THE PRIME FILTER THEOREM OF LATTICE IMPLICATION ALGEBRAS

YOUNG BAE JUN

(Received 23 March 2000)

ABSTRACT. Using a special set $x^{-1}F$, we give an equivalent condition for a filter to be prime, and applying this result, we provide the prime filter theorem in lattice implication algebras.

2000 Mathematics Subject Classification. Primary 03G10, 06B10, 54E15.

1. Introduction. In order to research the logical system whose propositional value is given in a lattice, Xu [3] proposed the concept of lattice implication algebras, and discussed some of their properties. Xu and Qin [4] introduced the notion of filters and implicative filters in a lattice implication algebra and investigated their properties. The present author [1] gave an equivalent condition of a filter and provided some equivalent conditions for a filter to be an implicative filter. Also, by using these results, an extension property for implicative filter was constructed. In [2], Liu and Xu defined the notion of prime filters and studied a decomposition theorem of lattice implication algebras.

In this paper, we first give an equivalent condition for a filter to be prime by using a special set $x^{-1}F$ and applying this result we provide the prime filter theorem in lattice implication algebras.

2. Preliminaries. First of all, we recall a few notions and properties.

By a *lattice implication algebra* we mean a bounded lattice $(L, \lor, \land, 0, 1)$ with orderreversing involution "/" and a binary operation " \rightarrow " satisfying the following axioms:

```
(I1) x \to (y \to z) = y \to (x \to z),
```

```
(I2) x \rightarrow x = 1,
(I3) x \rightarrow y = y' \rightarrow x',
```

- (I4) $x \to y = y \to x = 1 \Rightarrow x = y$,
- (I5) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$,
- (L1) $(x \lor y) \to z = (x \to z) \land (y \to z),$
- (L2) $(x \land \gamma) \rightarrow z = (x \rightarrow z) \lor (\gamma \rightarrow z),$
- for all $x, y, z \in L$.

In what follows the binary operation " \rightarrow " will be denoted by juxtaposition. We can define a partial ordering " \leq " on a lattice implication algebra *L* by $x \leq y$ if and only if xy = 1.

In a lattice implication algebra *L*, the following hold (see [3]):

(1) 0x = 1, 1x = x, and x1 = 1.

(2) x' = x0. (3) $xy \le (yz)(xz)$. (4) $x \lor y = (xy)y$. (5) $x \le y$ implies $yz \le xz$ and $zx \le zy$. (6) $x \le (xy)y$. A subset *E* of a lattice implication algebra *L*.

A subset F of a lattice implication algebra L is called a *filter* of L if it satisfies:

(F1)
$$1 \in F$$
,

(F2) $x \in F$ and $xy \in F$ imply $y \in F$,

for all $x, y \in L$.

Any filter *F* of a lattice implication algebra *L* has the property: if $x \le y$ and $x \in F$, then $y \in F$.

3. The prime filter theorem. In the rest of this paper, the letter *L* will be reserved, so far as is possible, for a lattice implication algebra.

Note that for a subset *F* of *L*,

$$\langle F \rangle = \{ x \in L \mid a_1(a_2 \cdots (a_n x) \cdots) = 1; a_1, a_2, \dots, a_n \in F \}$$
(3.1)

is the smallest filter containing F and is called the *filter generated* by F (see [4]).

For any nonnegative integer n, we define n(x)y recursively as follows: 0(x)y = y, 1(x)y = xy, and (n+1)(x)y = x(n(x)y) for all $x, y \in L$. Using (I1) and (1) we know that y(n(x)y) = 1, that is, $y \le n(x)y$ for all $x, y \in L$.

PROPOSITION 3.1. Let *F* be a filter of *L* and let $x \in L$. Then

$$\langle F \cup \{x\} \rangle = \{ y \in L \mid n(x)y \in F \text{ for some nonnegative integer } n \}.$$
 (3.2)

PROOF. Let $y \in \langle F \cup \{x\} \rangle$. Then

$$m(x)(a_1(a_2\cdots(a_ny)\cdots)) = 1$$
 (3.3)

for some $a_1, a_2, ..., a_n \in F$ and some nonnegative integer *m*. Using (I1) repeatedly, we know that

$$a_1(a_2\cdots(a_n(m(x)y))\cdots) = 1.$$
 (3.4)

