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ABSTRACT. Our aim is to establish the topological conjugacy between piecewise monotone
expansive interval maps and piecewise linear maps. First, we are concerned with maps
satisfying a Markov condition and next with those admitting a certain countable partition.
Finally, we compute the topological entropy in the Markov case.

2000 Mathematics Subject Classification. Primary 37B10, 37E05, 26A18.

1. Introduction and preliminaries. Let I be a closed interval in R, which is usually
taken to be the interval [0,1], and f: I — I a mapping. The iterates of f are the maps
f" defined inductively by f° = idg, f! = f, f**! = f"o f. The (forward or positive)
orbit of a point x € I is the set O(x) = {f"(x): n € N}. The w-Ilimit set of x is
the set of the limit points of O(x) and is denoted by w(x). Two maps f:I — I and
g:J — J (J aclosed interval in R) are called topologically conjugate if there exists a
homeomorphism h : I — J such that ho f = goh.

The study of topological conjugacies has commenced with Poincaré in the 1880s. He
considered homeomorphisms f:S! — S! of the unit circle S! = R/Z with no periodic
points and showed that there exist a rotation R : S' — S! and a continuous, surjective
and monotone map h: S' — S! such that ho f = Roh, thatis, f and R are topologically
semiconjugate. Similar results for piecewise monotone interval maps f were proved
later by Parry [10] and Milnor and Thurston [9]. According to them, if f: 1 — I is
continuous, piecewise monotone with positive topological entropy h(f), then there
exists a piecewise linear map T :[0,1] — [0, 1] with slope =exp(h(f)) such that f,T
are topologically semiconjugate. f and T become topologically conjugate, if there are
no attracting periodic points and no wandering intervals for f. The nonexistence of
wandering intervals has been proved for a large class of functions satisfying some
mild smoothness conditions (see [3, 6, 7, 8]).

In this paper, we consider the family .t of functions which are piecewise monotone
(but not necessarily continuous) and expansive. Particularly, f : [0,1] — [0, 1] belongs
to the family Jl if there exists a partition 0 = ag < a1 < --- <ay =1 (r = 2) of
[0,1] such that f | [@i-1,a;] (i =1,2,...,7)is a monotone C! function and satisfy the
following Markov condition: for every i = 1,2,...,7, there exist p(i),q(i) € {0,1,...,7}
with p(i) < q(i) such that f(ai-1,ai) = (apq),aq). Furthermore, we assume that
there is A > 1 such that |f'(x)| = A, for almost every x € [0,1], in which case, f
is called expansive. Our aim is to show that every f € .l is topologically conjugate
to a map T which is linear on each interval [(i—1)/7,i/v] (i = 1,2,...,7). Next, we
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consider the class Jl. where [0,1] accepts a countable partition accumulating to 1.
Finally, in the last section, we compute the topological entropy for continuous maps
in JL.

NOTATION. If J C[0,1]is an interval, we denote |J| its length.

2. Topological conjugacies for maps in J/l. In this section, we study the topological
conjugacies for maps f € M.If 0 =ag < a; < - -+ < a, =1 is the partition correspond-
ing to f, we say that f is of order v. The points of the partition are called critical
points of f. We denote by I,...,I, the intervals of the partition, thatis, I; = (aj-1,a;).
We assume that these intervals are maximal in the sense that if I is an interval which
strictly contains one of them, then f | I is neither continuous nor monotone. Also,
we denote by f; the restriction of f to I;. Finally, we denote by Fj, j,...; the com-
position fﬁl o ng on-- ofj;cl. Note that Fj, j,...j, is not necessarily defined for every
(finite) sequence jy jo - - - jk. Moreover, Fj, ;,...j, (x) is the unique point y € I}, such that
f)elj,,....f*1 () €lj and f*(y) = x.

An openinterval J C [0,1]is called a branch of f™if f™ | J is continuous, monotone
and J is maximal with these properties. The set of branches of f" is denoted by B,, (f).
Moreover, we define the sets

r n-1
n(H=U U fia;), n=12,..,
e @.1)
¢f)=UJ U S (a)).
j=0i=0

Frequently, we write ¢,, and % instead of ¢,,(f) and 6(f).

In what follows, we introduce some notions from symbolic dynamics. To each point
x of 46, there corresponds a sequence of symbols which is related with the order of
the points of O (x).

DEFINITION 2.1. The itinerary of x € € withrespectto f € / is a sequence i, (x) =
{in(x)} -0, Where
Js if f"(x) elj,
in(x) = . (2.2)
" 2IFL e prixy —a,.
An interesting notion in symbolic dynamics is the shift map o:if x = {xn}5_¢, then
o (x) =y, where ) = {xy};;_;. Inductively, we have ok(x) = {xn}y_x- To each f el
of order 7, we associate a subset of {1/2,1,3/2,...,7,(2¥ +1)/2}N. We describe this
set in the following definition.

