying y(0)= γ.

Proof. We fix γ ∈R. Let yα(t) denote the solution of (1.1), (1.2), and (1.3) satisfy-
ing y(0)= γ and p(0)y ′(0)=α. We define the set A⊂R by

A= {α∈R :yα(t) is a strongly decreasing solution
}
, (2.10)



178 D. CHENG AND J. YAN

which is nonempty by Theorem 2.1. Now we show that A is an open set which is
bounded above. Let α ∈ A. If β < α, then by Lemma 2.3 (g ≡ f , I∗k ≡ Ik and J∗k ≡ Jk),
yβ(t) is a strongly decreasing solution, that is, β ∈ A. Suppose that β > α. Since
α ∈ A, there exists an l > 0 such that limn→∞p(t)y ′α = −l. We choose tl > 0 large
enough so that

∫∞
tl
f
(
t,γ+I0− l

2
P(t),− l

2p(t)

)
dt <

l
4
,

∑
tk>tl

p
(
tk
)
Jk
(
− l

2p
(
tk
))< l

4
. (2.11)

By the continuous dependence on initial conditions, for all β >α sufficiently close to
α, yβ(t) exist on [0, tl] and satisfy p(t)y ′β(t) <−l for t ∈ [0, tl]. It can be shown that
for such a β >α, yβ(t) can be extended to [0,∞), and satisfies

p(t)y ′β(t) <−
l
2

for t ≥ 0. (2.12)

In fact, if (2.12) fails, then there exists tm > t1 such that

p
(
tm
)
y ′β
(
tm
)=− l

2
, p(t)y ′β(t) <−

l
2

(2.13)

for t ∈ [0, tm) and t ≠ tk, tk ∈ [0, tm). Integrating (1.1) and using (2.11), (2.12), and
(2.13), we have

− l
2
= p

(
tm
)
y ′β
(
tm
)= p

(
tl
)
y ′β
(
tl
)+

∫ tm

tl
f
(
t,y(t),y ′(t)

)
dt+

∑
tl≤tk<tm

p
(
tk
)
Jk
(
y
(
tk
))

≤−l+
∫ tm

tl
f
(
t,γ+I0− l

2
P(t),− l

2p(t)

)
dt+

∑
tl≤tk<tm

p
(
tk
)
Jk
(
− l

2p(tk)

)

≤−l+
∫∞
tl
f
(
t,γ+I0− l

2
P(t),− l

2p(t)

)
dt+

∑
tl≤tk

p
(
tk
)
Jk
(
− l

2p(tk)

)

<−l+ l
4
+ l

4
=− l

2
.

(2.14)

This contradiction proves that (2.12) holds, and this implies β ∈ A. Thus A is open.
On the other hand, if α ≥ 0, then α �∈ A, so that A is bounded from above, we put
α∗ = supA. It is obvious that α∗ �∈A and α∗ ≤ 0.

We consider the solution yα∗(t). By the continuous dependence on the initial con-
ditions, yα∗(t) is not a singular solution, that is yα∗(t) exists on [0,∞) and satisfies
limn→∞p(t)y ′α∗(t) = η∗ ≥ 0 (η∗ may be ∞). The continuous dependence on initial
conditions precludes the possibility that η∗ is positive, and so we must have η∗ = 0.
This means that yα∗ is a weakly decreasing solution passing through (0,γ).

To prove the uniqueness of the weakly decreasing solution passing through (0,γ),
let y1(t) and y2(t) be two weakly decreasing solutions of (1.1), (1.2), and (1.3) such
that y1(0) = y2(0) = γ but y ′1(0) < y ′2(0). Lemma 2.3 (g ≡ f), I∗k ≡ Ik and J∗k ≡ Jk
implies that y1(t) ≤ y2(t) and y ′1(t) ≤ y ′2(t) for t ≥ 0. It follows from (1.1) that
[p(t)(y ′2(t)−y ′1(t))]′ = f(t,y2,y ′2)−f(t,y1,y ′1)≥ 0 for t ≥ 0, t ≠ tk. So p(t)y ′2(t)−
p(t)y ′1(t)≥ p(0)[y ′2(0)−y ′1(0)] > 0 for t ≥ 0. Since the left-hand side of this inequal-
ity tends to 0 as t→∞, we have a contradiction. This completes the proof.
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The following theorem gives a useful information about the asymptotic behavior of
weakly decreasing solutions of (1.1), (1.2), and (1.3).

