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TOPOLOGICAL CONJUGACIES OF PIECEWISE
MONOTONE INTERVAL MAPS

NIKOS A. FOTIADES and MOSES A. BOUDOURIDES

(Received 3 January 2000)

Abstract. Our aim is to establish the topological conjugacy between piecewise monotone
expansive interval maps and piecewise linear maps. First, we are concerned with maps
satisfying a Markov condition and next with those admitting a certain countable partition.
Finally, we compute the topological entropy in the Markov case.
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1. Introduction and preliminaries. Let I be a closed interval in R, which is usually
taken to be the interval [0,1], and f : I → I a mapping. The iterates of f are the maps
fn defined inductively by f 0 = idR, f 1 = f , fn+1 = fn ◦f . The (forward or positive)
orbit of a point x ∈ I is the set O(x) = {fn(x) : n ∈ N}. The ω-limit set of x is
the set of the limit points of O(x) and is denoted by ω(x). Two maps f : I → I and
g : J → J (J a closed interval in R) are called topologically conjugate if there exists a
homeomorphism h : I → J such that h◦f = g◦h.

The study of topological conjugacies has commenced with Poincaré in the 1880s. He
considered homeomorphisms f : S1→ S1 of the unit circle S1 =R/Z with no periodic
points and showed that there exist a rotation R : S1→ S1 and a continuous, surjective
and monotone map h : S1→ S1 such that h◦f = R◦h, that is, f and R are topologically
semiconjugate. Similar results for piecewise monotone interval maps f were proved
later by Parry [10] and Milnor and Thurston [9]. According to them, if f : I → I is
continuous, piecewise monotone with positive topological entropy h(f), then there
exists a piecewise linear map T : [0,1]→ [0,1] with slope ±exp(h(f)) such that f ,T
are topologically semiconjugate. f and T become topologically conjugate, if there are
no attracting periodic points and no wandering intervals for f . The nonexistence of
wandering intervals has been proved for a large class of functions satisfying some
mild smoothness conditions (see [3, 6, 7, 8]).

In this paper, we consider the family � of functions which are piecewise monotone
(but not necessarily continuous) and expansive. Particularly, f : [0,1]→ [0,1] belongs
to the family � if there exists a partition 0 = a0 < a1 < ··· < ar = 1 (r ≥ 2) of
[0,1] such that f | [ai−1,ai] (i= 1,2, . . . ,r ) is a monotone C1 function and satisfy the
following Markov condition: for every i= 1,2, . . . ,r , there exist p(i),q(i)∈ {0,1, . . . ,r}
with p(i) < q(i) such that f(ai−1,ai) = (ap(i),aq(i)). Furthermore, we assume that
there is λ > 1 such that |f ′(x)| ≥ λ, for almost every x ∈ [0,1], in which case, f
is called expansive. Our aim is to show that every f ∈ � is topologically conjugate
to a map T which is linear on each interval [(i−1)/r ,i/r] (i = 1,2, . . . ,r ). Next, we
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consider the class �∞ where [0,1] accepts a countable partition accumulating to 1.
Finally, in the last section, we compute the topological entropy for continuous maps
in �.

Notation. If J ⊂ [0,1] is an interval, we denote |J| its length.

2. Topological conjugacies for maps in�. In this section, we study the topological
conjugacies for maps f ∈�. If 0= a0 <a1 < ···<ar = 1 is the partition correspond-
ing to f , we say that f is of order r . The points of the partition are called critical
points of f . We denote by I1, . . . , Ir the intervals of the partition, that is, Ij = (aj−1,aj).
We assume that these intervals are maximal in the sense that if I is an interval which
strictly contains one of them, then f | I is neither continuous nor monotone. Also,
we denote by fj the restriction of f to Ij . Finally, we denote by Fj1j2···jk the com-
position f−1j1 ◦f−1j2 ◦ ··· ◦f−1jk . Note that Fj1j2···jk is not necessarily defined for every
(finite) sequence j1j2 ···jk. Moreover, Fj1j2···jk(x) is the unique pointy ∈ Ij1such that
f(y)∈ Ij2 , . . . ,f k−1(y)∈ Ijk and fk(y)= x.