DEFINITION 2.2. Let f € Jl with partition 0 = ag < a; < - - - < a, = 1. We define the
set of sequences X(f) = {a:a = {xn}n-o} With entries from the set {1/2,1,3/2,...,7,
(2r +1)/2}, which satisfy the following conditions:

(i) Let a = {x,} € Z(f). Then there exists an entry x,, of a of the form (2k+1)/2,
where k = 0,1,...,7r. Furthermore, if x is the first entry of a with this property, then
oN(a) = is(ax).
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(i) fn<N-1and x,, = j, then p(j) +1 < xp11 < q(j).

It is possible to define an order on the set i (6) which is consistent with the natural
order of real numbers. Two sequences of symbols x = {x,};_o and ¥ = {yn};_, be-
longing to {1/2,1,3/2,...,7,(2r +1)/2}N are called to have discrepancy n if x; = y;,
fori=0,1,...,n—1, and x;, # Y. If the itineraries of two points of ¢ have discrep-
ancy n, then the first n points of their orbits are visiting simultaneously the same
intervals of By (f). Moreover, we define 1/2<1<3/2<---<v < (2r+1)/2.

DEFINITION 2.3. Let f € A and x,y € € with x + . We assume that itineraries
ir(x) and i, () have discrepancy n and that f is decreasing in k common intervals.
(i) When k is even, then is(x) <is(y) if and only if i, (x) < i, ().
(i) When k is odd, then iy (x) <is(y) if and only if i, () < in(x).

LEMMA 2.4. Let f € A be of orderv and let x,y € 6 withx # y. Thenis(x) <is(y)
if and only if x < y.

PROOF. We assume that itineraries i £(x) and i () have discrepancy n. That is,
ix(x) =ix(y) = jx, for k =0,1,...,n—1, and i, (x) * i, (). We claim that jo, ji,...,
Jn-1 are not of the form (2s+ 1)/2. To prove this, we assume the contrary, whence
;'f(x) = ;'f(y), which is a contradiction, since i,(x) # i,(y). From Definition 2.1,
x,y belong to Ij, and successively visit the intervals I;,...,I;,_,. So, we can write
X =Fjpji-ju (f(x)) and y = Fjyj,...j,_, (f™()). We assume that f is decreasing in
k intervals among Ij,,1;,,...,1;,_,. There are two cases.

(i) When k is even, then Fj;,...;,_, is increasing. Assume thatis(x) <is()), then
from Definition 2.3 we have i,(x) < i,(y). This means that f"(x) < f"(y) and,
hence, x = Fjgjy-.ju 1 (f" (%)) <y = Fjgjyeejur (F ().

(ii) When k is odd, then Fjyj,...j,_, is decreasing. Assume that ip(x) <ip(y), then
from Definition 2.3 we have i,(y) < i,(x). This means that f"(x) > f"(y) and,
hence, x = Fjyj,...5,_; (f(x)) <y = Fjoji-jp (). O

LEMMA 2.5. Let f € M be of order v. The map iy : € — 3(f) is a bijection.

PROOE. Letx,y € €withir(x)=1ir(¥).Let k,m be the minimal integers for which
f¥(x), f™(y) are critical points of f. Assume that k = m (let k < m). Since f*(x) is a
critical point, then f**1(x) = 0 or 1, and, so, ix+1(x) = 1/2 or (2¥ +1)/2. On the other
hand, ix(y) = 1,2,...,7, and, hence, ix+1(y) = 1/2 and ix+1(y) = (2v +1)/2, which
is a contradiction, since ig.1(x) = ix+1(y). So, k = m. Furthermore, we observe that
fR(x) = fX(y), since ix(x) = ix(y) and it is of the form (2j + 1)/2. Consequently,
fRx) = fR(y) = aj.

Assume that i, (x) = in(y) = jn € N, for n = 0,1,...,k — 1. From Definition 2.1,
x,y belong to Ij, and successively visit the intervals Ij,...,I; ,. So, we can write
X = Fjjioje, (F¥(x)) and y = Fjyj,...ji , (f¥()). Since f*(x) = f*(»), we have
x = . Thus, i, is injective.

Let a = {xy,} € 2(f). We shall show that there exists an x € 6 such that ir(x) =a.
From Definition 2.2, an entry of the sequence a is of the form (2k+1)/2. Let x,, be the
first entry with this property. Then x = Fyx,...x,_, (ax) satisfies the desired property.

O
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PROPOSITION 2.6. Let f € /M be of order v. Then 6 is dence in [0,1].