Theorem 2.5. All weakly decreasing solutions of (1.1), (1.2), and (1.3), if any, are
either simultaneously bounded or simultaneously unbounded.

Proof. Let y1(t) and y2(t) be the weakly decreasing solutions satisfying y1(0)=
γ1 andy2(0)= γ2 with γ1 < γ2. It suffices to prove that the differencey2(t)−y1(t) is a
positive nonincreasing function on [0,∞). First we show that y2(t) > y1(t) for t ≥ 0.
Otherwise, there exists t∗ > 0 such that y1(t∗) = y2(t∗) and y ′1(t∗) > y ′2(t∗). We
choose t∗∗ > t∗ sufficiently close to t∗, such that y1(t∗∗) > y2(t∗∗) and fix it. By the
continuous dependence on initial data, a solution ỹ(t) of (1.1), (1.2), and (1.3) with
ỹ(0) = γ2 satisfies y2(t∗∗) < ỹ(t∗∗) < y1(t∗∗) and y ′2(t∗∗) < ỹ ′(t∗∗) < y ′1(t∗∗),
provided ỹ ′(0)−y ′2(0) > 0 is sufficiently small. By Lemma 2.3, ỹ(t) exists on [0,∞)
and satisfies y ′2(t) < ỹ ′(t) < y ′1(t), for t ≥ t∗∗, that is, p(t)y ′2(t) < p(t)ỹ ′(t) <
p(t)y ′1(t) for t ≥ t∗∗. This fact means that ỹ is a weakly decreasing solution passing
through (0,γ2), which contradicts the uniqueness of the weakly decreasing solution
passing through (0,γ2). Thus we obtain y2(t) > y1(t) for t ≥ 0. Next, if there exists
τ ≥ 0 such that y ′1(τ) < y ′2(τ), then the same argument as above leads us to the
conclusion that there is a weakly decreasing solution different from y2(t) passing
through (0,γ2). This again is a contradiction, and so we have y ′2(t)≤y ′1(t) for t ≥ 0.
It follows that y2(t)−y1(t) is a positive nonincreasing function for t ≥ 0, and the
proof is complete.

We now obtain conditions guaranteeing the existence of singular solutions of (1.1),
(1.2), and (1.3).

Theorem 2.6. Suppose
∑∞

k=1 Ik(·) < I0 and that there exists a positive continuous
function f∗(t,u,v) on [0,∞)×R×R which is nonincreasing in t and nondecreasing in
u and v , and satisfies f(t,u,v)≥ f∗(t,u,v) on [0,∞)×R×R. Moreover suppose that
p(t)P(t) is nondecreasing. We define

Fγ(t,u)=
∫ u

γ
f∗
(
t,s,

s−γ−I0
p(t)P(t)

)
ds for γ ∈R, t > 0, u > γ. (2.15)

If ∫∞ (
Fγ(t,u)

)−1/2du<∞ for any t > 0, (2.16)

then for every t0 ≥ 0, there exists a singular solution y(t) of (1.1), (1.2), and (1.3)
satisfying y(t0)= γ.

Proof. We fix t∗ > t0 ≥ 0. Letm andM be positive constants such thatm≤ p(t)≤
M for t ∈ [t0, t∗]. Choose δ= δ(γ,t0) > 0 large enough so that

M
∫ +∞
γ

(
2mFγ

(
t∗,u

)+δ2)−1/2du< t∗−t0. (2.17)

Now we show that the solution y(t) of (1.1), (1.2), and (1.3) satisfying the initial con-
ditions y(t0) = γ and p(t0)y ′(t0) ≥ δ cannot exist on [t0, t∗]. Suppose the contrary,
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then from (1.1) and the monotonicity of p(t)y ′(t), we see that

((
p(t)y ′(t)

)2)′ ≥ 2p(t)y ′(t)f∗
(
t,y(t),y ′(t)

)
, t ∈ [t0, t∗], t �= tk ∈

[
t0, t∗

]
. (2.18)