An open interval J ⊂ [0,1] is called a branch of fn if fn | J is continuous, monotone
and J is maximal with these properties. The set of branches of fn is denoted by Bn(f).
Moreover, we define the sets

�n(f)=
r⋃

j=0

n−1⋃

i=0
f−i

(
aj
)
, n= 1,2, . . . ,

�(f )=
r⋃

j=0

∞⋃

i=0
f−i

(
aj
)
.

(2.1)

Frequently, we write �n and � instead of �n(f) and �(f ).
In what follows, we introduce some notions from symbolic dynamics. To each point

x of �, there corresponds a sequence of symbols which is related with the order of
the points of O(x).

Definition 2.1. The itinerary of x ∈� with respect to f ∈� is a sequence if (x)=
{in(x)}∞n=0, where

in(x)=


j, if fn(x)∈ Ij,
2j+1

2
, if fn(x)= aj.

(2.2)

An interesting notion in symbolic dynamics is the shift map σ : if x = {xn}∞n=0, then
σ(x)= y , where y = {xn}∞n=1. Inductively, we have σk(x)= {xn}∞n=k. To each f ∈�

of order r , we associate a subset of {1/2,1,3/2, . . . ,r ,(2r +1)/2}N. We describe this
set in the following definition.

Definition 2.2. Let f ∈� with partition 0= a0 <a1 < ···<ar = 1. We define the
set of sequences Σ(f )= {a : a= {xn}∞n=0} with entries from the set {1/2,1,3/2, . . . ,r ,
(2r +1)/2}, which satisfy the following conditions:

(i) Let a= {xn} ∈ Σ(f ). Then there exists an entry xn of a of the form (2k+1)/2,
where k= 0,1, . . . ,r . Furthermore, if xN is the first entry of a with this property, then
σN(a)= if (ak).



TOPOLOGICAL CONJUGACIES OF PIECEWISE MONOTONE INTERVAL MAPS 121

(ii) If n<N−1 and xn = j, then p(j)+1≤ xn+1 ≤ q(j).
It is possible to define an order on the set if (�) which is consistent with the natural

order of real numbers. Two sequences of symbols x = {xn}∞n=0 and y = {yn}∞n=0 be-
longing to {1/2,1,3/2, . . . ,r ,(2r +1)/2}N are called to have discrepancy n if xi = yi,
for i = 0,1, . . . ,n−1, and xn ≠ yn. If the itineraries of two points of � have discrep-
ancy n, then the first n points of their orbits are visiting simultaneously the same
intervals of B1(f ). Moreover, we define 1/2≺ 1≺ 3/2≺ ··· ≺ r ≺ (2r +1)/2.

Definition 2.3. Let f ∈ � and x,y ∈ � with x ≠ y . We assume that itineraries
if (x) and if (y) have discrepancy n and that f is decreasing in k common intervals.

(i) When k is even, then if (x)≺ if (y) if and only if in(x)≺ in(y).
(ii) When k is odd, then if (x)≺ if (y) if and only if in(y)≺ in(x).

Lemma 2.4. Let f ∈� be of order r and let x,y ∈� with x ≠y . Then if (x)≺ if (y)
if and only if x <y .

Proof. We assume that itineraries if (x) and if (y) have discrepancy n. That is,
ik(x) = ik(y) = jk, for k = 0,1, . . . ,n−1, and in(x) ≠ in(y). We claim that j0,j1, . . . ,
jn−1 are not of the form (2s+1)/2. To prove this, we assume the contrary, whence
if (x) = if (y), which is a contradiction, since in(x) ≠ in(y). From Definition 2.1,
x,y belong to Ij0 and successively visit the intervals Ij1 , . . . , Ijn−1 . So, we can write
x = Fj0j1···jn−1(fn(x)) and y = Fj0j1···jn−1(fn(y)). We assume that f is decreasing in
k intervals among Ij0 , Ij1 , . . . , Ijn−1 . There are two cases.