It follows from (F2) that $m(x)y \in F$ so that

$$\langle F \cup \{x\} \rangle \subseteq \{y \in L \mid n(x)y \in F \text{ for some nonnegative integer } n\}.$$
 (3.5)

Conversely, assume that $n(x)y \in F$ for some nonnegative integer n. It follows from $F \subseteq \langle F \cup \{x\} \rangle$ that $x((n-1)(x)y) = n(x)y \in \langle F \cup \{x\} \rangle$. Since $x \in \langle F \cup \{x\} \rangle$, we have $(n-1)(x)y \in \langle F \cup \{x\} \rangle$ by (F2). Repeating this process we know that $y = 0(x)y \in \langle F \cup \{x\} \rangle$. Hence

$$\{y \in L \mid n(x)y \in F \text{ for some nonnegative integer } n\} \subseteq \langle F \cup \{x\} \rangle,$$
 (3.6)

This completes the proof.

116

DEFINITION 3.2. For any nonempty subset *F* of *L* and $x \in L$, we define

$$x^{-1}F := \{ y \in L \mid x \lor y \in F \}.$$
(3.7)

Note that if *F* is a filter of *L*, then $1 \in x^{-1}F$.

PROPOSITION 3.3. If *F* is a filter of *L*, then $x^{-1}F$ is a filter of *L* containing *F*.

PROOF. Let $y \in x^{-1}F$ and $yz \in x^{-1}F$. Then $x \lor y \in F$ and $x \lor (yz) \in F$. Now

$$(x \lor y)(x \lor z) = ((yx)x)((zx)x) \ge (zx)(yx) \ge yz \tag{3.8}$$

and $(x \lor y)(x \lor z) \ge x \lor z \ge x$. It follows that $x \lor (yz) \le (x \lor y)(x \lor z)$ so that $(x \lor y)(x \lor z) \in F$. Using the fact that *F* is a filter and $x \lor y \in F$, we get $x \lor z \in F$, that is, $z \in x^{-1}F$. This shows that $x^{-1}F$ is a filter of *L*. Let $y \in F$. Since $y \le x \lor y$, it follows that $x \lor y \in F$, that is, $y \in x^{-1}F$. Hence $F \subseteq x^{-1}F$, this completes the proof.

PROPOSITION 3.4. Let F and G be filters of L. Then

- (i) $x^{-1}F = L$ if and only if $x \in F$,
- (ii) $x \leq \gamma$ in $L \Rightarrow x^{-1}F \subseteq \gamma^{-1}F$,
- (iii) $F \subseteq G \Rightarrow x^{-1}F \subseteq x^{-1}G$,
- (iv) $x^{-1}(F \cap G) = x^{-1}F \cap x^{-1}G$ and $x^{-1}(F \cup G) = x^{-1}F \cup x^{-1}G$,
- (v) $(x \lor y)^{-1}F = x^{-1}(y^{-1}F)$,
- (vi) $(x \wedge y)^{-1}F \subseteq x^{-1}F \cap y^{-1}F$,

for all $x, y \in L$.

PROOF. (i) If $x \in F$, then $x \lor y \in F$ for all $y \in L$, that is, $y \in x^{-1}F$. Hence $x^{-1}F = L$. Conversely, assume that $x^{-1}F = L$. Then $x \lor y \in F$ for all $y \in L$, in particular $x = x \lor x \in F$.

(ii) Assume that $x \le y$ in *L* and let $z \in x^{-1}F$. Then $x \lor z \in F$ and $x \lor z \le y \lor z$. It follows that $y \lor z \in F$, that is, $z \in y^{-1}F$.

(iii)-(vi) Clear.

DEFINITION 3.5 (see [2, Definition 4]). A proper filter *P* of *L* is said to be *prime* if for every $x, y \in L, x \lor y \in P$ implies $x \in P$ or $y \in P$.

PROPOSITION 3.6. Let *P* and *F* be filters of *L* such that $F \subseteq P$. If *P* is prime, then $x^{-1}F \subseteq P$ for all $x \in L \setminus P$.

PROOF. Let $z \in x^{-1}F$ for all $x \in L \setminus P$. Then $x \vee z \in F \subseteq P$. Since *P* is prime, it follows that $z \in P$ because $x \notin P$. Hence $x^{-1}F \subseteq P$.

PROPOSITION 3.7. *If P is a prime filter of L*, *then* $L \setminus P$ *is* \lor *-closed, that is,* $x \lor y \in L \setminus P$ *whenever* $x \in L \setminus P$ *and* $y \in L \setminus P$.