On the other hand, we have

y(t)=
∫ t

t0
y ′(s)ds+γ+

∑
tk<t

Ik
(
y
(
tk
))

=
∫ t

t0

p(s)y ′(s)
p(s)

ds+γ+
∑
tk<t

Ik
(
y
(
tk
))

≤ p(t)y ′(t)
∫ t

t0

1
p(s)

ds+γ+
∞∑
k=1

Ik
(
y
(
tk
))

≤ p(t)P(t)y ′(t)+γ+I0, t ∈ [t0, t∗],

(2.19)

that is,

y ′(t)≥ y(t)−γ−I0
p(t)P(t)

, t ∈ [t0, t∗]. (2.20)

Integrating (2.18) from t0 to t ∈ [t0, t∗] and using (2.20) and the monotonicity condi-
tion imposed on f∗, we obtain

(
p(t)y ′(t)

)2 ≥ 2m
∫ t

t0
y ′(s)f∗

(
s,y(s),

y(s)−γ−I0
p(s)P(s)

)
ds+δ2

+
∑
tk<t

p2(tk)[2y ′(tk)Jk(y ′(tk))+J2
k
(
y ′
(
tk
))]

≥ 2m
∫ t

t0
y ′(s)f∗

(
t,y(s),

y(s)−γ−I0
p(t)P(t)

)
ds+δ2

(2.21)

for t ∈ [t0, t∗], which is equivalent to

My ′(t)≥
(
2m

∫ y(t)

γ
f∗
(
t,s,

s−γ−I0
p(t)P(t)

)
ds+δ2

)1/2

, t ∈ [t0, t∗]. (2.22)

In view of the monotonicity of f∗, this implies

My ′(t)
(
2mFγ

(
t∗,y(t)

)+δ2)−1/2 ≥ 1, t ∈ [t0, t∗]. (2.23)

Integrating from t0 to t∗, and using (2.17) we obtain

t∗−t0 >M
∫∞
γ

(
2mFγ

(
t∗,u

)+δ2)−1/2du
≥M

∫ y(t∗)

γ

(
2mFγ

(
t∗,u

)+δ2)−1/2du≥ t∗−t0,
(2.24)

which is a contradiction. Thus this solution y(t) must be singular.
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We now turn to the problem of finding conditions for (1.1), (1.2), and (1.3) to have
weakly and strongly increasing solutions.

Theorem 2.7. Suppose that there exist constants c > 0 and I0 > 0 such that

∫∞
0
f
(
t,cP(t),

c
p(t)

)
dt <∞,

∞∑
k=1

Ik(·) < I0,
∞∑
k=1

p
(
tk
)
Jk
(

c
p
(
tk
))<∞. (2.25)

Then for any b ∈ (0,c) and any γ ∈ R, equations (1.1), (1.2), and (1.3) have a weakly
increasing solution y(t) satisfying

y(0)= γ, lim
t→∞

p(t)y ′(t)= b. (2.26)

Proof. We omit the proof as it is virtually the same as that of Theorem 2.1.

Theorem 2.8. Suppose that the assumptions of Theorem 2.6 are satisfied for any
γ ∈ R. If (2.25) hold for all c > 0, then for any γ ∈ R, (1.1), (1.2), and (1.3) have a
strongly increasing solution y(t) satisfying y(0)= γ.

Proof. Let γ ∈ R be fixed and let yα(t) be the solution of (1.1), (1.2), and (1.3)
satisfying y(0)= γ and p(0)y ′(0)=α. We define the sets A, B ⊂R by

A= {α∈R :yα(t) is a weakly increasing solution
}

B = {α∈R :yα(t) is a singular solution
}
.

(2.27)

By Theorems 2.6 and 2.7, we see that B �= ∅ and A �= ∅. Lemma 2.3 implies that α≤ β
for any α∈A and β∈ B. Similar to the proof of Theorem 2.4 we can show that A and
B are disjoint open subsets of R. We put α∗ = supA and β∗ = infB. It is easily seen
that α∗ �∈A, β∗ �∈ B, and α∗ ≤ β∗. Then, for any α∈ [α∗,β∗] (which may be reduced
to one point), yα(t) is a strongly increasing solution of (1.1), (1.2), and (1.3) satisfying
y(0)= γ. This completes the proof.
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