(i) When k is even, then Fj0j1···jn−1 is increasing. Assume that if (x)≺ if (y), then
from Definition 2.3 we have in(x) ≺ in(y). This means that fn(x) < fn(y) and,
hence, x = Fj0j1···jn−1(fn(x)) < y = Fj0j1···jn−1(fn(y)).

(ii) When k is odd, then Fj0j1···jn−1 is decreasing. Assume that if (x)≺ if (y), then
from Definition 2.3 we have in(y) ≺ in(x). This means that fn(x) > fn(y) and,
hence, x = Fj0j1···jn−1(fn(x)) < y = Fj0j1···jn−1(fn(y)).

Lemma 2.5. Let f ∈� be of order r . The map if : �→ Σ(f ) is a bijection.
Proof. Let x,y ∈� with if (x)= if (y). Let k,m be the minimal integers for which

fk(x), fm(y) are critical points of f . Assume that k≠m (let k <m). Since fk(x) is a
critical point, then fk+1(x)= 0 or 1, and, so, ik+1(x)= 1/2 or (2r+1)/2. On the other
hand, ik(y) = 1,2, . . . ,r , and, hence, ik+1(y) ≠ 1/2 and ik+1(y) ≠ (2r +1)/2, which
is a contradiction, since ik+1(x) = ik+1(y). So, k =m. Furthermore, we observe that
fk(x) = fk(y), since ik(x) = ik(y) and it is of the form (2j+1)/2. Consequently,
fk(x)= fk(y)= aj .

Assume that in(x) = in(y) = jn ∈ N, for n = 0,1, . . . ,k− 1. From Definition 2.1,
x,y belong to Ij0 and successively visit the intervals Ij1 , . . . , Ijk−1 . So, we can write
x = Fj0j1···jk−1(f

k(x)) and y = Fj0j1···jk−1(f
k(y)). Since fk(x) = fk(y), we have

x =y . Thus, if is injective.
Let a= {xn} ∈ Σ(f ). We shall show that there exists an x ∈ � such that if (x)= a.

From Definition 2.2, an entry of the sequence a is of the form (2k+1)/2. Let xn be the
first entry with this property. Then x = Fx0x1···xn−1(ak) satisfies the desired property.
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Proposition 2.6. Let f ∈� be of order r . Then � is dence in [0,1].

Proof. Let J̃ ⊂ [0,1] be an open interval such that J̃∩� =∅. First, we show that
fn(J̃)∩�=∅, for n∈N. We assume, in the contrary, that there exists x ∈ fn(J̃)∩�,
then there is y ∈ J̃ such that x = fn(y). But, fm(x) = ak, for some m ∈ N and
k = 0,1,2, . . . ,r , since x ∈ �. So, fm+n(y) = fm(x) = ak, that is, y ∈ �, which is a
contradiction, since J̃∩�=∅.

As fn(J̃)∩�=∅, for n∈N, it turns out that f is monotone and C1 on each interval
J̃,f (J̃),f 2(J̃), . . . .

We prove by induction that |fn(J̃)| ≥ λn|J̃|, for n ≥ 1. From the mean value the-
orem and since f |J̃ is monotone, we have |f(J̃)|/|J̃| = |f ′(a)|, for some a∈ J̃. But,
|f ′(a)| ≥ λ and, hence |f(J̃)| ≥ λ|J̃|. We assume that the claim is true for k <n. From
the mean value theorem and since f |fn−1(J̃) is monotone, we have |fn(J̃)|/|fn−1(J̃)|
= |f ′(a1)| ≥ λ, for some a1 ∈ fn−1(J̃). From the induction assumption, we have
|fn−1(J̃)| ≥ λn−1|J̃|. Combining the last two inequalities, we have |fn(J̃)| ≥ λn|J̃|.

Thus, for some n∈N, λn|J̃|> 1, which is a contradiction, since |fn(J̃)| ≤ 1.

Theorem 2.7. Let f ∈ � be of order r with partition 0= a0 <a1 < ···<ar = 1.
We consider the map T ∈� with partition 0 < 1/r < 2/r < ··· < (r −1)/r < 1 which
is linear in each interval [(i−1)/r ,i/r] and T((i−1)/r ,i/r) = (p(i)/r ,q(i)/r). Fur-
thermore, T |[(i−1)/r ,i/r] is of the same monotonicity type with f |[ai−1,ai] and it
is continuous, from the right or from the left at i/r , when f is continuous, from the
right or from the left at ai, respectively. Then f and T are topologically conjugate.
(Figure 2.1)
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Figure 2.1.