PROOF. The proof is straightforward.

The following theorem gives a characterization of prime filters.

THEOREM 3.8. A filter *P* of *L* is prime if and only if $x^{-1}P = P$ for all $x \in L \setminus P$.

117

YOUNG BAE JUN

PROOF. Suppose *P* is a prime filter of *L* and let $x \in L \setminus P$. The inclusion $P \subseteq x^{-1}P$ follows from Proposition 3.3. Let $y \in x^{-1}P$. Then $x \lor y \in P$ and so $y \in P$ because *P* is prime and $x \notin P$. This proves that $x^{-1}P = P$. Conversely, assume that $x^{-1}P = P$ for all $x \in L \setminus P$. Let $y \lor z \in P$ and $z \notin P$. It follows from the hypothesis that $z^{-1}P = P$ so that $y \in z^{-1}P = P$. This shows that *P* is prime.

PROPOSITION 3.9. If *F* is a filter of *L*, then $F = x^{-1}F \cap \langle F \cup \{x\} \rangle$ for all $x \in L \setminus F$.

PROOF. Clearly, $F \subseteq x^{-1}F \cap \langle F \cup \{x\} \rangle$. Let $y \in x^{-1}F \cap \langle F \cup \{x\} \rangle$. Then $x \lor y \in F$ and $y \in \langle F \cup \{x\} \rangle$. It follows from Proposition 3.1 that there exists a nonnegative integer n such that $n(x)y \in F$. Now

$$n(x)y = x((n-1)(x)y) = (x \lor (n-1)(x)y)(n-1)(x)y.$$
(3.9)

Since $y \le (n-1)(x)y$, therefore $x \lor y \le x \lor (n-1)(x)y$ and so $x \lor (n-1)(x)y \in F$. From $n(x)y = (x \lor (n-1)(x)y)(n-1)(x)y \in F$ it follows that $(n-1)(x)y \in F$. Continuing this process, we get $y \in F$ and, consequently, $x^{-1}F \cap \langle F \cup \{x\} \rangle \subseteq F$. This completes the proof.

Finally, we provide the prime filter theorem. This is a generalization of Liu and Xu's result [2, Theorem 4] because every lattice ideal is necessarily \lor -closed.

THEOREM 3.10 (prime filter theorem). Let *F* be a filter of *L* and *S* a \lor -closed subset of *L* such that $F \cap S = \emptyset$. Then there exists a prime filter *P* of *L* such that $F \subseteq P$ and $P \cap S = \emptyset$.

PROOF. The existence of a filter *P* being the maximal element of the family of all filters that contain *F* and have empty intersection with *S* follows from an application of Zorn's lemma. We now prove that *P* is prime. Suppose *P* is not prime. By Theorem 3.8, there exists an element $x \in L \setminus P$ such that $x^{-1}P \neq P$. Now *P* is properly contained in both $x^{-1}P$ and $\langle P \cup \{x\} \rangle$; therefore the maximality of *P* implies that $x^{-1}P \cap S \neq \emptyset$ and $\langle P \cup \{x\} \rangle \cap S \neq \emptyset$. Let $y \in x^{-1}P \cap S$ and $z \in \langle P \cup \{x\} \rangle \cap S$. Then $y \in x^{-1}P$ and $z \in \langle P \cup \{x\} \rangle$ and hence $y \lor z \in x^{-1}P \cap \langle P \cup \{x\} \rangle = P$ by Proposition 3.9. Also $y \lor z \in S$ because *S* is \lor -closed. Consequently, $y \lor z \in P \cap S$ and so $P \cap S \neq \emptyset$, a contradiction. This completes the proof.

REFERENCES

- Y. B. Jun, Implicative filters of lattice implication algebras, Bull. Korean Math. Soc. 34 (1997), no. 2, 193–198. MR 98g:03142. Zbl 876.03035.
- J. Liu and Y. Xu, On prime filters and decomposition theorem of lattice implication algebras, J. Fuzzy Math. 6 (1998), no. 4, 1001–1008. MR 2000b:03228. Zbl 920.03064.
- [3] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. (1993), no. 1, 20-27. Zbl 784.03035.
- Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), no. 2, 251–260. MR 94b:06016. Zbl 787.06009.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju $660\mathchar`201$, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr

118