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Abstract. Using a special set x−1F , we give an equivalent condition for a filter to be
prime, and applying this result, we provide the prime filter theorem in lattice implication
algebras.
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1. Introduction. In order to research the logical system whose propositional value
is given in a lattice, Xu [3] proposed the concept of lattice implication algebras, and
discussed some of their properties. Xu and Qin [4] introduced the notion of filters and
implicative filters in a lattice implication algebra and investigated their properties.
The present author [1] gave an equivalent condition of a filter and provided some
equivalent conditions for a filter to be an implicative filter. Also, by using these results,
an extension property for implicative filter was constructed. In [2], Liu and Xu defined
the notion of prime filters and studied a decomposition theorem of lattice implication
algebras.
In this paper, we first give an equivalent condition for a filter to be prime by using a

special set x−1F and applying this result we provide the prime filter theorem in lattice
implication algebras.

2. Preliminaries. First of all, we recall a few notions and properties.
By a lattice implication algebra we mean a bounded lattice (L, ∨, ∧, 0, 1) with order-

reversing involution “′” and a binary operation “→” satisfying the following axioms:
(I1) x→ (y → z)=y → (x→ z),
(I2) x→ x = 1,
(I3) x→y =y ′ → x′,
(I4) x→y =y → x = 1⇒ x =y,
(I5) (x→y)→y = (y → x)→ x,
(L1) (x∨y)→ z = (x→ z)∧(y → z),
(L2) (x∧y)→ z = (x→ z)∨(y → z),

for all x,y,z ∈ L.
In what follows the binary operation “→” will be denoted by juxtaposition. We can

define a partial ordering “≤” on a lattice implication algebra L by x ≤y if and only if
xy = 1.
In a lattice implication algebra L, the following hold (see [3]):
(1) 0x = 1, 1x = x, and x1= 1.
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(2) x′ = x0.
(3) xy ≤ (yz)(xz).
(4) x∨y = (xy)y .
(5) x ≤y implies yz ≤ xz and zx ≤ zy .
(6) x ≤ (xy)y .
A subset F of a lattice implication algebra L is called a filter of L if it satisfies:
(F1) 1∈ F ,
(F2) x ∈ F and xy ∈ F imply y ∈ F ,

for all x,y ∈ L.
Any filter F of a lattice implication algebra L has the property: if x ≤ y and x ∈ F ,

then y ∈ F .

3. The prime filter theorem. In the rest of this paper, the letter L will be reserved,
so far as is possible, for a lattice implication algebra.
Note that for a subset F of L,

〈F〉 = {x ∈ L | a1
(
a2 ···

(
anx

)···)= 1; a1,a2, . . . ,an ∈ F
}

(3.1)

is the smallest filter containing F and is called the filter generated by F (see [4]).
For any nonnegative integer n, we define n(x)y recursively as follows: 0(x)y =y ,

1(x)y = xy , and (n+1)(x)y = x(n(x)y) for all x,y ∈ L. Using (I1) and (1) we know
that y(n(x)y)= 1, that is, y ≤n(x)y for all x,y ∈ L.

Proposition 3.1. Let F be a filter of L and let x ∈ L. Then
〈
F∪{x}〉= {y ∈ L |n(x)y ∈ F for some nonnegative integer n

}
. (3.2)

Proof. Let y ∈ 〈F∪{x}〉. Then

m(x)
(
a1
(
a2 ···

(
any

)···))= 1 (3.3)

for some a1,a2, . . . ,an ∈ F and some nonnegative integerm. Using (I1) repeatedly, we
know that

a1
(
a2 ···

(
an
(
m(x)y

))···)= 1. (3.4)

It follows from (F2) thatm(x)y ∈ F so that

〈
F∪{x}〉⊆ {y ∈ L |n(x)y ∈ F for some nonnegative integer n

}
. (3.5)

Conversely, assume that n(x)y ∈ F for some nonnegative integer n. It follows from
F ⊆ 〈F∪{x}〉 that x((n−1)(x)y)=n(x)y ∈ 〈F∪{x}〉. Since x ∈ 〈F∪{x}〉, we have
(n−1)(x)y ∈ 〈F ∪{x}〉 by (F2). Repeating this process we know that y = 0(x)y ∈
〈F∪{x}〉. Hence

{
y ∈ L |n(x)y ∈ F for some nonnegative integer n

}⊆ 〈F∪{x}〉, (3.6)

This completes the proof.
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Definition 3.2. For any nonempty subset F of L and x ∈ L, we define

x−1F := {y ∈ L | x∨y ∈ F}. (3.7)

Note that if F is a filter of L, then 1∈ x−1F .
Proposition 3.3. If F is a filter of L, then x−1F is a filter of L containing F .

Proof. Let y ∈ x−1F and yz ∈ x−1F . Then x∨y ∈ F and x∨(yz)∈ F . Now

(x∨y)(x∨z)= ((yx)x)((zx)x)≥ (zx)(yx)≥yz (3.8)

and (x ∨y)(x ∨ z) ≥ x ∨ z ≥ x. It follows that x ∨ (yz) ≤ (x ∨y)(x ∨ z) so that
(x∨y)(x∨z) ∈ F . Using the fact that F is a filter and x∨y ∈ F , we get x∨z ∈ F ,
that is, z ∈ x−1F . This shows that x−1F is a filter of L. Let y ∈ F . Since y ≤ x∨y ,
it follows that x ∨ y ∈ F , that is, y ∈ x−1F . Hence F ⊆ x−1F , this completes
the proof.