Proof. From Definition 2.2, we have Σ(f )= Σ(T). With this observation and since
if and iT are bijections (Lemma 2.5), we can define a correspondence h : �(f ) →
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�(T), which is an order preserving bijection and such that h ◦ f = T ◦h. For x ∈
�(f ), we define h(x) to be the unique element of �(T), for which if (x) = iT (h(x)).
Equivalently, h = i−1T ◦ if . But since if and iT are bijections, we have that h is also
a bijection. From Lemma 2.4, if and iT are order preserving maps and, so, the same
holds for h.

Let x ∈�(f ). We shall show that h◦f(x) and T ◦h(x) have the same itinerary with
respect to T . Indeed,

iT
(
h
(
f(x)

))= if
(
f(x)

)= σ(if (x)
)
. (2.3)

On the other hand,

iT
(
T
(
h(x)

))= σ(iT
(
h(x)

))= σ(if (x)
)
. (2.4)

Since iT is an injection, we have that h◦f(x)= T ◦h(x).
Since �(f ) and �(T) are dense in [0,1] (Proposition 2.6), h can extend to a homeo-

morphism h̃ : [0,1]→ [0,1] such that h̃◦f = T ◦ h̃.

3. Topological conjugacies for maps in �∞. In the previous sections, we had stud-
ied functions with a finite partition. Here we study a special class of functions with
countable partition. Some modifications are necessary.

Definition 3.1. A map f : [0,1] → [0,1] belongs to the class of functions �∞ if
there exists a sequence of real numbers {an}∞n=0 with 0 = a0 < a1 < a2 < ··· and
limn→∞an = 1 such that:

(i) f is C1 and monotone on each interval [ai−1,ai] of the partition.
(ii) For every i ∈ N∗, there exist unique p(i),q(i) ∈ N such that f(ai−1,ai) =

(ap(i),aq(i)).
(iii) There exists λ > 1 such that |f ′(x)| ≥ λ, for every x �= ai.
In this case, �(f )=∪∞j=0∪∞i=0f−i(aj).
Definition 3.2. Let f ∈ �∞ with partition 0 = a0 < a1 < a2 < ··· < 1. We define

the set of sequences Σ∞(f ) = {a : a = {xn}∞n=0} with entries from {1/2,1,3/2, . . .},
which satisfy the following conditions:

(i) Leta= {xn} ∈ Σ∞(f ). Then there exists an entryxn ofa, of the form (2k+1)/2,
where k = 0,1, . . . . Furthermore, if xN is the first entry of a with this property, then
σN(a)= if (ak).

(ii) If n<N−1 and xn = j, then p(j)+1≤ xn+1 ≤ q(j).
Theorem 3.3. Let f ∈�∞ with partition 0= a0 <a1 <a2 < ···< 1. We consider the

map T ∈�∞ with partition 0< 1/2< 2/3< 3/4< ···< 1 which is linear in each inter-
val [(i− 1)/i,i/(i+ 1)] and T((i−1)/i,i/(i+1))= (p(i)/(p(i)+1),q(i)/(q(i)+1)).
Furthermore, T | [(i−1)/i,i/(i+1)] is of the same monotonicity type with f | [ai−1,ai]
and it is continuous, from the right or from the left at i/(i+1), when f is continuous,
from the right or from the left at ai, respectively. Then f and T are topologically con-
jugate.

Proof. The proof of this theorem is the same as the proof of Theorem 2.7.
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4. Computation of topological entropy for continuous Markov maps. Topologi-
cal entropy is a measure of the dynamical complexity of a map and it is a topological
invariant. There is an important theorem connecting topological entropy with the
number cn of maximal intervals of monotonicity of the iterate fn (see [1, 4]).