PROOF. Let J c [0,1] be an open interval such that J N = &. First, we show that
fr(J)ne =@, for n € N. We assume, in the contrary, that there exists x € f*(J) N,
then there is y € J such that x = f"(y). But, f™(x) = ay, for some m € N and
k=0,1,2,...,7, since x € €. So, f™*"(y) = f™(x) = ax, that is, v € 6, which is a
contradiction, since jn¢ = &.

As f*(J)n% = @, for n € N, it turns out that f is monotone and C! on each interval
JEO)F2 D S

We prove by induction that |f"(J)| = A"|J[, for n > 1. From the mean value the-
orem and since f|J is monotone, we have | f(J)|/|J| = |f'(a)l, for some a € j. But,
|f'(a)| = A and, hence | £(J)| = A|J|. We assume that the claim is true for k < n. From
the mean value theorem and since f|f*~1(J) is monotone, we have | f™*(J)|/|f* 1 (J)]
= |f'(a1)] = A, for some a; € f*1(J). From the induction assumption, we have
|7 1(J)| = A*"1|J|. Combining the last two inequalities, we have | f*(J)| = A"|]].

Thus, for some n € N, A"|J| > 1, which is a contradiction, since | f*(J)| < 1. O

THEOREM 2.7. Let f € M be of order v with partition 0 =ag<a; <---<a, =1.
We consider the map T € M with partition 0 < 1/r <2/r <--- < (r —1)/r <1 which
is linear in each interval [(i—1)/v,i/v]1 and T((i—1)/7,i/v) = (p(i)/7r,q(i) /7). Fur-
thermore, T|[(i—1)/7,i/7] is of the same monotonicity type with f|lai-1,a;] and it
is continuous, from the right or from the left at i/v, when f is continuous, from the
right or from the left at a;, respectively. Then f and T are topologically conjugate.
(Figure 2.1)

0.4

FIGURE 2.1.

PROOF. From Definition 2.2, we have 3(f) = 3(T). With this observation and since
if and i are bijections (Lemma 2.5), we can define a correspondence h : €(f) —
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%(T), which is an order preserving bijection and such that ho f = T o h. For x €
%(f), we define h(x) to be the unique element of ¢(T), for which ir(x) =ir(h(x)).
Equivalently, h = 1’}1 ois. But since iy and iy are bijections, we have that h is also
a bijection. From Lemma 2.4, i, and iy are order preserving maps and, so, the same
holds for h.

Let x € 6(f). We shall show that ho f(x) and T o h(x) have the same itinerary with
respect to T. Indeed,

ir(h(f(x))) =ip(f(x)) = o(if(x)). (2.3)
On the other hand,

ir(T(h(x))) = o (ir(h(x))) = 0 (if(x)). (2.4)

Since iy is an injection, we have that ho f(x) = Toh(x).
Since €(f) and 6(T) are dense in [0,1] (Proposition 2.6), h can extend to a homeo-
morphism h:[0,1] — [0,1] such thatflof=Tofl. O

3. Topological conjugacies for maps in .il.,. In the previous sections, we had stud-
ied functions with a finite partition. Here we study a special class of functions with
countable partition. Some modifications are necessary.

DEFINITION 3.1. A map f :[0,1] — [0,1] belongs to the class of functions .l if
there exists a sequence of real numbers {a,},_o with 0 = ap <a; <az < --- and
lim,, .. a, = 1 such that:

(i) fis C! and monotone on each interval [a;_i,a;] of the partition.
(ii) For every i € N*, there exist unique p(i),q(i) € N such that f(a;_1,a;) =
(Ap(i), Aq(i)-
(iii) There exists A > 1 such that | f'(x)| = A, for every x # a;.

In this case, ¢(f) = U7, Uz, f ' (a;).

DEFINITION 3.2. Let f € Jl, with partition 0 = ag < a; < a» < --- < 1. We define
the set of sequences 3. (f) = {a:a = {xn}y_o} with entries from {1/2,1,3/2,...},
which satisfy the following conditions:

(i) Leta = {x,} € X (f). Then there exists an entry x, of a, of the form (2k+1)/2,
where k = 0,1,.... Furthermore, if xy is the first entry of a with this property, then
oN(a) = is(ax).

(ii) fn<N-1and x, =j,then p(j)+1 < xpn+1 < q(j).

THEOREM 3.3. Let f € M with partition0 = ag < a, < az < - -+ < 1. We consider the
map T € Mo with partition0 <1/2 <2/3 <3/4 < --- <1 which is linear in each inter-
val [(i—-1)/i,i/(i+1)] and T((i-1)/i,i/(i+1)) = (p(1)/(p(i) +1),q(1)/(q(i) +1)).
Furthermore, T | [(i—1)/1,i/(i+1)] is of the same monotonicity type with f | [ai-1,ai]
and it is continuous, from the right or from the left at i/(i+ 1), when f is continuous,
from the right or from the left at a;, respectively. Then f and T are topologically con-
Jjugate.