Proposition 3.4. Let F and G be filters of L. Then
(i) x−1F = L if and only if x ∈ F ,
(ii) x ≤y in L ⇒ x−1F ⊆y−1F ,
(iii) F ⊆G ⇒ x−1F ⊆ x−1G,
(iv) x−1(F∩G)= x−1F∩x−1G and x−1(F∪G)= x−1F∪x−1G,
(v) (x∨y)−1F = x−1(y−1F),
(vi) (x∧y)−1F ⊆ x−1F∩y−1F ,

for all x,y ∈ L.
Proof. (i) If x ∈ F , then x∨y ∈ F for all y ∈ L, that is, y ∈ x−1F . Hence x−1F = L.

Conversely, assume that x−1F = L. Then x∨y ∈ F for all y ∈ L, in particular x =
x∨x ∈ F .
(ii) Assume that x ≤ y in L and let z ∈ x−1F . Then x∨z ∈ F and x∨z ≤ y∨z. It

follows that y∨z ∈ F , that is, z ∈y−1F .
(iii)–(vi) Clear.

Definition 3.5 (see [2, Definition 4]). A proper filter P of L is said to be prime if
for every x,y ∈ L, x∨y ∈ P implies x ∈ P or y ∈ P .

Proposition 3.6. Let P and F be filters of L such that F ⊆ P . If P is prime, then
x−1F ⊆ P for all x ∈ L\P.

Proof. Let z ∈ x−1F for all x ∈ L \ P . Then x ∨ z ∈ F ⊆ P . Since P is prime, it
follows that z ∈ P because x ∉ P . Hence x−1F ⊆ P.

Proposition 3.7. If P is a prime filter of L, then L\P is∨-closed, that is, x∨y ∈ L\P
whenever x ∈ L\P and y ∈ L\P .

Proof. The proof is straightforward.

The following theorem gives a characterization of prime filters.

Theorem 3.8. A filter P of L is prime if and only if x−1P = P for all x ∈ L\P .
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Proof. Suppose P is a prime filter of L and let x ∈ L\P . The inclusion P ⊆ x−1P
follows from Proposition 3.3. Let y ∈ x−1P . Then x∨y ∈ P and so y ∈ P because P
is prime and x ∉ P . This proves that x−1P = P . Conversely, assume that x−1P = P for
all x ∈ L\P . Let y∨z ∈ P and z ∉ P . It follows from the hypothesis that z−1P = P so
that y ∈ z−1P = P . This shows that P is prime.

Proposition 3.9. If F is a filter of L, then F = x−1F∩〈F∪{x}〉 for all x ∈ L\F .
Proof. Clearly, F ⊆ x−1F∩〈F∪{x}〉. Let y ∈ x−1F∩〈F∪{x}〉. Then x∨y ∈ F and

y ∈ 〈F∪{x}〉. It follows from Proposition 3.1 that there exists a nonnegative integer
n such that n(x)y ∈ F . Now

n(x)y = x((n−1)(x)y)= (x∨(n−1)(x)y)(n−1)(x)y. (3.9)

Since y ≤ (n−1)(x)y , therefore x∨y ≤ x∨(n−1)(x)y and so x∨(n−1)(x)y ∈ F .
From n(x)y = (x ∨ (n− 1)(x)y)(n− 1)(x)y ∈ F it follows that (n− 1)(x)y ∈ F .
Continuing this process, we get y ∈ F and, consequently, x−1F ∩〈F ∪{x}〉 ⊆ F . This
completes the proof.

Finally, we provide the prime filter theorem. This is a generalization of Liu and Xu’s
result [2, Theorem 4] because every lattice ideal is necessarily ∨-closed.

Theorem 3.10 (prime filter theorem). Let F be a filter of L and S a ∨-closed subset
of L such that F ∩S = ∅. Then there exists a prime filter P of L such that F ⊆ P and
P∩S =∅.

Proof. The existence of a filter P being the maximal element of the family of all
filters that contain F and have empty intersectionwith S follows from an application of
Zorn’s lemma. We now prove that P is prime. Suppose P is not prime. By Theorem 3.8,
there exists an element x ∈ L \P such that x−1P �= P . Now P is properly contained
in both x−1P and 〈P∪{x}〉; therefore the maximality of P implies that x−1P∩S �= ∅
and 〈P ∪{x}〉∩S �= ∅. Let y ∈ x−1P ∩S and z ∈ 〈P ∪{x}〉∩S. Then y ∈ x−1P and
z ∈ 〈P∪{x}〉 and hencey∨z ∈ x−1P∩〈P∪{x}〉 = P by Proposition 3.9. Alsoy∨z ∈ S
because S is ∨-closed. Consequently, y∨z ∈ P∩S and so P∩S �= ∅, a contradiction.
This completes the proof.
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