Theorem 4.1 (Misiurewicz-Szlenk). Let f : I → I be a continuous, piecewise mono-
tone map. Then the topological entropy of f is equal to the number

lim
n→∞

1
n

lncn. (4.1)

As a corollary of the above theorem, if f is a piecewise linear map with slope ±s,
then the topological entropy of f is equal to max{0, lns}.

Let f be a continuous map in � and T as in Theorem 2.7. The slope of T is not
necessarily constant. Observe that Theorem 2.7 still holds if we change the partition
0< 1/r < 2/r < ···< (r−1)/r < 1 with any other partition 0= b0 < b1 < ···< br = 1
of [0,1]. So, it is natural to ask the following question. Can we find a partition 0 =
b0 < b1 < ···< br = 1 of [0,1] such that |bq(i)−bp(i)|/(bi−bi−1) is constant?

To answer this question, to each f ∈ �, we associate an r × r matrix A = [aij]
defined by

aij =


0, if

(
bi−1,bi

)∩f−1(bj−1,bj
)=∅,

1, if
(
bi−1,bi

)∩f−1(bj−1,bj
)
≠∅. (4.2)

Observe that A is nonnegative. According to the Perron-Frobenius theorem, there
exists a unique nonnegative eigenvalue s ≥ 0, which is maximal in absolute value
among all the other eigenvalues and corresponding to a nonnegative eigenvector (see
Gantmacher [5]).

Proposition 4.2. Assume that f ∈ � is a continuous map of order r , A is the
corresponding matrix, and s is the “maximal” eigenvalue of A.

(a) If s > 1 and the corresponding eigenvector is positive, then the topological entropy
of f is lns.

(b) If s ≤ 1 or at least one component of the corresponding eigenvector is zero, then
the topological entropy of f is zero.

Proof. (a) Assume that there exist a partition 0 = b0 < b1 < ··· < br = 1 and a
constant s > 1 such that |T(bi−1,bi)| = s|(bi−1,bi)|, for i = 1,2, . . . ,r . If we let xi =
bi−bi−1 > 0, the above relation gives

xp(i)+1+xp(i)+2+···+xq(i) = sxi, i= 1,2, . . . ,r , (4.3)

or, equivalently,

Ax = sx, where x = (x1, . . . ,xr
)τ . (4.4)

Thus, there exist a partition 0= b0 < b1 < ···< br = 1 and a constant s > 1 such that
|T(bi−1,bi)| = s|(bi−1,bi)|, for i= 1,2, . . . ,r , if and only if (a) holds.

(b) Assume on the contrary that h(f) > 0. Then f is conjugate to a piecewise linear
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map with constant slope [9]. It follows that there exist a partition 0= b0 < b1 < ···<
br = 1 and a constant s > 1 such that |T(bi−1,bi)| = s|(bi−1,bi)|, for i = 1,2, . . . ,r .
This is equivalent to (a), which contradicts (b).

Remark 4.3. There is a similar result in [2]. The proof we give here is more simple
and is based heavily on Theorem 2.7.

The above proposition gives a method to construct the partition 0 = b0 < b1 <
··· < br = 1, when we are in case (a). Assume that (u1,u2, . . . ,ur )τ is an eigenvector
corresponding to the maximal eigenvalue. Then b0 = 0 and

bk =
∑k
i=1ui∑r
i=1ui

for k= 1,2, . . . ,r . (4.5)

Consider the map f ∈ � whose graph is shown in Figure 2.1. According to
Theorem 2.7, f is topologically conjugate with T which is piecewise linear (the graph
of T is shown in Figure 4.1). The associated matrix to f is

A=




1 1 1 0
0 1 1 0
0 1 1 1
1 1 1 1



. (4.6)

The maximal eigenvalue is s = 2.8393 and an eigenvector is

(0.6478,0.4196,0.7718,1)τ . (4.7)
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Figure 4.2.

Then from (4.5) we have b0 = 0, b1 = 0.2282, b2 = 0.3759, b3 = 0.6478, b4 = 1. f is
topologically conjugate to T ′ whose graph is shown in Figure 4.2. Since the slope of
T ′ is constant in absolute value we have that h(f)= lns = 1.0435.
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