PROOF. The proof of this theorem is the same as the proof of Theorem 2.7. O
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4. Computation of topological entropy for continuous Markov maps. Topologi-
cal entropy is a measure of the dynamical complexity of a map and it is a topological
invariant. There is an important theorem connecting topological entropy with the
number c¢,, of maximal intervals of monotonicity of the iterate f" (see [1, 4]).

THEOREM 4.1 (Misiurewicz-Szlenk). Let f :I — I be a continuous, piecewise mono-
tone map. Then the topological entropy of f is equal to the number

7lllzlgo 1 Inc,,. 4.1)

As a corollary of the above theorem, if f is a piecewise linear map with slope =+s,
then the topological entropy of f is equal to max{0,Ins}.

Let f be a continuous map in . and T as in Theorem 2.7. The slope of T is not
necessarily constant. Observe that Theorem 2.7 still holds if we change the partition
0<1/r<2/r<---<(r—1)/r <1withany other partition0=by<b; <---<b, =1
of [0,1]. So, it is natural to ask the following question. Can we find a partition 0 =
by <b; <---<by=10f[0,1] such that |byi) — by |/ (b; —bi_1) is constant?

To answer this question, to each f € {l, we associate an v X ¥ matrix A = [a;;]
defined by

aij:‘|07 if( i-1s )ﬁf ( - 1,b ):®a 4.2)

1, if (biy,bi) 0 f 71 (bj-1,bj) + D.

Observe that A is nonnegative. According to the Perron-Frobenius theorem, there
exists a unique nonnegative eigenvalue s > 0, which is maximal in absolute value
among all the other eigenvalues and corresponding to a nonnegative eigenvector (see
Gantmacher [5]).

PROPOSITION 4.2. Assume that f € M is a continuous map of order v, A is the
corresponding matrix, and s is the “maximal” eigenvalue of A.

(a) If s > 1 and the corresponding eigenvector is positive, then the topological entropy
of f islns.

(b) If s < 1 or at least one component of the corresponding eigenvector is zero, then
the topological entropy of f is zero.

PROOF. (a) Assume that there exist a partition 0 = bg <b; < --- <b, =1 and a
constant s > 1 such that |T(b;_1,b;)| = s|(bi_1,b;)]|, for i = 1,2,...,7. If we let x; =
b;i—b;_1 > 0, the above relation gives

Xp(i)+1 +Xp(iy+2 + - +Xg0) =Sxi, 1=1,2,...,7, 4.3)

or, equivalently,
Ax =sx, where x = (x1,...,x,)". (4.4)
Thus, there exist a partition 0 = by < b; <--- < b, =1 and a constant s > 1 such that

|T(bi_1,b;)| = s|(bi_1,b;)|, fori=1,2,...,r, if and only if (a) holds.
(b) Assume on the contrary that h(f) > 0. Then f is conjugate to a piecewise linear
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map with constant slope [9]. It follows that there exist a partition 0 = by <b; < - -- <
b, =1 and a constant s > 1 such that |T(b;_1,bi)| = s|(bij_1,b;)|, for i = 1,2,...,7.
This is equivalent to (a), which contradicts (b). O

REMARK 4.3. There is a similar result in [2]. The proof we give here is more simple
and is based heavily on Theorem 2.7.

The above proposition gives a method to construct the partition 0 = by < b; <
-+ - < by =1, when we are in case (a). Assume that (uy,uy,...,u,)7 is an eigenvector
corresponding to the maximal eigenvalue. Then by = 0 and

Z{‘(:l Ui
ZLl Ui
Consider the map f € .M whose graph is shown in Figure 2.1. According to

Theorem 2.7, f is topologically conjugate with T which is piecewise linear (the graph
of T is shown in Figure 4.1). The associated matrix to f is

by =

fork=1,2,...,7r. (4.5)

1 1 1 0
az|0 o) 46
1 1 1 1
The maximal eigenvalue is s = 2.8393 and an eigenvector is
(0.6478,0.4196,0.7718,1)". 4.7)

0.8 1

0.6

0.4

0.2

FIGURE 4.1.
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FIGURE 4.2.

Then from (4.5) we have by = 0, by = 0.2282, b, = 0.3759, b3 = 0.6478, by = 1. f is
topologically conjugate to T” whose graph is shown in Figure 4.2. Since the slope of
T’ is constant in absolute value we have that h(f) =Ins = 1.0435.
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